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Introduction

Mini-course divided into 4 lectures
» Lecture 1: SD on f.g. groups: a computational approach.
» Lecture 2: Domino Problem, Part I: Wang tiles.
» Lecture 3: Domino Problem, Part IlI: f.g. groups.
» Lecture 4: Effective subshifts.
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Lecture 2: Domino Problem, Part I: Wang tiles.

© Wang tiles and Domino Problem
@ Logics and Tilings
@ Periodicity in Z?
@ Wang's conjecture
@ Robinson's tiling
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FO Logic and the V3V fragment

@ Variables (x,y, z,...), predicates (P(x), Q(y, y),...).
o Quantify over variables.
e Formula ¢ : Vx3y, Q(x,y), IxVy, P(y) = Q(y,x)....



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane
@000000000000000000000 000000 000000

FO Logic and the V3V fragment

@ Variables (x,y, z,...), predicates (P(x), Q(y, y),...).
o Quantify over variables.
e Formula ¢ : Vx3y, Q(x,y), IxVy, P(y) = Q(y,x)....

Study the unsolvability of the Y3V-prefix class:

Satisfiability problem for V3V

Input: ¢ a V3V-formula
Output: Yes if there exists a model 9t F 1), No otherwise.
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Wang tiles model and the Domino Problem

Finite set of Wang tiles 7 (infinitely many copies of each tile)

DA XX
P& DEX

Local adjacency rules
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Wang tiles model and the Domino Problem

Finite set of Wang tiles 7 (infinitely many copies of each tile)

DA XX
P& D€X -

Example of tiling by 7

Local adjacency rules
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Wang tiles model and the Domino Problem

Finite set of Wang tiles 7 (infinitely many copies of each tile)

DA XX
P& DEX

Example of tiling by 7

Local adjacency rules

Domino Problem

Input: A finite set of Wang tiles 7
Output: Yes if there exists a valid tiling by 7, No otherwise.
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Domino Problem and the V3V fragment (1)

How to formalize tilings by 7 in FO logics ? (= build a theory)

@ FO variables: points in Z?2

o Model 9t: configuration t in 7z

@ Binary predicates {P; : i € 7}: P. (x,y) is true iff t, ,y = M
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Domino Problem and the V3V fragment (I1)

Define H and V the subsets of 7 x 7 that code the horizontal and
vertical allowed adjacencies.
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Domino Problem and the V3V fragment (I1)

Define H and V the subsets of 7 x 7 that code the horizontal and
vertical allowed adjacencies.

Let ¢, be the MSO formula Vx3x'Vy ¢, where ¢-(x,x’,y) is

A= (PiCx,y) AP(x,¥)) A
i#j

at most one tile at each (x,y)

\/ (Pitxy) APi(x.y)) A \/ (Pily,x) APi(y,x))

(i.j)eH (i.j)ev

every column has a right neighbor every row has a top neighbor
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Domino Problem and the V3V fragment (I1)

Define H and V the subsets of 7 x 7 that code the horizontal and
vertical allowed adjacencies.

Let ¢, be the MSO formula Vx3x'Vy ¢, where ¢-(x,x’,y) is

A= (PiCx,y) AP(x,¥)) A
i#j

at most one tile at each (x,y)

\V (Piy) AP, y) A\ (Pily,x) APi(y,x))

(i.j)eH (i.j)ev

every column has a right neighbor every row has a top neighbor

Proposition

1 has a model < 3 tiling of N x N by 7.

Remark: 3 tiling of N x N by 7 < T tiling of Z x Z by 7 (by Kénig's
lemma).
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Domino Problem and the V3V fragment (llI)

Putting everything together:

Comparison of Decidability

o If Satisfiability of V3V is decidable, then Domino Problem is
decidable.

@ If Domino Problem is undecidable, then Satisfiability of V3V is
undecidable.
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Periodicity in Z2 (1)

» A configuration x € AL i weakly periodic if its stabilizer is infinite.

& x admits a non-trivial direction U of periodicity.

» A configuration x € AZ? i strongly periodic if its stabilizer is of
finite index in Z2: [Z? : Stab(x)] < cc.

& x admits two non-colinear directions U,V of periodicity.

» A subshift X c AZ is weakly aperiodic (resp. strongly aperiodic)
if it contains no strongly periodic (resp. weakly periodic)
configuration.
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Periodicity in Z2 (Il)

Proposition
Any Z2-SFT that contains a weakly periodic configuration also contains a
strongly periodic configuration.

Proof: Let x be a configuration with period .
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Periodicity in Z2 (Il)

Proposition

Any Z2-SFT that contains a weakly periodic configuration also contains a
strongly periodic configuration.

Proof: Let x be a configuration with period .
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Periodicity in Z2 (Il)

Proposition

Any Z2-SFT that contains a weakly periodic configuration also contains a
strongly periodic configuration.

Proof: Let x be a configuration with period .
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Periodicity in Z2 (Il)

Proposition

Any Z2-SFT that contains a weakly periodic configuration also contains a
strongly periodic configuration.

Proof: Let x be a configuration with period .
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Periodicity in Z2 (Il)

Proposition

Any Z2-SFT that contains a weakly periodic configuration also contains a
strongly periodic configuration.

Proof: Let x be a configuration with period .
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Proposition

Any Z2-SFT that contains a weakly periodic configuration also contains a

strongly periodic configuration.

Tilings of the hyperbolic plane
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Proof: Let x be a configuration with period .
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Consequence: On Z?, weakly aperiodic SFT are strongly aperiodic !
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Semi-algorithm for periodicity (1)

Let 7 be a finite set of Wang tiles.

Tilings of the hyperbolic plane
000000
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Semi-algorithm for periodicity (1)

Let 7 be a finite set of Wang tiles.
DA XX

It is easy to generate, for every integers n, m € N, all locally admissible
patterns of size n x m.



Wang tiles and Domino Problem Woang tiles as a computational model Tilings of the hyperbolic plane
0000000®00000000000000 000000 000000

Semi-algorithm for periodicity (1)

Let 7 be a finite set of Wang tiles.
DA XX

It is easy to generate, for every integers n, m € N, all locally admissible
patterns of size n x m.

If you find a locally admissible pattern with matching edges, then T tiles

the plane periodically.



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane
00000000000 0000000000 000000 000000

Semi-algorithm for periodicity (I1)

Semi-algorithm:
© gives a pattern that tiles the plane periodically if it exists

@ loops otherwise
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Semi-algorithm for periodicity (I1)

Semi-algorithm:
© gives a pattern that tiles the plane periodically if it exists

@ loops otherwise

Questions:
@ Can you check whether the locally admissible patterns are globally
admissible ?
@ Is it true that if 7 admits no periodic pattern, then 7 does not tile
the plane 7
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Wang's conjecture and the tiling problem

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.
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Wang's conjecture and the tiling problem

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

Suppose Wang's conjecture is true. Then you can decide the tiling
problem !

Semi-algorithm 1:
© gives a pattern that tiles the plane periodically if it exists
© loops otherwise
Semi-algorithm 2:
@ gives an integer n so that [1; n] x [1; n] cannot be tiled if it exists
© loops otherwise
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Back to Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.
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Back to Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

o Refuted by Berger (Wang's student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane
000000000000 000000000 000000 000000

Back to Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

o Refuted by Berger (Wang's student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.

@ Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
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Back to Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

o Refuted by Berger (Wang's student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.

@ Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
@ Kari (1996): aperiodic set of 14 Wang tiles !
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Back to Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

o Refuted by Berger (Wang's student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.

@ Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
@ Kari (1996): aperiodic set of 14 Wang tiles !
@ Culik (1996): aperiodic set of 13 Wang tiles !
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Back to Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

o Refuted by Berger (Wang's student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.

Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
Kari (1996): aperiodic set of 14 Wang tiles !
Culik (1996): aperiodic set of 13 Wang tiles !

... suspicions about a set of 11 Wang tiles . ..
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Back to Wang's conjecture

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged
to do so periodically.

o Refuted by Berger (Wang's student) in 1966: he exhibited an
aperiodic set of 20426 Wang tiles.

Robinson (1971): aperiodic set of 56 Wang tiles (32 square tiles)!
Kari (1996): aperiodic set of 14 Wang tiles !
Culik (1996): aperiodic set of 13 Wang tiles !

... suspicions about a set of 11 Wang tiles . ..

More than that, all these constructions actually show the undecidability
of the tiling problem (from which you deduce the existence of an
aperiodic tileset).




Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.

L
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Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.

-
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Existence of a valid tiling

Proposition

Robinson’s tileset admits at least one valid tiling.
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Existence of a valid tiling

Proposition

Robinson’s tileset admits at least one valid tiling.

Proof:

@ We can build arbitrarily large patterns (called macro-tiles) with the
same structure.

@ We thus conclude by compactness.



Macro-tiles of level 1

Macro-tiles of level 1.

DA



Macro-tiles of level 1

Macro-tiles of level 1.

They behave like large .
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level 1 to macro-tiles of level 2
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This valid tiling is aperiodic

Proposition

The valid tiling x obtained by compactness is aperiodic.

Proof:

@ Centers of macro-tiles of level n are located on the lattice
2n+IZ x 2n+lz_

Suppose x admits a direction of periodicity .
Then there exists an integer ns.t. 2"t > | 7|

Thus a macro-tile of level n overlaps with its translation.

= contradiction.
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All valid tilings are aperiodic (1)

The two forms in Robinson tileset, cross (bumpy corners) and arms
(dented corners).
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All valid tilings are aperiodic (1)

The two forms in Robinson tileset, cross (bumpy corners) and arms
(dented corners).

]

Obviously, two crosses cannot be in contact (neither through an edge nor
a vertex) thus a cross must be surrounded by eight arms.

[ ]

ns mm




All valid tilings are aperiodic (I1)
You cannot have things like
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All valid tilings are aperiodic (I1)
You cannot have things like
The only possibilities are thus
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All valid tilings are aperiodic (I1)
You cannot have things like
The only possibilities are thus
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All valid tilings are aperiodic (I11)

So each I:[ is part of a macro tile of level 1

N

+

+

+

that behaves like a big ]:I and so on. ..




About Robinson’s tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a
square of level n+1
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About Robinson's tiling structure

Hierarchy of squares: squares of level n are gathered by 4 to form a
square of level n+1

Proposition
The are uncountably many different valid tilings by the Robinson tileset.




Fracture lines

Some sequences of choices (ultimately constant sequences) lead to
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Fracture lines

Some sequences of choices (ultimately constant sequences) lead to
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=y gL OTE L
=l . =l =,
OTE gL e L
+£1 61 581 B-Ely[d-hl [0-h] [0-hl [B-hl

But it is possible to enrich the tiles to get rid of fracture lines | (idea:
synchronize squares of same level)
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Lecture 2: Domino Problem, Part I: Wang tiles.

© Wang tiles as a computational model
@ Turing machines
@ Encoding Turing machines inside Wang tilesets
@ The undecidability of the Domino Problem
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Turing machines: definition

A Turing machine is a tuple M = (Q,T,4, go, 9, Qr) where
» Q is a finite set of states, qg € Q is the initial state,
» [ is a finite alphabet,
» ¢TI is the blank symbol,
» 0:QxT = QxT x{«, ,—} is the transition function,
» QF C Q is the set of final states.
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Turing machines: example

5(.x) Symbol x
' a b [ #
9o | (qb+,a,—)
T | ga 1 (gp++,a,—) 1 1
£ [ o T T T (@, b, —)
LA e 1 (gp++, b,—) | (qp+, b, —) 1
q | (qarsa,—) | (qy.b:¢) (qu: 1, <) (qu, 11 -)
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Turing machines: example
5(.x) Symbol x
X
! a b [ #
qo0 | (qb+,a,—)
< qat 1L (qp++,a,—) 1 i
(0]
s | 9 L L 1 (q),b,—)
D g 1 (gp++:b, =) | (gb+, b, =) L
q | (g=+,a,—) | (q),b,¢) (qp: 1, ) (a5 1l,-)
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5(.x) Symbol x
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9o | (qb+,a,—)
T | ga 1 (gp++,a,—) 1 1
£ [ o T T T (@, b, —)
LA e 1 (gp++, b,—) | (qp+, b, —) 1

q | (qarsa,—) | (qy.b:¢) (qu: 1, <) (qu, 11 -)
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Turing machines: Halting Problem

Take any enumeration of Turing machines (M;);cy-

Halting Problem for Turing machines

Input: A Turing machine M; and an input word w.
Output: Yes if M; reaches a final state when computing on w, No
otherwise.
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Turing machines: Halting Problem

Take any enumeration of Turing machines (M;);cy-

Halting Problem for Turing machines

Input: A Turing machine M; and an input word w.
Output: Yes if M; reaches a final state when computing on w, No
otherwise.

Theorem (Turing, 1936)

The Halting Problem for Turing machines is undecidable.

Proof: Diagonal argument.
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TM inside Wang tilesets
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Undecidability of the Domino Problem (1)

Can we reduce Domino Problem from Halting Problem 7

Build a finite tileset 7 s.t. X, # 0 iff M halts on the empty input >4>. \

» Every Turing machine M can be associated with a finite tileset 74.

» If M never stops on the empty intput then X;,, is non-empty.

» Unfortunately this SFT is always non-empty (blank
configuration #%°) independently from M. ..

Problem
How to initialize computations ?7
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Lecture 2: Domino Problem, Part I: Wang tiles.

© Tilings of the hyperbolic plane
e Tilings in H?
@ Turing machines inside H?
@ Undecidability of DP in H?



Tilings in H?

Wang tiles are replaced by Q -tiles.

Example: Let 7 be the finite tileset

SRR

Then 7 can produce tilings of H?

TN N N

Saaassaaaeaes

DA



Wang tiles and Domino Problem Wang tiles as a computational model Tilings of the hyperbolic plane
000000000000 0000000000 000000 O@0000

Turing machines inside [~ ) -tilesets (1)
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Turing machines inside [~ ) -tilesets (1)
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Undecidability of DP in H?

First proven by Kari (2007) (see Lecture 3) and Margenstern (2009).

The Domino Problem is undecidable in the hyperbolic plane.

Idea: use Goodman-Strauss aperiodic hierarchical tiling of H2. ..
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Conclusion

» Strong links between existence of aperiodic SFTs and Domino
Problem.

» Undecidability comes from

(i) the existence of aperiodic SFT
(i) encoding of Turing machines inside SFT

» Can be generalized to the hyperbolic plane.

On Thursday: what about Domino Problem on f.g. groups ?



Thank you for your attention !!

DA
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