
       

Chapter 7

Sums of Independent
Random Variables

7.1 Sums of Discrete Random Variables

In this chapter we turn to the important question of determining the distribution of
a sum of independent random variables in terms of the distributions of the individual
constituents. In this section we consider only sums of discrete random variables,
reserving the case of continuous random variables for the next section.

We consider here only random variables whose values are integers. Their distri-
bution functions are then defined on these integers. We shall find it convenient to
assume here that these distribution functions are defined for all integers, by defining
them to be 0 where they are not otherwise defined.

Convolutions

Suppose X and Y are two independent discrete random variables with distribution
functions m1(x) and m2(x). Let Z = X + Y . We would like to determine the dis-
tribution function m3(x) of Z. To do this, it is enough to determine the probability
that Z takes on the value z, where z is an arbitrary integer. Suppose that X = k,
where k is some integer. Then Z = z if and only if Y = z − k. So the event Z = z

is the union of the pairwise disjoint events

(X = k) and (Y = z − k) ,

where k runs over the integers. Since these events are pairwise disjoint, we have

P (Z = z) =
∞∑

k=−∞
P (X = k) · P (Y = z − k) .

Thus, we have found the distribution function of the random variable Z. This leads
to the following definition.
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Definition 7.1 Let X and Y be two independent integer-valued random variables,
with distribution functions m1(x) and m2(x) respectively. Then the convolution of
m1(x) and m2(x) is the distribution function m3 = m1 ∗m2 given by

m3(j) =
∑
k

m1(k) ·m2(j − k) ,

for j = . . . , −2, −1, 0, 1, 2, . . .. The function m3(x) is the distribution function
of the random variable Z = X + Y . 2

It is easy to see that the convolution operation is commutative, and it is straight-
forward to show that it is also associative.

Now let Sn = X1 +X2 + · · ·+Xn be the sum of n independent random variables
of an independent trials process with common distribution function m defined on
the integers. Then the distribution function of S1 is m. We can write

Sn = Sn−1 +Xn .

Thus, since we know the distribution function of Xn is m, we can find the distribu-
tion function of Sn by induction.

Example 7.1 A die is rolled twice. Let X1 and X2 be the outcomes, and let
S2 = X1 +X2 be the sum of these outcomes. Then X1 and X2 have the common
distribution function:

m =
(

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

)
.

The distribution function of S2 is then the convolution of this distribution with
itself. Thus,

P (S2 = 2) = m(1)m(1)

=
1
6
· 1
6

=
1
36

,

P (S2 = 3) = m(1)m(2) +m(2)m(1)

=
1
6
· 1
6

+
1
6
· 1
6

=
2
36

,

P (S2 = 4) = m(1)m(3) +m(2)m(2) +m(3)m(1)

=
1
6
· 1
6

+
1
6
· 1
6

+
1
6
· 1
6

=
3
36

.

Continuing in this way we would find P (S2 = 5) = 4/36, P (S2 = 6) = 5/36,
P (S2 = 7) = 6/36, P (S2 = 8) = 5/36, P (S2 = 9) = 4/36, P (S2 = 10) = 3/36,
P (S2 = 11) = 2/36, and P (S2 = 12) = 1/36.

The distribution for S3 would then be the convolution of the distribution for S2

with the distribution for X3. Thus

P (S3 = 3) = P (S2 = 2)P (X3 = 1)
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=
1
36
· 1
6

=
1

216
,

P (S3 = 4) = P (S2 = 3)P (X3 = 1) + P (S2 = 2)P (X3 = 2)

=
2
36
· 1
6

+
1
36
· 1
6

=
3

216
,

and so forth.
This is clearly a tedious job, and a program should be written to carry out this

calculation. To do this we first write a program to form the convolution of two
densities p and q and return the density r. We can then write a program to find the
density for the sum Sn of n independent random variables with a common density
p, at least in the case that the random variables have a finite number of possible
values.

Running this program for the example of rolling a die n times for n = 10, 20, 30
results in the distributions shown in Figure 7.1. We see that, as in the case of
Bernoulli trials, the distributions become bell-shaped. We shall discuss in Chapter 9
a very general theorem called the Central Limit Theorem that will explain this
phenomenon. 2

Example 7.2 A well-known method for evaluating a bridge hand is: an ace is
assigned a value of 4, a king 3, a queen 2, and a jack 1. All other cards are assigned
a value of 0. The point count of the hand is then the sum of the values of the
cards in the hand. (It is actually more complicated than this, taking into account
voids in suits, and so forth, but we consider here this simplified form of the point
count.) If a card is dealt at random to a player, then the point count for this card
has distribution

pX =
(

0 1 2 3 4
36/52 4/52 4/52 4/52 4/52

)
.

Let us regard the total hand of 13 cards as 13 independent trials with this
common distribution. (Again this is not quite correct because we assume here that
we are always choosing a card from a full deck.) Then the distribution for the point
count C for the hand can be found from the program NFoldConvolution by using
the distribution for a single card and choosing n = 13. A player with a point count
of 13 or more is said to have an opening bid. The probability of having an opening
bid is then

P (C ≥ 13) .

Since we have the distribution of C, it is easy to compute this probability. Doing
this we find that

P (C ≥ 13) = .2845 ,

so that about one in four hands should be an opening bid according to this simplified
model. A more realistic discussion of this problem can be found in Epstein, The
Theory of Gambling and Statistical Logic.1 2

1R. A. Epstein, The Theory of Gambling and Statistical Logic, rev. ed. (New York: Academic
Press, 1977).
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Figure 7.1: Density of Sn for rolling a die n times.
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For certain special distributions it is possible to find an expression for the dis-
tribution that results from convoluting the distribution with itself n times.

The convolution of two binomial distributions, one with parameters m and p

and the other with parameters n and p, is a binomial distribution with parameters
(m+n) and p. This fact follows easily from a consideration of the experiment which
consists of first tossing a coin m times, and then tossing it n more times.

The convolution of k geometric distributions with common parameter p is a
negative binomial distribution with parameters p and k. This can be seen by con-
sidering the experiment which consists of tossing a coin until the kth head appears.

Exercises

1 A die is rolled three times. Find the probability that the sum of the outcomes
is

(a) greater than 9.

(b) an odd number.

2 The price of a stock on a given trading day changes according to the distri-
bution

pX =
(
−1 0 1 2
1/4 1/2 1/8 1/8

)
.

Find the distribution for the change in stock price after two (independent)
trading days.

3 Let X1 and X2 be independent random variables with common distribution

pX =
(

0 1 2
1/8 3/8 1/2

)
.

Find the distribution of the sum X1 +X2.

4 In one play of a certain game you win an amount X with distribution

pX =
(

1 2 3
1/4 1/4 1/2

)
.

Using the program NFoldConvolution find the distribution for your total
winnings after ten (independent) plays. Plot this distribution.

5 Consider the following two experiments: the first has outcome X taking on
the values 0, 1, and 2 with equal probabilities; the second results in an (in-
dependent) outcome Y taking on the value 3 with probability 1/4 and 4 with
probability 3/4. Find the distribution of

(a) Y +X.

(b) Y −X.
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6 People arrive at a queue according to the following scheme: During each
minute of time either 0 or 1 person arrives. The probability that 1 person
arrives is p and that no person arrives is q = 1− p. Let Cr be the number of
customers arriving in the first r minutes. Consider a Bernoulli trials process
with a success if a person arrives in a unit time and failure if no person arrives
in a unit time. Let Tr be the number of failures before the rth success.

(a) What is the distribution for Tr?

(b) What is the distribution for Cr?

(c) Find the mean and variance for the number of customers arriving in the
first r minutes.

7 (a) A die is rolled three times with outcomes X1, X2, and X3. Let Y3 be the
maximum of the values obtained. Show that

P (Y3 ≤ j) = P (X1 ≤ j)3 .

Use this to find the distribution of Y3. Does Y3 have a bell-shaped dis-
tribution?

(b) Now let Yn be the maximum value when n dice are rolled. Find the
distribution of Yn. Is this distribution bell-shaped for large values of n?

8 A baseball player is to play in the World Series. Based upon his season play,
you estimate that if he comes to bat four times in a game the number of hits
he will get has a distribution

pX =
(

0 1 2 3 4
.4 .2 .2 .1 .1

)
.

Assume that the player comes to bat four times in each game of the series.

(a) Let X denote the number of hits that he gets in a series. Using the
program NFoldConvolution, find the distribution of X for each of the
possible series lengths: four-game, five-game, six-game, seven-game.

(b) Using one of the distribution found in part (a), find the probability that
his batting average exceeds .400 in a four-game series. (The batting
average is the number of hits divided by the number of times at bat.)

(c) Given the distribution pX , what is his long-term batting average?

9 Prove that you cannot load two dice in such a way that the probabilities for
any sum from 2 to 12 are the same. (Be sure to consider the case where one
or more sides turn up with probability zero.)

10 (Lévy2) Assume that n is an integer, not prime. Show that you can find two
distributions a and b on the nonnegative integers such that the convolution of

2See M. Krasner and B. Ranulae, “Sur une Proprieté des Polynomes de la Division du Circle”;
and the following note by J. Hadamard, in C. R. Acad. Sci., vol. 204 (1937), pp. 397–399.
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a and b is the equiprobable distribution on the set 0, 1, 2, . . . , n − 1. If n is
prime this is not possible, but the proof is not so easy. (Assume that neither
a nor b is concentrated at 0.)

11 Assume that you are playing craps with dice that are loaded in the following
way: faces two, three, four, and five all come up with the same probability
(1/6) + r. Faces one and six come up with probability (1/6) − 2r, with 0 <
r < .02. Write a computer program to find the probability of winning at craps
with these dice, and using your program find which values of r make craps a
favorable game for the player with these dice.

7.2 Sums of Continuous Random Variables

In this section we consider the continuous version of the problem posed in the
previous section: How are sums of independent random variables distributed?

Convolutions

Definition 7.2 Let X and Y be two continuous random variables with density
functions f(x) and g(y), respectively. Assume that both f(x) and g(y) are defined
for all real numbers. Then the convolution f ∗ g of f and g is the function given by

(f ∗ g)(z) =
∫ +∞

−∞
f(z − y)g(y) dy

=
∫ +∞

−∞
g(z − x)f(x) dx .

2

This definition is analogous to the definition, given in Section 7.1, of the con-
volution of two distribution functions. Thus it should not be surprising that if X
and Y are independent, then the density of their sum is the convolution of their
densities. This fact is stated as a theorem below, and its proof is left as an exercise
(see Exercise 1).

Theorem 7.1 Let X and Y be two independent random variables with density
functions fX(x) and fY (y) defined for all x. Then the sum Z = X +Y is a random
variable with density function fZ(z), where fZ is the convolution of fX and fY . 2

To get a better understanding of this important result, we will look at some
examples.
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Sum of Two Independent Uniform Random Variables

Example 7.3 Suppose we choose independently two numbers at random from the
interval [0, 1] with uniform probability density. What is the density of their sum?

Let X and Y be random variables describing our choices and Z = X + Y their
sum. Then we have

fX(x) = fY (x) =
{

1 if 0 ≤ x ≤ 1,
0 otherwise;

and the density function for the sum is given by

fZ(z) =
∫ +∞

−∞
fX(z − y)fY (y) dy .

Since fY (y) = 1 if 0 ≤ y ≤ 1 and 0 otherwise, this becomes

fZ(z) =
∫ 1

0

fX(z − y) dy .

Now the integrand is 0 unless 0 ≤ z − y ≤ 1 (i.e., unless z − 1 ≤ y ≤ z) and then it
is 1. So if 0 ≤ z ≤ 1, we have

fZ(z) =
∫ z

0

dy = z ,

while if 1 < z ≤ 2, we have

fZ(z) =
∫ 1

z−1

dy = 2− z ,

and if z < 0 or z > 2 we have fZ(z) = 0 (see Figure 7.2). Hence,

fZ(z) =

 z, if 0 ≤ z ≤ 1,
2− z, if 1 < z ≤ 2,
0, otherwise.

Note that this result agrees with that of Example 2.4. 2

Sum of Two Independent Exponential Random Variables

Example 7.4 Suppose we choose two numbers at random from the interval [0,∞)
with an exponential density with parameter λ. What is the density of their sum?

Let X, Y , and Z = X + Y denote the relevant random variables, and fX , fY ,
and fZ their densities. Then

fX(x) = fY (x) =
{
λe−λx, if x ≥ 0,
0, otherwise;
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Figure 7.2: Convolution of two uniform densities.
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Figure 7.3: Convolution of two exponential densities with λ = 1.

and so, if z > 0,

fZ(z) =
∫ +∞

−∞
fX(z − y)fY (y) dy

=
∫ z

0

λe−λ(z−y)λe−λy dy

=
∫ z

0

λ2e−λz dy

= λ2ze−λz,

while if z < 0, fZ(z) = 0 (see Figure 7.3). Hence,

fZ(z) =
{
λ2ze−λz, if z ≥ 0,
0, otherwise.

2
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Sum of Two Independent Normal Random Variables

Example 7.5 It is an interesting and important fact that the convolution of two
normal densities with means µ1 and µ2 and variances σ1 and σ2 is again a normal
density, with mean µ1 + µ2 and variance σ2

1 + σ2
2 . We will show this in the special

case that both random variables are standard normal. The general case can be done
in the same way, but the calculation is messier. Another way to show the general
result is given in Example 10.17.

SupposeX and Y are two independent random variables, each with the standard
normal density (see Example 5.8). We have

fX(x) = fY (y) =
1√
2π
e−x

2/2 ,

and so

fZ(z) = fX ∗ fY (z)

=
1
2π

∫ +∞

−∞
e−(z−y)2/2e−y

2/2 dy

=
1
2π
e−z

2/4

∫ +∞

−∞
e−(y−z/2)2 dy

=
1
2π
e−z

2/4
√
π

[
1√
π

∫ ∞
−∞

e−(y−z/2)2 dy

]
.

The expression in the brackets equals 1, since it is the integral of the normal density
function with µ = 0 and σ = 1/

√
2. So, we have

fZ(z) =
1√
4π
e−z

2/4 .

2

Sum of Two Independent Cauchy Random Variables

Example 7.6 Choose two numbers at random from the interval (−∞,+∞) with
the Cauchy density with parameter a = 1 (see Example 5.10). Then

fX(x) = fY (x) =
1

π(1 + x2)
,

and Z = X + Y has density

fZ(z) =
1
π2

∫ +∞

−∞

1
1 + (z − y)2

1
1 + y2

dy .
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This integral requires some effort, and we give here only the result (see Section 10.3,
or Dwass3):

fZ(z) =
2

π(4 + z2)
.

Now, suppose that we ask for the density function of the average

A = (1/2)(X + Y )

of X and Y . Then A = (1/2)Z. Exercise 5.2.19 shows that if U and V are two
continuous random variables with density functions fU (x) and fV (x), respectively,
and if V = aU , then

fV (x) =
(

1
a

)
fU

(
x

a

)
.

Thus, we have

fA(z) = 2fZ(2z) =
1

π(1 + z2)
.

Hence, the density function for the average of two random variables, each having a
Cauchy density, is again a random variable with a Cauchy density; this remarkable
property is a peculiarity of the Cauchy density. One consequence of this is if the
error in a certain measurement process had a Cauchy density and you averaged
a number of measurements, the average could not be expected to be any more
accurate than any one of your individual measurements! 2

Maxwell Density

Example 7.7 Suppose X and Y are two independent standard normal random
variables. Now suppose we locate a point P in the xy-plane with coordinates (X,Y )
and ask: What is the density of the square of the distance of P from the origin?
(We have already simulated this problem in Example 5.9.) Here, with the preceding
notation, we have

fX(x) = fY (x) =
1√
2π
e−x

2/2 .

Moreover, if X2 denotes the square of X, then (see Theorem 5.1 and the discussion
following)

fX2(r) =
{ 1

2
√
r
(fX(

√
r) + fX(−√r)) if r > 0,

0 otherwise.

=
{ 1√

2πr
(e−r/2) if r > 0,

0 otherwise.

3M. Dwass, “On the Convolution of Cauchy Distributions,” American Mathematical Monthly,
vol. 92, no. 1, (1985), pp. 55–57; see also R. Nelson, letters to the Editor, ibid., p. 679.
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This is a gamma density with λ = 1/2, β = 1/2 (see Example 7.4). Now let
R2 = X2 + Y 2. Then

fR2(r) =
∫ +∞

−∞
fX2(r − s)fY 2(s) ds

=
1
4π

∫ +∞

−∞
e−(r−s)/2 r − s

2

−1/2

e−s
s

2

−1/2
ds ,

=
{

1
2e
−r2/2, if r ≥ 0,

0, otherwise.

Hence, R2 has a gamma density with λ = 1/2, β = 1. We can interpret this result
as giving the density for the square of the distance of P from the center of a target
if its coordinates are normally distributed.

The density of the random variable R is obtained from that of R2 in the usual
way (see Theorem 5.1), and we find

fR(r) =
{

1
2e
−r2/2 · 2r = re−r

2/2, if r ≥ 0,
0, otherwise.

Physicists will recognize this as a two-dimensional Maxwell density. Our result
here agrees with our simulation in Example 5.9. 2

Chi-Squared Density

More generally, the same method shows that the sum of the squares of n independent
normally distributed random variables with mean 0 and standard deviation 1 has
a gamma density with λ = 1/2 and β = n/2. Such a density is called a chi-squared
density with n degrees of freedom. This density was introduced in Chapter . In
Example 5.10, we used this density to test the hypothesis that two traits were
independent.

Another important use of the chi-squared density is in comparing experimental
data with a theoretical discrete distribution, to see whether the data supports the
theoretical model. More specifically, suppose that we have an experiment with a
finite set of outcomes. If the set of outcomes is countable, we group them into finitely
many sets of outcomes. We propose a theoretical distribution which we think will
model the experiment well. We obtain some data by repeating the experiment a
number of times. Now we wish to check how well the theoretical distribution fits
the data.

Let X be the random variable which represents a theoretical outcome in the
model of the experiment, and let m(x) be the distribution function of X. In a
manner similar to what was done in Example 5.10, we calculate the value of the
expression

V =
∑
x

(ox − n ·m(x))2

n ·m(x)
,

where the sum runs over all possible outcomes x, n is the number of data points,
and ox denotes the number of outcomes of type x observed in the data. Then
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Outcome Observed Frequency
1 15
2 8
3 7
4 5
5 7
6 18

Table 7.1: Observed data.

for moderate or large values of n, the quantity V is approximately chi-squared
distributed, with ν−1 degrees of freedom, where ν represents the number of possible
outcomes. The proof of this is beyond the scope of this book, but we will illustrate
the reasonableness of this statement in the next example. If the value of V is very
large, when compared with the appropriate chi-squared density function, then we
would tend to reject the hypothesis that the model is an appropriate one for the
experiment at hand. We now give an example of this procedure.

Example 7.8 Suppose we are given a single die. We wish to test the hypothesis
that the die is fair. Thus, our theoretical distribution is the uniform distribution on
the integers between 1 and 6. So, if we roll the die n times, the expected number
of data points of each type is n/6. Thus, if oi denotes the actual number of data
points of type i, for 1 ≤ i ≤ 6, then the expression

V =
6∑
i=1

(oi − n/6)2

n/6

is approximately chi-squared distributed with 5 degrees of freedom.
Now suppose that we actually roll the die 60 times and obtain the data in

Table 7.1. If we calculate V for this data, we obtain the value 13.6. The graph of
the chi-squared density with 5 degrees of freedom is shown in Figure 7.4. One sees
that values as large as 13.6 are rarely taken on by V if the die is fair, so we would
reject the hypothesis that the die is fair. (When using this test, a statistician will
reject the hypothesis if the data gives a value of V which is larger than 95% of the
values one would expect to obtain if the hypothesis is true.)

In Figure 7.5, we show the results of rolling a die 60 times, then calculating V ,
and then repeating this experiment 1000 times. The program that performs these
calculations is called DieTest. We have superimposed the chi-squared density with
5 degrees of freedom; one can see that the data values fit the curve fairly well, which
supports the statement that the chi-squared density is the correct one to use. 2

So far we have looked at several important special cases for which the convolution
integral can be evaluated explicitly. In general, the convolution of two continuous
densities cannot be evaluated explicitly, and we must resort to numerical methods.
Fortunately, these prove to be remarkably effective, at least for bounded densities.
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Figure 7.4: Chi-squared density with 5 degrees of freedom.
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Figure 7.5: Rolling a fair die.
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Figure 7.6: Convolution of n uniform densities.

Independent Trials

We now consider briefly the distribution of the sum of n independent random vari-
ables, all having the same density function. If X1, X2, . . . , Xn are these random
variables and Sn = X1 +X2 + · · ·+Xn is their sum, then we will have

fSn(x) = (fX1 ∗ fX2 ∗ · · · ∗ fXn) (x) ,

where the right-hand side is an n-fold convolution. It is possible to calculate this
density for general values of n in certain simple cases.

Example 7.9 Suppose the Xi are uniformly distributed on the interval [0, 1]. Then

fXi(x) =
{

1, if 0 ≤ x ≤ 1,
0, otherwise.

and fSn(x) is given by the formula4

fSn(x) =
{ 1

(n−1)!

∑
0≤j≤x(−1)j

(
n
j

)
(x− j)n−1, if 0 < x < n,

0, otherwise.

The density fSn(x) for n = 2, 4, 6, 8, 10 is shown in Figure 7.6.
If the Xi are distributed normally, with mean 0 and variance 1, then (cf. Exam-

ple 7.5)

fXi(x) =
1√
2π
e−x

2/2 ,

4J. B. Uspensky, Introduction to Mathematical Probability (New York: McGraw-Hill, 1937),
p. 277.
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Figure 7.7: Convolution of n standard normal densities.

and
fSn(x) =

1√
2π
e−x

2/2n .

Here the density fSn for n = 2, 4, 6, 8, 10 is shown in Figure 7.7.
If the Xi are all exponentially distributed, with mean 1/λ, then

fXi(x) = λe−λx ,

and

fSn(x) =
λe−λx(λx)n−1

(n− 1)!
.

In this case the density fSn for n = 2, 4, 6, 8, 10 is shown in Figure 7.8. 2

Exercises

1 Let X and Y be independent real-valued random variables with density func-
tions fX(x) and fY (y), respectively. Show that the density function of the
sum X+Y is the convolution of the functions fX(x) and fY (y). Hint : Let X̄
be the joint random variable (X,Y ). Then the joint density function of X̄ is
fX(x)fY (y), since X and Y are independent. Now compute the probability
that X+Y ≤ z, by integrating the joint density function over the appropriate
region in the plane. This gives the cumulative distribution function of Z. Now
differentiate this function with respect to z to obtain the density function of
z.

2 Let X and Y be independent random variables defined on the space Ω, with
density functions fX and fY , respectively. Suppose that Z = X + Y . Find
the density fZ of Z if
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Figure 7.8: Convolution of n exponential densities with λ = 1.

(a)

fX(x) = fY (x) =
{

1/2, if −1 ≤ x ≤ +1,
0, otherwise.

(b)

fX(x) = fY (x) =
{

1/2, if 3 ≤ x ≤ 5,
0, otherwise.

(c)

fX(x) =
{

1/2, if −1 ≤ x ≤ 1,
0, otherwise.

fY (x) =
{

1/2, if 3 ≤ x ≤ 5,
0, otherwise.

(d) What can you say about the set E = { z : fZ(z) > 0 } in each case?

3 Suppose again that Z = X + Y . Find fZ if

(a)

fX(x) = fY (x) =
{
x/2, if 0 < x < 2,
0, otherwise.

(b)

fX(x) = fY (x) =
{

(1/2)(x− 3), if 3 < x < 5,
0, otherwise.

(c)

fX(x) =
{

1/2, if 0 < x < 2,
0, otherwise,
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fY (x) =
{
x/2, if 0 < x < 2,
0, otherwise.

(d) What can you say about the set E = { z : fZ(z) > 0 } in each case?

4 Let X, Y , and Z be independent random variables with

fX(x) = fY (x) = fZ(x) =
{

1, if 0 < x < 1,
0, otherwise.

Suppose that W = X + Y + Z. Find fW directly, and compare your answer
with that given by the formula in Example 7.9. Hint : See Example 7.3.

5 Suppose that X and Y are independent and Z = X + Y . Find fZ if

(a)

fX(x) =
{
λe−λx, if x > 0,
0, otherwise.

fY (x) =
{
µe−µx, if x > 0,
0, otherwise.

(b)

fX(x) =
{
λe−λx, if x > 0,
0, otherwise.

fY (x) =
{

1, if 0 < x < 1,
0, otherwise.

6 Suppose again that Z = X + Y . Find fZ if

fX(x) =
1√

2πσ1

e−(x−µ1)
2/2σ2

1

fY (x) =
1√

2πσ2

e−(x−µ2)
2/2σ2

2 .

*7 Suppose that R2 = X2 + Y 2. Find fR2 and fR if

fX(x) =
1√

2πσ1

e−(x−µ1)
2/2σ2

1

fY (x) =
1√

2πσ2

e−(x−µ2)
2/2σ2

2 .

8 Suppose that R2 = X2 + Y 2. Find fR2 and fR if

fX(x) = fY (x) =
{

1/2, if −1 ≤ x ≤ 1,
0, otherwise.

9 Assume that the service time for a customer at a bank is exponentially dis-
tributed with mean service time 2 minutes. Let X be the total service time
for 10 customers. Estimate the probability that X > 22 minutes.
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10 Let X1, X2, . . . , Xn be n independent random variables each of which has
an exponential density with mean µ. Let M be the minimum value of the
Xj . Show that the density for M is exponential with mean µ/n. Hint : Use
cumulative distribution functions.

11 A company buys 100 lightbulbs, each of which has an exponential lifetime of
1000 hours. What is the expected time for the first of these bulbs to burn
out? (See Exercise 10.)

12 An insurance company assumes that the time between claims from each of its
homeowners’ policies is exponentially distributed with mean µ. It would like
to estimate µ by averaging the times for a number of policies, but this is not
very practical since the time between claims is about 30 years. At Galambos’5

suggestion the company puts its customers in groups of 50 and observes the
time of the first claim within each group. Show that this provides a practical
way to estimate the value of µ.

13 Particles are subject to collisions that cause them to split into two parts with
each part a fraction of the parent. Suppose that this fraction is uniformly
distributed between 0 and 1. Following a single particle through several split-
tings we obtain a fraction of the original particle Zn = X1 ·X2 · . . . ·Xn where
each Xj is uniformly distributed between 0 and 1. Show that the density for
the random variable Zn is

fn(z) =
1

(n− 1)!
(− log z)n−1.

Hint : Show that Yk = − logXk is exponentially distributed. Use this to find
the density function for Sn = Y1 +Y2 + · · ·+Yn, and from this the cumulative
distribution and density of Zn = e−Sn .

14 Assume that X1 and X2 are independent random variables, each having an
exponential density with parameter λ. Show that Z = X1 −X2 has density

fZ(z) = (1/2)λe−λ|z| .

15 Suppose we want to test a coin for fairness. We flip the coin n times and
record the number of times X0 that the coin turns up tails and the number
of times X1 = n−X0 that the coin turns up heads. Now we set

Z =
1∑
i=0

(Xi − n/2)2

n/2
.

Then for a fair coin Z has approximately a chi-squared distribution with
2 − 1 = 1 degree of freedom. Verify this by computer simulation first for a
fair coin (p = 1/2) and then for a biased coin (p = 1/3).

5J. Galambos, Introductory Probability Theory (New York: Marcel Dekker, 1984), p. 159.
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16 Verify your answers in Exercise 2(a) by computer simulation: Choose X and
Y from [−1, 1] with uniform density and calculate Z = X + Y . Repeat this
experiment 500 times, recording the outcomes in a bar graph on [−2, 2] with
40 bars. Does the density fZ calculated in Exercise 2(a) describe the shape
of your bar graph? Try this for Exercises 2(b) and Exercise 2(c), too.

17 Verify your answers to Exercise 3 by computer simulation.

18 Verify your answer to Exercise 4 by computer simulation.

19 The support of a function f(x) is defined to be the set

{x : f(x) > 0} .

Suppose that X and Y are two continuous random variables with density
functions fX(x) and fY (y), respectively, and suppose that the supports of
these density functions are the intervals [a, b] and [c, d], respectively. Find the
support of the density function of the random variable X + Y .

20 LetX1,X2, . . . ,Xn be a sequence of independent random variables, all having
a common density function fX with support [a, b] (see Exercise 19). Let
Sn = X1 +X2 + · · ·+Xn, with density function fSn . Show that the support
of fSn is the interval [na, nb]. Hint : Write fSn = fSn−1 ∗ fX . Now use
Exercise 19 to establish the desired result by induction.

21 Let X1,X2, . . . ,Xn be a sequence of independent random variables, all having
a common density function fX . Let A = Sn/n be their average. Find fA if

(a) fX(x) = (1/
√

2π)e−x
2/2 (normal density).

(b) fX(x) = e−x (exponential density).
Hint : Write fA(x) in terms of fSn(x).


