Ma3101 Elementos de Álgebra

30 de Abril de 2011

Pauta Control 2

Prof. Cátedra: M. Kiwi Prof. Auxiliar: O. Rivera, D. Salas

PROBLEMA 1:

(i).- Veamos que (a) implica (b). Sea $W_1 \subsetneq W_2 \subsetneq \ldots$ cadena infinita estrictamente creciente de submódulos de V. Sea $W = \bigcup_{n \geq 1} W_n$. Es fácil ver que W es un R-módulo de V. Sigue que W es finitamente generado, digamos por $w_1, \ldots, w_n \in W$. Sea m_i tal que $w_i \in W_{m_i}$ y $m = \max\{m_i : i = 1, \ldots, n\}$. Sigue que $W = \langle w_1, \ldots, w_n \rangle_R \subseteq W_m \subsetneq W_{m+1} \subseteq W$, contradicción.

Veamos ahora que (b) implica (a). Supongamos que W no es finitamente generado. Sea $w_1 \in W$. Como $\langle w_1 \rangle_R \subsetneq W$ (de lo contrario W sería finitamente generado), sigue que existe $w_2 \in W \setminus \langle w_1 \rangle_R$. Como $\langle w_1, w_2 \rangle_R \subsetneq W$ (de lo contrario W sería finitamente generado), sigue que existe $w_3 \in W \setminus \langle w_1, w_2 \rangle_R$, y así seguimos construyendo w_1, w_2, \ldots tales que si definimos $W_i = \langle w_1, \ldots, w_i \rangle_R$ vemos que $W_1 \subsetneq W_2 \subsetneq \ldots$ es una cadena infinita estrictamente creciente de submódulos de V, contradicción.

- (ii).- Sea $I_1 = I$. Si I_1 es maximal, estamos listos. Si no, entonces existe un ideal $I_2 \neq R$ tal que $I_1 \subsetneq I_2$. Si I_2 es maximal, estamos listos. Si no, entonces existe un ideal $I_3 \neq R$ tal que $I_2 \subsetneq I_3$, y así seguimos hasta encontrar un ideal maximal estrictamente contenido en R y que contiene a I, o generar una cadena estrictamente creciente de ideales $I_1 \subsetneq I_2 \subsetneq \ldots$ de R. Recordando que un ideal en un anillo R es un submódulo de R, y que R es noetheriano, descartamos la existencia de la cadena creciente de ideales y concluimos el resultado deseado.
- (iii).- Como Ker(φ) e Im(φ) son R-módulos finitamente generados, existen $u_1, \ldots, u_n \in \text{Ker}(\varphi)$ y $w_1, \ldots, w_m \in \text{Im}(\varphi)$ tales que Ker(φ) = $\langle u_1, \ldots, u_n \rangle_R$ e Im(φ) = $\langle w_1, \ldots, w_m \rangle_R$. Sea v_i tal que $\varphi(v_i) = w_i$, $i = 1, \ldots, m$. Afirmamos que $u_1, \ldots, u_n, v_1, \ldots, v_m$ generan V. En efecto, sea $v \in V$. Sigue que existen $b_1, \ldots, b_m \in R$ tales que $\varphi(v) = b_1 w_1 + \ldots + b_m w_m$. Sea $v' = b_1 v_1 + \ldots + b_m v_m$. Como φ es homomorfismo, $\varphi(v') = b_1 \varphi(v_1) + \ldots + b_m \varphi(v_m) = b_1 w_1 + \ldots + b_m w_m = \varphi(v)$. Por lo tanto, $v v' \in \text{Ker}(\varphi)$. Sigue que existen $a_1, \ldots, a_n \in R$ tales que $v v' = a_1 u_1 + \ldots + a_n u_n$. Luego, $v = a_1 u_1 + \ldots + a_n u_n + b_1 v_1 + \ldots + b_m v_n$. Esto concluye la demostración de la afirmación.
- (iv).- Si m = 1, el resultado se obtiene trivialmente a partir de la definición de anillo noetheriano y recordando que los submódulos de R son los ideales de R. Supongamos que

- el resultado se tiene para m > 1. Veamos que se cumple para m + 1. Sea W submódulo de R^{m+1} . Consideremos la proyección $\pi: W \to R$ tal que $\pi(a_1, \ldots, a_{m+1}) = a_{m+1}$. Recordar que $\operatorname{Im}(\pi)$ es un submódulo de W, puesto que π es un morfismo entre R-módulos. Luego, como R es noetheriano, $\operatorname{Im}(\pi)$ es finitamente generado. Por otro lado, $\operatorname{Ker}(\pi) = W \cap (R^m \times \{0\})$ es un submódulo de $(R^m \times \{0\}) \cong R^m$, luego finitamente generado por hipótesis de inducción. Por (iii) se concluye lo deseado.
- (v).- Sean v_1, \ldots, v_m generadores de V. Sigue que $\varphi : R^m \to V$ tal que $\varphi(r_1, \ldots, r_m) = r_1v_1 + \ldots + r_mv_m$ es un epimorfismo de R-módulos. Sea S es un submódulo de V. Como la preimágen de un submódulo vía un morfismo es submódulo, se tiene que $\varphi^{-1}(S)$ es un submódulo de R^m . Por (iv) sigue que $L = \varphi^{-1}(S)$ es finitamente generado, digamos por ℓ_1, \ldots, ℓ_m . Es fácil ver que S está generado por $\varphi(\ell_1), \ldots, \varphi(\ell_m)$.
- (vi).- Sea $v : R \to R/I = \overline{R}$ la proyección canónica. Sea \overline{J} un ideal de \overline{R} y $J = v^{-1}(\overline{J})$. Como la preimágen de un submódulo vía un morfismo es submódulo, se tiene que J es submódulo de R. Como R es noetheriano, sigue que J es finitamente generado. Luego, $v(J) = \overline{J}$ también es finitamente generado (por la imágen por v de los generadores de J).
- (vii).- Sea $\alpha \in A_I$. Por definición, α es el coeficiente líder de un $f \in I$. Para $r \in R$ se tiene entonces que $r\alpha$ es el coeficiente líder de $rf \in I$. Luego, $r\alpha \in A_I$. Sean $\alpha, \beta \in A_I$. Por definición, α y β son los coeficientes líderes de un f y g en I, respectivamente. Supongamos que f y g tienen grado m y n, respectivamente. Sin pérdida de generalidad, asumimos que $m \ge n$. Sigue que $f + x^{m-n}g$ está en I y tiene coeficiente líder $\alpha + \beta$, es decir $\alpha + \beta \in A_I$.
- (viii.1).- Como I y P_n son R-submódulos de R[x] e intersección de submódulos es submódulo, sigue inmediatamente que $S_n \subseteq P_n$ es R-submódulo del R-módulo P_n .

La aplicación de (v) para demostrar la existencia de h_1, \dots, h_s es trivial.

- (viii.2).- Dado que $f_1, \ldots, f_k, h_1, \ldots, h_s \in I$, sigue trivialmente que el ideal que generan, o sea J, esta contenido en I.
- (viii.3).- Si g es polinomio de grado menor que n, entonces $g \in P_n$. Si además se tiene que $g \in I$, entonces $g \in I \cap P_n = S_n$. Luego, g es combinación R-lineal de h_1, \ldots, h_s , y por lo tanto está en J.
- (viii.4).- Sea α el coeficiente líder de g. Por definición, $\alpha \in A_I$. Como A_I es finitamente generado por $\alpha_1, \ldots, \alpha_k \in R$ tales que α_i es coeficiente líder de un $f_i \in I$, sigue que existen $r_1, \ldots, r_k \in R$ tales que $\alpha = r_1\alpha_1 + \ldots + r_k\alpha_k$ es el coeficiente líder de p(x) como en el enunciado. Notar que $p \in J \subseteq I$ (porque $f_1, \ldots, f_k \in J \subseteq I$ e I y J son ideales). Como el grado de p y g coinciden, dado que sus coeficientes líder también coinciden, y puesto que g y p están en el ideal I, sigue que $g_1 = g p$ está en I y tiene grado menor que m. Por inducción, $g_1 \in J$. Como $p \in J$, sigue que $g = g_1 + p \in J$.