
       

Chapter 2

Continuous Probability
Densities

2.1 Simulation of Continuous Probabilities

In this section we shall show how we can use computer simulations for experiments
that have a whole continuum of possible outcomes.

Probabilities

Example 2.1 We begin by constructing a spinner, which consists of a circle of unit
circumference and a pointer as shown in Figure 2.1. We pick a point on the circle
and label it 0, and then label every other point on the circle with the distance, say
x, from 0 to that point, measured counterclockwise. The experiment consists of
spinning the pointer and recording the label of the point at the tip of the pointer.
We let the random variable X denote the value of this outcome. The sample space
is clearly the interval [0, 1). We would like to construct a probability model in which
each outcome is equally likely to occur.

If we proceed as we did in Chapter 1 for experiments with a finite number of
possible outcomes, then we must assign the probability 0 to each outcome, since
otherwise, the sum of the probabilities, over all of the possible outcomes, would
not equal 1. (In fact, summing an uncountable number of real numbers is a tricky
business; in particular, in order for such a sum to have any meaning, at most
countably many of the summands can be different than 0.) However, if all of the
assigned probabilities are 0, then the sum is 0, not 1, as it should be.

In the next section, we will show how to construct a probability model in this
situation. At present, we will assume that such a model can be constructed. We
will also assume that in this model, if E is an arc of the circle, and E is of length
p, then the model will assign the probability p to E. This means that if the pointer
is spun, the probability that it ends up pointing to a point in E equals p, which is
certainly a reasonable thing to expect.
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Figure 2.1: A spinner.

To simulate this experiment on a computer is an easy matter. Many computer
software packages have a function which returns a random real number in the in-
terval [0, 1]. Actually, the returned value is always a rational number, and the
values are determined by an algorithm, so a sequence of such values is not truly
random. Nevertheless, the sequences produced by such algorithms behave much
like theoretically random sequences, so we can use such sequences in the simulation
of experiments. On occasion, we will need to refer to such a function. We will call
this function rnd. 2

Monte Carlo Procedure and Areas

It is sometimes desirable to estimate quantities whose exact values are difficult or
impossible to calculate exactly. In some of these cases, a procedure involving chance,
called a Monte Carlo procedure, can be used to provide such an estimate.

Example 2.2 In this example we show how simulation can be used to estimate
areas of plane figures. Suppose that we program our computer to provide a pair
(x, y) or numbers, each chosen independently at random from the interval [0, 1].
Then we can interpret this pair (x, y) as the coordinates of a point chosen at random
from the unit square. Events are subsets of the unit square. Our experience with
Example 2.1 suggests that the point is equally likely to fall in subsets of equal area.
Since the total area of the square is 1, the probability of the point falling in a specific
subset E of the unit square should be equal to its area. Thus, we can estimate the
area of any subset of the unit square by estimating the probability that a point
chosen at random from this square falls in the subset.

We can use this method to estimate the area of the region E under the curve
y = x2 in the unit square (see Figure 2.2). We choose a large number of points (x, y)
at random and record what fraction of them fall in the region E = { (x, y) : y ≤ x2 }.

The program MonteCarlo will carry out this experiment for us. Running this
program for 10,000 experiments gives an estimate of .325 (see Figure 2.3).

From these experiments we would estimate the area to be about 1/3. Of course,
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Figure 2.2: Area under y = x2.

for this simple region we can find the exact area by calculus. In fact,

Area of E =
∫ 1

0

x2 dx =
1
3
.

We have remarked in Chapter 1 that, when we simulate an experiment of this type
n times to estimate a probability, we can expect the answer to be in error by at
most 1/

√
n at least 95 percent of the time. For 10,000 experiments we can expect

an accuracy of 0.01, and our simulation did achieve this accuracy.
This same argument works for any region E of the unit square. For example,

suppose E is the circle with center (1/2, 1/2) and radius 1/2. Then the probability
that our random point (x, y) lies inside the circle is equal to the area of the circle,
that is,

P (E) = π
(1

2

)2

=
π

4
.

If we did not know the value of π, we could estimate the value by performing this
experiment a large number of times! 2

The above example is not the only way of estimating the value of π by a chance
experiment. Here is another way, discovered by Buffon.1

1G. L. Buffon, in “Essai d’Arithmétique Morale,” Oeuvres Complètes de Buffon avec Supple-
ments, tome iv, ed. Duménil (Paris, 1836).
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Figure 2.3: Computing the area by simulation.

Buffon’s Needle

Example 2.3 Suppose that we take a card table and draw across the top surface
a set of parallel lines a unit distance apart. We then drop a common needle of
unit length at random on this surface and observe whether or not the needle lies
across one of the lines. We can describe the possible outcomes of this experiment
by coordinates as follows: Let d be the distance from the center of the needle to the
nearest line. Next, let L be the line determined by the needle, and define θ as the
acute angle that the line L makes with the set of parallel lines. (The reader should
certainly be wary of this description of the sample space. We are attempting to
coordinatize a set of line segments. To see why one must be careful in the choice
of coordinates, see Example 2.6.) Using this description, we have 0 ≤ d ≤ 1/2, and
0 ≤ θ ≤ π/2. Moreover, we see that the needle lies across the nearest line if and
only if the hypotenuse of the triangle (see Figure 2.4) is less than half the length of
the needle, that is,

d

sin θ
<

1
2
.

Now we assume that when the needle drops, the pair (θ, d) is chosen at random
from the rectangle 0 ≤ θ ≤ π/2, 0 ≤ d ≤ 1/2. We observe whether the needle lies
across the nearest line (i.e., whether d ≤ (1/2) sin θ). The probability of this event
E is the fraction of the area of the rectangle which lies inside E (see Figure 2.5).
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Figure 2.4: Buffon’s experiment.
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Figure 2.5: Set E of pairs (θ, d) with d < 1
2 sin θ.

Now the area of the rectangle is π/4, while the area of E is

Area =
∫ π/2

0

1
2

sin θ dθ =
1
2
.

Hence, we get

P (E) =
1/2
π/4

=
2
π
.

The program BuffonsNeedle simulates this experiment. In Figure 2.6, we show
the position of every 100th needle in a run of the program in which 10,000 needles
were “dropped.” Our final estimate for π is 3.139. While this was within 0.003 of
the true value for π we had no right to expect such accuracy. The reason for this
is that our simulation estimates P (E). While we can expect this estimate to be in
error by at most 0.001, a small error in P (E) gets magnified when we use this to
compute π = 2/P (E). Perlman and Wichura, in their article “Sharpening Buffon’s
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Figure 2.6: Simulation of Buffon’s needle experiment.

Needle,”2 show that we can expect to have an error of not more than 5/
√
n about

95 percent of the time. Here n is the number of needles dropped. Thus for 10,000
needles we should expect an error of no more than 0.05, and that was the case here.
We see that a large number of experiments is necessary to get a decent estimate for
π. 2

In each of our examples so far, events of the same size are equally likely. Here
is an example where they are not. We will see many other such examples later.

Example 2.4 Suppose that we choose two random real numbers in [0, 1] and add
them together. Let X be the sum. How is X distributed?

To help understand the answer to this question, we can use the program Are-
abargraph. This program produces a bar graph with the property that on each
interval, the area, rather than the height, of the bar is equal to the fraction of out-
comes that fell in the corresponding interval. We have carried out this experiment
1000 times; the data is shown in Figure 2.7. It appears that the function defined
by

f(x) =
{
x, if 0 ≤ x ≤ 1,
2− x, if 1 < x ≤ 2

fits the data very well. (It is shown in the figure.) In the next section, we will
see that this function is the “right” function. By this we mean that if a and b are
any two real numbers between 0 and 2, with a ≤ b, then we can use this function
to calculate the probability that a ≤ X ≤ b. To understand how this calculation
might be performed, we again consider Figure 2.7. Because of the way the bars
were constructed, the sum of the areas of the bars corresponding to the interval

2M. D. Perlman and M. J. Wichura, “Sharpening Buffon’s Needle,” The American Statistician,
vol. 29, no. 4 (1975), pp. 157–163.
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Figure 2.7: Sum of two random numbers.

[a, b] approximates the probability that a ≤ X ≤ b. But the sum of the areas of
these bars also approximates the integral∫ b

a

f(x) dx .

This suggests that for an experiment with a continuum of possible outcomes, if we
find a function with the above property, then we will be able to use it to calculate
probabilities. In the next section, we will show how to determine the function
f(x). 2

Example 2.5 Suppose that we choose 100 random numbers in [0, 1], and let X
represent their sum. How is X distributed? We have carried out this experiment
10000 times; the results are shown in Figure 2.8. It is not so clear what function
fits the bars in this case. It turns out that the type of function which does the job
is called a normal density function. This type of function is sometimes referred to
as a “bell-shaped” curve. It is among the most important functions in the subject
of probability, and will be formally defined in Section 5.2 of Chapter . 2

Our last example explores the fundamental question of how probabilities are
assigned.

Bertrand’s Paradox

Example 2.6 A chord of a circle is a line segment both of whose endpoints lie on
the circle. Suppose that a chord is drawn at random in a unit circle. What is the
probability that its length exceeds

√
3?

Our answer will depend on what we mean by random, which will depend, in turn,
on what we choose for coordinates. The sample space Ω is the set of all possible
chords in the circle. To find coordinates for these chords, we first introduce a
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Figure 2.8: Sum of 100 random numbers.
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Figure 2.9: Random chord.

rectangular coordinate system with origin at the center of the circle (see Figure 2.9).
We note that a chord of a circle is perpendicular to the radial line containing the
midpoint of the chord. We can describe each chord by giving:

1. The rectangular coordinates (x, y) of the midpoint M , or

2. The polar coordinates (r, θ) of the midpoint M , or

3. The polar coordinates (1, α) and (1, β) of the endpoints A and B.

In each case we shall interpret at random to mean: choose these coordinates at
random.

We can easily estimate this probability by computer simulation. In programming
this simulation, it is convenient to include certain simplifications, which we describe
in turn:
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1. To simulate this case, we choose values for x and y from [−1, 1] at random.
Then we check whether x2 + y2 ≤ 1. If not, the point M = (x, y) lies outside
the circle and cannot be the midpoint of any chord, and we ignore it. Oth-
erwise, M lies inside the circle and is the midpoint of a unique chord, whose
length L is given by the formula:

L = 2
√

1− (x2 + y2) .

2. To simulate this case, we take account of the fact that any rotation of the
circle does not change the length of the chord, so we might as well assume in
advance that the chord is horizontal. Then we choose r from [−1, 1] at random,
and compute the length of the resulting chord with midpoint (r, π/2) by the
formula:

L = 2
√

1− r2 .

3. To simulate this case, we assume that one endpoint, say B, lies at (1, 0) (i.e.,
that β = 0). Then we choose a value for α from [0, 2π] at random and compute
the length of the resulting chord, using the Law of Cosines, by the formula:

L =
√

2− 2 cosα .

The program BertrandsParadox carries out this simulation. Running this
program produces the results shown in Figure 2.10. In the first circle in this figure,
a smaller circle has been drawn. Those chords which intersect this smaller circle
have length at least

√
3. In the second circle in the figure, the vertical line intersects

all chords of length at least
√

3. In the third circle, again the vertical line intersects
all chords of length at least

√
3.

In each case we run the experiment a large number of times and record the
fraction of these lengths that exceed

√
3. We have printed the results of every

100th trial up to 10,000 trials.
It is interesting to observe that these fractions are not the same in the three cases;

they depend on our choice of coordinates. This phenomenon was first observed by
Bertrand, and is now known as Bertrand’s paradox.3 It is actually not a paradox at
all; it is merely a reflection of the fact that different choices of coordinates will lead
to different assignments of probabilities. Which assignment is “correct” depends on
what application or interpretation of the model one has in mind.

One can imagine a real experiment involving throwing long straws at a circle
drawn on a card table. A “correct” assignment of coordinates should not depend
on where the circle lies on the card table, or where the card table sits in the room.
Jaynes4 has shown that the only assignment which meets this requirement is (2).
In this sense, the assignment (2) is the natural, or “correct” one (see Exercise 11).

We can easily see in each case what the true probabilities are if we note that√
3 is the length of the side of an inscribed equilateral triangle. Hence, a chord has
3J. Bertrand, Calcul des Probabilités (Paris: Gauthier-Villars, 1889).
4E. T. Jaynes, “The Well-Posed Problem,” in Papers on Probability, Statistics and Statistical

Physics, R. D. Rosencrantz, ed. (Dordrecht: D. Reidel, 1983), pp. 133–148.
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Figure 2.10: Bertrand’s paradox.

length L >
√

3 if its midpoint has distance d < 1/2 from the origin (see Figure 2.9).
The following calculations determine the probability that L >

√
3 in each of the

three cases.

1. L >
√

3 if(x, y) lies inside a circle of radius 1/2, which occurs with probability

p =
π(1/2)2

π(1)2
=

1
4
.

2. L >
√

3 if |r| < 1/2, which occurs with probability

1/2− (−1/2)
1− (−1)

=
1
2
.

3. L >
√

3 if 2π/3 < α < 4π/3, which occurs with probability

4π/3− 2π/3
2π − 0

=
1
3
.

We see that our simulations agree quite well with these theoretical values. 2

Historical Remarks

G. L. Buffon (1707–1788) was a natural scientist in the eighteenth century who
applied probability to a number of his investigations. His work is found in his
monumental 44-volume Histoire Naturelle and its supplements.5 For example, he

5G. L. Buffon, Histoire Naturelle, Generali et Particular avec le Descriptión du Cabinet du
Roy, 44 vols. (Paris: L‘Imprimerie Royale, 1749–1803).
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Length of Number of Number of Estimate
Experimenter needle casts crossings for π
Wolf, 1850 .8 5000 2532 3.1596
Smith, 1855 .6 3204 1218.5 3.1553
De Morgan, c.1860 1.0 600 382.5 3.137
Fox, 1864 .75 1030 489 3.1595
Lazzerini, 1901 .83 3408 1808 3.1415929
Reina, 1925 .5419 2520 869 3.1795

Table 2.1: Buffon needle experiments to estimate π.

presented a number of mortality tables and used them to compute, for each age
group, the expected remaining lifetime. From his table he observed: the expected
remaining lifetime of an infant of one year is 33 years, while that of a man of 21
years is also approximately 33 years. Thus, a father who is not yet 21 can hope to
live longer than his one year old son, but if the father is 40, the odds are already 3
to 2 that his son will outlive him.6

Buffon wanted to show that not all probability calculations rely only on algebra,
but that some rely on geometrical calculations. One such problem was his famous
“needle problem” as discussed in this chapter.7 In his original formulation, Buffon
describes a game in which two gamblers drop a loaf of French bread on a wide-board
floor and bet on whether or not the loaf falls across a crack in the floor. Buffon
asked: what length L should the bread loaf be, relative to the width W of the
floorboards, so that the game is fair. He found the correct answer (L = (π/4)W )
using essentially the methods described in this chapter. He also considered the case
of a checkerboard floor, but gave the wrong answer in this case. The correct answer
was given later by Laplace.

The literature contains descriptions of a number of experiments that were actu-
ally carried out to estimate π by this method of dropping needles. N. T. Gridgeman8

discusses the experiments shown in Table 2.1. (The halves for the number of cross-
ing comes from a compromise when it could not be decided if a crossing had actually
occurred.) He observes, as we have, that 10,000 casts could do no more than estab-
lish the first decimal place of π with reasonable confidence. Gridgeman points out
that, although none of the experiments used even 10,000 casts, they are surprisingly
good, and in some cases, too good. The fact that the number of casts is not always
a round number would suggest that the authors might have resorted to clever stop-
ping to get a good answer. Gridgeman comments that Lazzerini’s estimate turned
out to agree with a well-known approximation to π, 355/113 = 3.1415929, discov-
ered by the fifth-century Chinese mathematician, Tsu Ch’ungchih. Gridgeman says
that he did not have Lazzerini’s original report, and while waiting for it (knowing

6G. L. Buffon, “Essai d’Arithmétique Morale,” p. 301.
7ibid., pp. 277–278.
8N. T. Gridgeman, “Geometric Probability and the Number π” Scripta Mathematika, vol. 25,

no. 3, (1960), pp. 183–195.
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only the needle crossed a line 1808 times in 3408 casts) deduced that the length of
the needle must have been 5/6. He calculated this from Buffon’s formula, assuming
π = 355/113:

L =
πP (E)

2
=

1
2

(
355
113

)(
1808
3408

)
=

5
6

= .8333 .

Even with careful planning one would have to be extremely lucky to be able to stop
so cleverly.

The second author likes to trace his interest in probability theory to the Chicago
World’s Fair of 1933 where he observed a mechanical device dropping needles and
displaying the ever-changing estimates for the value of π. (The first author likes to
trace his interest in probability theory to the second author.)

Exercises

*1 In the spinner problem (see Example 2.1) divide the unit circumference into
three arcs of length 1/2, 1/3, and 1/6. Write a program to simulate the
spinner experiment 1000 times and print out what fraction of the outcomes
fall in each of the three arcs. Now plot a bar graph whose bars have width 1/2,
1/3, and 1/6, and areas equal to the corresponding fractions as determined
by your simulation. Show that the heights of the bars are all nearly the same.

2 Do the same as in Exercise 1, but divide the unit circumference into five arcs
of length 1/3, 1/4, 1/5, 1/6, and 1/20.

3 Alter the program MonteCarlo to estimate the area of the circle of radius
1/2 with center at (1/2, 1/2) inside the unit square by choosing 1000 points
at random. Compare your results with the true value of π/4. Use your results
to estimate the value of π. How accurate is your estimate?

4 Alter the program MonteCarlo to estimate the area under the graph of
y = sinπx inside the unit square by choosing 10,000 points at random. Now
calculate the true value of this area and use your results to estimate the value
of π. How accurate is your estimate?

5 Alter the program MonteCarlo to estimate the area under the graph of
y = 1/(x+ 1) in the unit square in the same way as in Exercise 4. Calculate
the true value of this area and use your simulation results to estimate the
value of log 2. How accurate is your estimate?

6 To simulate the Buffon’s needle problem we choose independently the dis-
tance d and the angle θ at random, with 0 ≤ d ≤ 1/2 and 0 ≤ θ ≤ π/2,
and check whether d ≤ (1/2) sin θ. Doing this a large number of times, we
estimate π as 2/a, where a is the fraction of the times that d ≤ (1/2) sin θ.
Write a program to estimate π by this method. Run your program several
times for each of 100, 1000, and 10,000 experiments. Does the accuracy of
the experimental approximation for π improve as the number of experiments
increases?
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7 For Buffon’s needle problem, Laplace9 considered a grid with horizontal and
vertical lines one unit apart. He showed that the probability that a needle of
length L ≤ 1 crosses at least one line is

p =
4L− L2

π
.

To simulate this experiment we choose at random an angle θ between 0 and
π/2 and independently two numbers d1 and d2 between 0 and L/2. (The two
numbers represent the distance from the center of the needle to the nearest
horizontal and vertical line.) The needle crosses a line if either d1 ≤ (L/2) sin θ
or d ≤ (L/2) cos θ. We do this a large number of times and estimate π as

π̄ =
4L− L2

a
,

where a is the proportion of times that the needle crosses at least one line.
Write a program to estimate π by this method, run your program for 100,
1000, and 10,000 experiments, and compare your results with Buffon’s method
described in Exercise 6. (Take L = 1.)

8 A long needle of length L much bigger than 1 is dropped on a grid with
horizontal and vertical lines one unit apart. We will see (in Exercise 6.3.28)
that the average number a of lines crossed is approximately

a =
4L
π

.

To estimate π by simulation, pick an angle θ at random between 0 and π/2 and
compute L sin θ + L cos θ. This may be used for the number of lines crossed.
Repeat this many times and estimate π by

π̄ =
4L
a

,

where a is the average number of lines crossed per experiment. Write a pro-
gram to simulate this experiment and run your program for the number of
experiments equal to 100, 1000, and 10,000. Compare your results with the
methods of Laplace or Buffon for the same number of experiments. (Use
L = 100.)

The following exercises involve experiments in which not all outcomes are
equally likely. We shall consider such experiments in detail in the next section,
but we invite you to explore a few simple cases here.

9 A large number of waiting time problems have an exponential distribution of
outcomes. We shall see (in Section 5.2) that such outcomes are simulated by
computing (−1/λ) log(rnd), where λ > 0. For waiting times produced in this
way, the average waiting time is 1/λ. For example, the times spent waiting for

9P. S. Laplace, Théorie Analytique des Probabilités (Paris: Courcier, 1812).
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a car to pass on a highway, or the times between emissions of particles from
a radioactive source, are simulated by a sequence of random numbers, each
of which is chosen by computing −λ log(rnd), where 1/λ is the average time
between cars or emissions. Write a program to simulate the times between
cars when the average time between cars is 30 seconds. Have your program
compute an area bar graph for these times by breaking the time interval from
0 to 120 into 24 subintervals. On the same pair of axes, plot the function
f(x) = (1/30)e−(1/30)x. Does the function fit the bar graph well?

10 In Exercise 9, the distribution came “out of a hat.” In this problem, we will
again consider an experiment whose outcomes are not equally likely. We will
determine a function f(x) which can be used to determine the probability of
certain events. Let T be the right triangle in the plane with vertices at the
points (0, 0), (1, 0), and (0, 1). The experiment consists of picking a point
at random in the interior of T , and recording only the x-coordinate of the
point. Thus, the sample space is the set [0, 1], but the outcomes do not seem
to be equally likely. We can simulate this experiment by asking a computer to
return two random real numbers in [0, 1], and recording the first of these two
numbers if their sum is less than 1. Write this program and run it for 10,000
trials. Then make a bar graph of the result, breaking the interval [0, 1] into
10 intervals. Compare the bar graph with the function f(x) = .2− .2x. Now
show that there is a constant c such that the height of T at the x-coordinate
value x is c times f(x) for every x in [0, 1]. Finally, show that∫ 1

0

f(x) dx = 1 .

How might one use the function f(x) to determine the probability that the
outcome is between .2 and .5?

11 Here is another way to pick a chord at random on the circle of unit radius.
Imagine that we have a card table whose sides are of length 100. We place
coordinate axes on the table in such a way that each side of the table is parallel
to one of the axes, and so that the center of the table is the origin. We now
place a circle of unit radius on the table so that the center of the circle is the
origin. Now pick out a point (x0, y0) at random in the square, and an angle θ
at random in the interval (−π/2, π/2). Let m = tan θ. Then the equation of
the line passing through (x0, y0) with slope m is

y = y0 +m(x− x0) ,

and the distance of this line from the center of the circle (i.e., the origin) is

d =
∣∣∣∣y0 −mx0√

m2 + 1

∣∣∣∣ .
We can use this distance formula to check whether the line intersects the circle
(i.e., whether d < 1). If so, we consider the resulting chord a random chord.
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This describes an experiment of dropping a long straw at random on a table
on which a circle is drawn.

Write a program to simulate this experiment 10000 times and estimate the
probability that the length of the chord is greater than

√
3. How does your

estimate compare with the results of Example 2.6?

2.2 Continuous Density Functions

In the previous section we have seen how to simulate experiments with a whole
continuum of possible outcomes and have gained some experience in thinking about
such experiments. Now we turn to the general problem of assigning probabilities to
the outcomes and events in such experiments. We shall restrict our attention here
to those experiments whose sample space can be taken as a suitably chosen subset
of the line, the plane, or some other Euclidean space. We begin with some simple
examples.

Spinners

Example 2.7 The spinner experiment described in Example 2.1 has the interval
[0, 1) as the set of possible outcomes. We would like to construct a probability
model in which each outcome is equally likely to occur. We saw that in such a
model, it is necessary to assign the probability 0 to each outcome. This does not at
all mean that the probability of every event must be zero. On the contrary, if we
let the random variable X denote the outcome, then the probability

P ( 0 ≤ X ≤ 1)

that the head of the spinner comes to rest somewhere in the circle, should be equal
to 1. Also, the probability that it comes to rest in the upper half of the circle should
be the same as for the lower half, so that

P

(
0 ≤ X <

1
2

)
= P

(
1
2
≤ X < 1

)
=

1
2
.

More generally, in our model, we would like the equation

P (c ≤ X < d) = d− c

to be true for every choice of c and d.
If we let E = [c, d], then we can write the above formula in the form

P (E) =
∫
E

f(x) dx ,

where f(x) is the constant function with value 1. This should remind the reader of
the corresponding formula in the discrete case for the probability of an event:

P (E) =
∑
ω∈E

m(ω) .



        

56 CHAPTER 2. CONTINUOUS PROBABILITY DENSITIES

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 2.11: Spinner experiment.

The difference is that in the continuous case, the quantity being integrated, f(x),
is not the probability of the outcome x. (However, if one uses infinitesimals, one
can consider f(x) dx as the probability of the outcome x.)

In the continuous case, we will use the following convention. If the set of out-
comes is a set of real numbers, then the individual outcomes will be referred to
by small Roman letters such as x. If the set of outcomes is a subset of R2, then
the individual outcomes will be denoted by (x, y). In either case, it may be more
convenient to refer to an individual outcome by using ω, as in Chapter 1.

Figure 2.11 shows the results of 1000 spins of the spinner. The function f(x)
is also shown in the figure. The reader will note that the area under f(x) and
above a given interval is approximately equal to the fraction of outcomes that fell
in that interval. The function f(x) is called the density function of the random
variable X. The fact that the area under f(x) and above an interval corresponds
to a probability is the defining property of density functions. A precise definition
of density functions will be given shortly. 2

Darts

Example 2.8 A game of darts involves throwing a dart at a circular target of unit
radius. Suppose we throw a dart once so that it hits the target, and we observe
where it lands.

To describe the possible outcomes of this experiment, it is natural to take as our
sample space the set Ω of all the points in the target. It is convenient to describe
these points by their rectangular coordinates, relative to a coordinate system with
origin at the center of the target, so that each pair (x, y) of coordinates with x2+y2 ≤
1 describes a possible outcome of the experiment. Then Ω = { (x, y) : x2 + y2 ≤ 1 }
is a subset of the Euclidean plane, and the event E = { (x, y) : y > 0 }, for example,
corresponds to the statement that the dart lands in the upper half of the target,
and so forth. Unless there is reason to believe otherwise (and with experts at the
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game there may well be!), it is natural to assume that the coordinates are chosen
at random. (When doing this with a computer, each coordinate is chosen uniformly
from the interval [−1, 1]. If the resulting point does not lie inside the unit circle,
the point is not counted.) Then the arguments used in the preceding example show
that the probability of any elementary event, consisting of a single outcome, must
be zero, and suggest that the probability of the event that the dart lands in any
subset E of the target should be determined by what fraction of the target area lies
in E. Thus,

P (E) =
area of E

area of target
=

area of E
π

.

This can be written in the form

P (E) =
∫
E

f(x) dx ,

where f(x) is the constant function with value 1/π. In particular, if E = { (x, y) :
x2 + y2 ≤ a2 } is the event that the dart lands within distance a < 1 of the center
of the target, then

P (E) =
πa2

π
= a2 .

For example, the probability that the dart lies within a distance 1/2 of the center
is 1/4. 2

Example 2.9 In the dart game considered above, suppose that, instead of observ-
ing where the dart lands, we observe how far it lands from the center of the target.

In this case, we take as our sample space the set Ω of all circles with centers at
the center of the target. It is convenient to describe these circles by their radii, so
that each circle is identified by its radius r, 0 ≤ r ≤ 1. In this way, we may regard
Ω as the subset [0, 1] of the real line.

What probabilities should we assign to the events E of Ω? If

E = { r : 0 ≤ r ≤ a } ,

then E occurs if the dart lands within a distance a of the center, that is, within the
circle of radius a, and we saw in the previous example that under our assumptions
the probability of this event is given by

P ([0, a]) = a2 .

More generally, if
E = { r : a ≤ r ≤ b } ,

then by our basic assumptions,

P (E) = P ([a, b]) = P ([0, b])− P ([0, a])

= b2 − a2

= (b− a)(b+ a)

= 2(b− a)
(b+ a)

2
.
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Figure 2.12: Distribution of dart distances in 400 throws.

Thus, P (E) =2(length of E)(midpoint of E). Here we see that the probability
assigned to the interval E depends not only on its length but also on its midpoint
(i.e., not only on how long it is, but also on where it is). Roughly speaking, in this
experiment, events of the form E = [a, b] are more likely if they are near the rim
of the target and less likely if they are near the center. (A common experience for
beginners! The conclusion might well be different if the beginner is replaced by an
expert.)

Again we can simulate this by computer. We divide the target area into ten
concentric regions of equal thickness.

The computer program Darts throws n darts and records what fraction of the
total falls in each of these concentric regions. The program Areabargraph then
plots a bar graph with the area of the ith bar equal to the fraction of the total
falling in the ith region. Running the program for 1000 darts resulted in the bar
graph of Figure 2.12.

Note that here the heights of the bars are not all equal, but grow approximately
linearly with r. In fact, the linear function y = 2r appears to fit our bar graph quite
well. This suggests that the probability that the dart falls within a distance a of the
center should be given by the area under the graph of the function y = 2r between
0 and a. This area is a2, which agrees with the probability we have assigned above
to this event. 2

Sample Space Coordinates

These examples suggest that for continuous experiments of this sort we should assign
probabilities for the outcomes to fall in a given interval by means of the area under
a suitable function.

More generally, we suppose that suitable coordinates can be introduced into the
sample space Ω, so that we can regard Ω as a subset of Rn. We call such a sample
space a continuous sample space. We let X be a random variable which represents
the outcome of the experiment. Such a random variable is called a continuous
random variable. We then define a density function for X as follows.
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Density Functions of Continuous Random Variables

Definition 2.1 Let X be a continuous real-valued random variable. A density
function for X is a real-valued function f which satisfies

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx

for all a, b ∈ R. 2

We note that it is not the case that all continuous real-valued random variables
possess density functions. However, in this book, we will only consider continuous
random variables for which density functions exist.

In terms of the density f(x), if E is a subset of R, then

P (X ∈ E) =
∫
E

f(x) dx .

The notation here assumes that E is a subset of R for which
∫
E
f(x) dx makes

sense.

Example 2.10 (Example 2.7 continued) In the spinner experiment, we choose for
our set of outcomes the interval 0 ≤ x < 1, and for our density function

f(x) =
{

1, if 0 ≤ x < 1,
0, otherwise.

If E is the event that the head of the spinner falls in the upper half of the circle,
then E = {x : 0 ≤ x ≤ 1/2 }, and so

P (E) =
∫ 1/2

0

1 dx =
1
2
.

More generally, if E is the event that the head falls in the interval [a, b], then

P (E) =
∫ b

a

1 dx = b− a .

2

Example 2.11 (Example 2.8 continued) In the first dart game experiment, we
choose for our sample space a disc of unit radius in the plane and for our density
function the function

f(x, y) =
{

1/π, if x2 + y2 ≤ 1,
0, otherwise.

The probability that the dart lands inside the subset E is then given by

P (E) =
∫ ∫

E

1
π
dx dy

=
1
π
· (area of E) .

2
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In these two examples, the density function is constant and does not depend
on the particular outcome. It is often the case that experiments in which the
coordinates are chosen at random can be described by constant density functions,
and, as in Section 1.2, we call such density functions uniform or equiprobable. Not
all experiments are of this type, however.

Example 2.12 (Example 2.9 continued) In the second dart game experiment, we
choose for our sample space the unit interval on the real line and for our density
the function

f(r) =
{

2r, if 0 < r < 1,
0, otherwise.

Then the probability that the dart lands at distance r, a ≤ r ≤ b, from the center
of the target is given by

P ([a, b]) =
∫ b

a

2r dr

= b2 − a2 .

Here again, since the density is small when r is near 0 and large when r is near 1, we
see that in this experiment the dart is more likely to land near the rim of the target
than near the center. In terms of the bar graph of Example 2.9, the heights of the
bars approximate the density function, while the areas of the bars approximate the
probabilities of the subintervals (see Figure 2.12). 2

We see in this example that, unlike the case of discrete sample spaces, the
value f(x) of the density function for the outcome x is not the probability of x
occurring (we have seen that this probability is always 0) and in general f(x) is not
a probability at all. In this example, if we take λ = 2 then f(3/4) = 3/2, which
being bigger than 1, cannot be a probability.

Nevertheless, the density function f does contain all the probability information
about the experiment, since the probabilities of all events can be derived from it.
In particular, the probability that the outcome of the experiment falls in an interval
[a, b] is given by

P ([a, b]) =
∫ b

a

f(x) dx ,

that is, by the area under the graph of the density function in the interval [a, b].
Thus, there is a close connection here between probabilities and areas. We have
been guided by this close connection in making up our bar graphs; each bar is chosen
so that its area, and not its height, represents the relative frequency of occurrence,
and hence estimates the probability of the outcome falling in the associated interval.

In the language of the calculus, we can say that the probability of occurrence of
an event of the form [x, x+ dx], where dx is small, is approximately given by

P ([x, x+ dx]) ≈ f(x)dx ,

that is, by the area of the rectangle under the graph of f . Note that as dx → 0,
this probability → 0, so that the probability P ({x}) of a single point is again 0, as
in Example 2.7.
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A glance at the graph of a density function tells us immediately which events of
an experiment are more likely. Roughly speaking, we can say that where the density
is large the events are more likely, and where it is small the events are less likely.
In Example 2.4 the density function is largest at 1. Thus, given the two intervals
[0, a] and [1, 1 + a], where a is a small positive real number, we see that X is more
likely to take on a value in the second interval than in the first.

Cumulative Distribution Functions of Continuous Random
Variables

We have seen that density functions are useful when considering continuous ran-
dom variables. There is another kind of function, closely related to these density
functions, which is also of great importance. These functions are called cumulative
distribution functions.

Definition 2.2 Let X be a continuous real-valued random variable. Then the
cumulative distribution function of X is defined by the equation

FX(x) = P (X ≤ x) .

2

If X is a continuous real-valued random variable which possesses a density function,
then it also has a cumulative distribution function, and the following theorem shows
that the two functions are related in a very nice way.

Theorem 2.1 Let X be a continuous real-valued random variable with density
function f(x). Then the function defined by

F (x) =
∫ x

−∞
f(t) dt

is the cumulative distribution function of X. Furthermore, we have

d

dx
F (x) = f(x) .

Proof. By definition,
F (x) = P (X ≤ x) .

Let E = (−∞, x]. Then
P (X ≤ x) = P (X ∈ E) ,

which equals ∫ x

−∞
f(t) dt .

Applying the Fundamental Theorem of Calculus to the first equation in the
statement of the theorem yields the second statement. 2
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Figure 2.13: Distribution and density for X = U2.

In many experiments, the density function of the relevant random variable is easy
to write down. However, it is quite often the case that the cumulative distribution
function is easier to obtain than the density function. (Of course, once we have
the cumulative distribution function, the density function can easily be obtained by
differentiation, as the above theorem shows.) We now give some examples which
exhibit this phenomenon.

Example 2.13 A real number is chosen at random from [0, 1] with uniform prob-
ability, and then this number is squared. Let X represent the result. What is the
cumulative distribution function of X? What is the density of X?

We begin by letting U represent the chosen real number. Then X = U2. If
0 ≤ x ≤ 1, then we have

FX(x) = P (X ≤ x)

= P (U2 ≤ x)

= P (U ≤
√
x)

=
√
x .

It is clear that X always takes on a value between 0 and 1, so the cumulative
distribution function of X is given by

FX(x) =

 0, if x ≤ 0,√
x, if 0 ≤ x ≤ 1,

1, if x ≥ 1.

From this we easily calculate that the density function of X is

fX(x) =

 0, if x ≤ 0,
1/(2
√
x), if 0 ≤ x ≤ 1,

0, if x > 1.

Note that FX(x) is continuous, but fX(x) is not. (See Figure 2.13.) 2
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Figure 2.14: Calculation of distribution function for Example 2.14.

When referring to a continuous random variable X (say with a uniform density
function), it is customary to say that “X is uniformly distributed on the interval
[a, b].” It is also customary to refer to the cumulative distribution function of X as
the distribution function of X. Thus, the word “distribution” is being used in sev-
eral different ways in the subject of probability. (Recall that it also has a meaning
when discussing discrete random variables.) When referring to the cumulative dis-
tribution function of a continuous random variable X, we will always use the word
“cumulative” as a modifier, unless the use of another modifier, such as “normal” or
“exponential,” makes it clear. Since the phrase “uniformly densitied on the interval
[a, b]” is not acceptable English, we will have to say “uniformly distributed” instead.

Example 2.14 In Example 2.4, we considered a random variable, defined to be
the sum of two random real numbers chosen uniformly from [0, 1]. Let the random
variables X and Y denote the two chosen real numbers. Define Z = X + Y . We
will now derive expressions for the cumulative distribution function and the density
function of Z.

Here we take for our sample space Ω the unit square in R2 with uniform density.
A point ω ∈ Ω then consists of a pair (x, y) of numbers chosen at random. Then
0 ≤ Z ≤ 2. Let Ez denote the event that Z ≤ z. In Figure 2.14, we show the set
E.8. The event Ez, for any z between 0 and 1, looks very similar to the shaded set
in the figure. For 1 < z ≤ 2, the set Ez looks like the unit square with a triangle
removed from the upper right-hand corner. We can now calculate the probability
distribution FZ of Z; it is given by

FZ(z) = P (Z ≤ z)
= Area of Ez
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Figure 2.16: Calculation of Fz for Example 2.15.

=


0, if z < 0,
(1/2)z2, if 0 ≤ z ≤ 1,
1− (1/2)(2− z)2, if 1 ≤ z ≤ 2,
1, if 2 < z.

The density function is obtained by differentiating this function:

fZ(z) =


0, if z < 0,
z, if 0 ≤ z ≤ 1,
2− z, if 1 ≤ z ≤ 2,
0, if 2 < z.

The reader is referred to Figure 2.15 for the graphs of these functions. 2

Example 2.15 In the dart game described in Example 2.8, what is the distribution
of the distance of the dart from the center of the target? What is its density?

Here, as before, our sample space Ω is the unit disk in R2, with coordinates
(X,Y ). Let Z =

√
X2 + Y 2 represent the distance from the center of the target. Let
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Figure 2.17: Distribution and density for Z =
√
X2 + Y 2.

E be the event {Z ≤ z}. Then the distribution function FZ of Z (see Figure 2.16)
is given by

FZ(z) = P (Z ≤ z)

=
Area of E

Area of target
.

Thus, we easily compute that

FZ(z) =

 0, if z ≤ 0,
z2, if 0 ≤ z ≤ 1,
1, if z > 1.

The density fZ(z) is given again by the derivative of FZ(z):

fZ(z) =

 0, if z ≤ 0,
2z, if 0 ≤ z ≤ 1,
0, if z > 1.

The reader is referred to Figure 2.17 for the graphs of these functions.
We can verify this result by simulation, as follows: We choose values for X and

Y at random from [0, 1] with uniform distribution, calculate Z =
√
X2 + Y 2, check

whether 0 ≤ Z ≤ 1, and present the results in a bar graph (see Figure 2.18). 2

Example 2.16 Suppose Mr. and Mrs. Lockhorn agree to meet at the Hanover Inn
between 5:00 and 6:00 P.M. on Tuesday. Suppose each arrives at a time between
5:00 and 6:00 chosen at random with uniform probability. What is the distribution
function for the length of time that the first to arrive has to wait for the other?
What is the density function?

Here again we can take the unit square to represent the sample space, and (X,Y )
as the arrival times (after 5:00 P.M.) for the Lockhorns. Let Z = |X − Y |. Then we
have FX(x) = x and FY (y) = y. Moreover (see Figure 2.19),

FZ(z) = P (Z ≤ z)
= P (|X − Y | ≤ z)
= Area of E .
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Figure 2.18: Simulation results for Example 2.15.

Thus, we have

FZ(z) =

 0, if z ≤ 0,
1− (1− z)2, if 0 ≤ z ≤ 1,
1, if z > 1.

The density fZ(z) is again obtained by differentiation:

fZ(z) =

 0, if z ≤ 0,
2(1− z), if 0 ≤ z ≤ 1,
0, if z > 1.

2

Example 2.17 There are many occasions where we observe a sequence of occur-
rences which occur at “random” times. For example, we might be observing emis-
sions of a radioactive isotope, or cars passing a milepost on a highway, or light bulbs
burning out. In such cases, we might define a random variable X to denote the time
between successive occurrences. Clearly, X is a continuous random variable whose
range consists of the non-negative real numbers. It is often the case that we can
model X by using the exponential density . This density is given by the formula

f(t) =
{
λe−λt, if t ≥ 0,
0, if t < 0.

The number λ is a non-negative real number, and represents the reciprocal of the
average value of X. (This will be shown in Chapter 6.) Thus, if the average time
between occurrences is 30 minutes, then λ = 1/30. A graph of this density function
with λ = 1/30 is shown in Figure 2.20. One can see from the figure that even
though the average value is 30, occasionally much larger values are taken on by X.

Suppose that we have bought a computer that contains a Warp 9 hard drive.
The salesperson says that the average time between breakdowns of this type of hard
drive is 30 months. It is often assumed that the length of time between breakdowns
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Figure 2.21: Residual lifespan of a hard drive.

is distributed according to the exponential density. We will assume that this model
applies here, with λ = 1/30.

Now suppose that we have been operating our computer for 15 months. We
assume that the original hard drive is still running. We ask how long we should
expect the hard drive to continue to run. One could reasonably expect that the
hard drive will run, on the average, another 15 months. (One might also guess
that it will run more than 15 months, since the fact that it has already run for 15
months implies that we don’t have a lemon.) The time which we have to wait is
a new random variable, which we will call Y . Obviously, Y = X − 15. We can
write a computer program to produce a sequence of simulated Y -values. To do this,
we first produce a sequence of X’s, and discard those values which are less than
or equal to 15 (these values correspond to the cases where the hard drive has quit
running before 15 months). To simulate a value of X, we compute the value of the
expression

(
− 1
λ

)
log(rnd) ,

where rnd represents a random real number between 0 and 1. (That this expression
has the exponential density will be shown in Chapter .) Figure 2.21 shows an area
bar graph of 10,000 simulated Y -values.

The average value of Y in this simulation is 29.74, which is closer to the original
average life span of 30 months than to the value of 15 months which was guessed
above. Also, the distribution of Y is seen to be close to the distribution of X.
It is in fact the case that X and Y have the same distribution. This property is
called the memoryless property , because the amount of time that we have to wait
for an occurrence does not depend on how long we have already waited. The only
continuous density function with this property is the exponential density. 2
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Assignment of Probabilities

A fundamental question in practice is: How shall we choose the probability density
function in describing any given experiment? The answer depends to a great extent
on the amount and kind of information available to us about the experiment. In
some cases, we can see that the outcomes are equally likely. In some cases, we can
see that the experiment resembles another already described by a known density.
In some cases, we can run the experiment a large number of times and make a
reasonable guess at the density on the basis of the observed distribution of outcomes,
as we did in Chapter 1. In general, the problem of choosing the right density function
for a given experiment is a central problem for the experimenter and is not always
easy to solve (see Example 2.6). We shall not examine this question in detail here
but instead shall assume that the right density is already known for each of the
experiments under study.

The introduction of suitable coordinates to describe a continuous sample space,
and a suitable density to describe its probabilities, is not always so obvious, as our
final example shows.

Infinite Tree

Example 2.18 Consider an experiment in which a fair coin is tossed repeatedly,
without stopping. We have seen in Example 1.6 that, for a coin tossed n times, the
natural sample space is a binary tree with n stages. On this evidence we expect
that for a coin tossed repeatedly, the natural sample space is a binary tree with an
infinite number of stages, as indicated in Figure 2.22.

It is surprising to learn that, although the n-stage tree is obviously a finite sample
space, the unlimited tree can be described as a continuous sample space. To see how
this comes about, let us agree that a typical outcome of the unlimited coin tossing
experiment can be described by a sequence of the form ω = {H H T H T T H . . .}.
If we write 1 for H and 0 for T, then ω = {1 1 0 1 0 0 1 . . .}. In this way, each
outcome is described by a sequence of 0’s and 1’s.

Now suppose we think of this sequence of 0’s and 1’s as the binary expansion
of some real number x = .1101001 · · · lying between 0 and 1. (A binary expansion
is like a decimal expansion but based on 2 instead of 10.) Then each outcome is
described by a value of x, and in this way x becomes a coordinate for the sample
space, taking on all real values between 0 and 1. (We note that it is possible for
two different sequences to correspond to the same real number; for example, the
sequences {T H H H H H . . .} and {H T T T T T . . .} both correspond to the real
number 1/2. We will not concern ourselves with this apparent problem here.)

What probabilities should be assigned to the events of this sample space? Con-
sider, for example, the event E consisting of all outcomes for which the first toss
comes up heads and the second tails. Every such outcome has the form .10∗∗∗∗ · · ·,
where ∗ can be either 0 or 1. Now if x is our real-valued coordinate, then the value
of x for every such outcome must lie between 1/2 = .10000 · · · and 3/4 = .11000 · · ·,
and moreover, every value of x between 1/2 and 3/4 has a binary expansion of the
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Figure 2.22: Tree for infinite number of tosses of a coin.

form .10 ∗ ∗ ∗ ∗ · · ·. This means that ω ∈ E if and only if 1/2 ≤ x < 3/4, and in this
way we see that we can describe E by the interval [1/2, 3/4). More generally, every
event consisting of outcomes for which the results of the first n tosses are prescribed
is described by a binary interval of the form [k/2n, (k + 1)/2n).

We have already seen in Section 1.2 that in the experiment involving n tosses,
the probability of any one outcome must be exactly 1/2n. It follows that in the
unlimited toss experiment, the probability of any event consisting of outcomes for
which the results of the first n tosses are prescribed must also be 1/2n. But 1/2n is
exactly the length of the interval of x-values describing E! Thus we see that, just as
with the spinner experiment, the probability of an event E is determined by what
fraction of the unit interval lies in E.

Consider again the statement: The probability is 1/2 that a fair coin will turn up
heads when tossed. We have suggested that one interpretation of this statement is
that if we toss the coin indefinitely the proportion of heads will approach 1/2. That
is, in our correspondence with binary sequences we expect to get a binary sequence
with the proportion of 1’s tending to 1/2. The event E of binary sequences for which
this is true is a proper subset of the set of all possible binary sequences. It does
not contain, for example, the sequence 011011011 . . . (i.e., (011) repeated again and
again). The event E is actually a very complicated subset of the binary sequences,
but its probability can be determined as a limit of probabilities for events with a
finite number of outcomes whose probabilities are given by finite tree measures.
When the probability of E is computed in this way, its value is found to be 1.
This remarkable result is known as the Strong Law of Large Numbers (or Law of
Averages) and is one justification for our frequency concept of probability. We shall
prove a weak form of this theorem in Chapter 8. 2
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Exercises

1 Suppose you choose at random a real number X from the interval [2, 10].

(a) Find the density function f(x) and the probability of an event E for this
experiment, where E is a subinterval [a, b] of [2, 10].

(b) From (a), find the probability that X > 5, that 5 < X < 7, and that
X2 − 12X + 35 > 0.

2 Suppose you choose a real number X from the interval [2, 10] with a density
function of the form

f(x) = Cx ,

where C is a constant.

(a) Find C.

(b) Find P (E), where E = [a, b] is a subinterval of [2, 10].

(c) Find P (X > 5), P (X < 7), and P (X2 − 12X + 35 > 0).

3 Same as Exercise 2, but suppose

f(x) =
C

x
.

4 Suppose you throw a dart at a circular target of radius 10 inches. Assuming
that you hit the target and that the coordinates of the outcomes are chosen
at random, find the probability that the dart falls

(a) within 2 inches of the center.

(b) within 2 inches of the rim.

(c) within the first quadrant of the target.

(d) within the first quadrant and within 2 inches of the rim.

5 Suppose you are watching a radioactive source that emits particles at a rate
described by the exponential density

f(t) = λe−λt ,

where λ = 0.1, so that the probability P (0, T ) that a particle will appear in
the next T seconds is P ([0, T ]) =

∫ T
0
λe−λt dt. Find the probability that a

particle will appear

(a) within the next second.

(b) within the next 3 seconds.

(c) between 3 and 4 seconds from now.

(d) after 4 seconds from now.



     

72 CHAPTER 2. CONTINUOUS PROBABILITY DENSITIES

6 Assume that a new light bulb will burn out after t hours, where t is chosen
from [0,∞) with an exponential density

f(t) = λe−λt .

In this context, λ is often called the failure rate of the bulb.

(a) Assume that λ = 0.01, and find the probability that the bulb will not
burn out before T hours. This probability is often called the reliability
of the bulb.

(b) For what T is the reliability of the bulb = 1/2?

7 Choose a number B at random from the interval [0, 1] with uniform density.
Find the probability that

(a) 1/3 < B < 2/3.

(b) |B − 1/2| ≤ 1/4.

(c) B < 1/4 or 1−B < 1/4.

(d) 3B2 < B.

8 Choose independently two numbers B and C at random from the interval [0, 1]
with uniform density. Note that the point (B,C) is then chosen at random in
the unit square. Find the probability that

(a) B + C < 1/2.

(b) BC < 1/2.

(c) |B − C| < 1/2.

(d) max{B,C} < 1/2.

(e) min{B,C} < 1/2.

(f) B < 1/2 and 1− C < 1/2.

(g) conditions (c) and (f) both hold.

(h) B2 + C2 ≤ 1/2.

(i) (B − 1/2)2 + (C − 1/2)2 < 1/4.

9 Suppose that we have a sequence of occurrences. We assume that the time
X between occurrences is exponentially distributed with λ = 1/10, so on the
average, there is one occurrence every 10 minutes (see Example 2.17). You
come upon this system at time 100, and wait until the next occurrence. Make
a conjecture concerning how long, on the average, you will have to wait. Write
a program to see if your conjecture is right.

10 As in Exercise 9, assume that we have a sequence of occurrences, but now
assume that the time X between occurrences is uniformly distributed between
5 and 15. As before, you come upon this system at time 100, and wait until
the next occurrence. Make a conjecture concerning how long, on the average,
you will have to wait. Write a program to see if your conjecture is right.
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11 For examples such as those in Exercises 9 and 10, it might seem that at least
you should not have to wait on average more than 10 minutes if the average
time between occurrences is 10 minutes. Alas, even this is not true. To see
why, consider the following assumption about the times between occurrences.
Assume that the time between occurrences is 3 minutes with probability .9
and 73 minutes with probability .1. Show by simulation that the average time
between occurrences is 10 minutes, but that if you come upon this system at
time 100, your average waiting time is more than 10 minutes.

12 Take a stick of unit length and break it into three pieces, choosing the break
points at random. (The break points are assumed to be chosen simultane-
ously.) What is the probability that the three pieces can be used to form a
triangle? Hint : The sum of the lengths of any two pieces must exceed the
length of the third, so each piece must have length < 1/2. Now use Exer-
cise 8(g).

13 Take a stick of unit length and break it into two pieces, choosing the break
point at random. Now break the longer of the two pieces at a random point.
What is the probability that the three pieces can be used to form a triangle?

14 Choose independently two numbers B and C at random from the interval
[−1, 1] with uniform distribution, and consider the quadratic equation

x2 +Bx+ C = 0 .

Find the probability that the roots of this equation

(a) are both real.

(b) are both positive.

Hints: (a) requires 0 ≤ B2 − 4C, (b) requires 0 ≤ B2 − 4C, B ≤ 0, 0 ≤ C.

15 At the Tunbridge World’s Fair, a coin toss game works as follows. Quarters
are tossed onto a checkerboard. The management keeps all the quarters, but
for each quarter landing entirely within one square of the checkerboard the
management pays a dollar. Assume that the edge of each square is twice the
diameter of a quarter, and that the outcomes are described by coordinates
chosen at random. Is this a fair game?

16 Three points are chosen at random on a circle of unit circumference. What is
the probability that the triangle defined by these points as vertices has three
acute angles? Hint : One of the angles is obtuse if and only if all three points
lie in the same semicircle. Take the circumference as the interval [0, 1]. Take
one point at 0 and the others at B and C. Now use Exercise 8(a).

17 Write a program to choose a random number X in the interval [2, 10] 1000
times and record what fraction of the outcomes satisfy X > 5, what fraction
satisfy 5 < X < 7, and what fraction satisfy x2− 12x+ 35 > 0. How do these
results compare with Exercise 1?
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18 Write a program to choose a point (X,Y ) at random in a square of side 20
inches, doing this 10,000 times, and recording what fraction of the outcomes
fall within 19 inches of the center; of these, what fraction fall between 8 and 10
inches of the center; and, of these, what fraction fall within the first quadrant
of the square. How do these results compare with those of Exercise 4?

19 Write a program to simulate the problem describe in Exercise 7 (see Exer-
cise 17). How do the simulation results compare with the results of Exercise 7?

20 Write a program to simulate the problem described in Exercise 12.

21 Write a program to simulate the problem described in Exercise 16.

22 Write a program to carry out the following experiment. A coin is tossed 100
times and the number of heads that turn up is recorded. This experiment
is then repeated 1000 times. Have your program plot a bar graph for the
proportion of the 1000 experiments in which the number of heads is n, for
each n in the interval [35, 65]. Does the bar graph look like it can be fit with
a normal curve?

23 Write a program that picks a random number between 0 and 1 and computes
the negative of its logarithm. Repeat this process a large number of times and
plot a bar graph to give the number of times that the outcome falls in each
interval of length 0.1 in [0, 10]. On this bar graph plot a graph of the density
f(x) = e−x. How well does this density fit your graph?


