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ABSTRACT. In this paper we prove that if two self-similar tiling systems, with
respective stretching factors A1 and A2, have a common factor which is a non
periodic tiling system, then A1 and Ao are multiplicatively dependent.

1. INTRODUCTION

Given a non periodic self-similar tiling 7 generated by some similarity S; with
stretching factor A1, it is rather natural to ask if we could generate 7 using another
similarity with a different stretching factor Ao. This is of course possible taking a
power of the similarity S7, where Ao is in this case a power of \;. Holton, Radin
and Sadun show in [HRS] that the stretching factor of any other similarity which
generates 7 is equal to a rational power of A\;. More precisely, they prove that
the stretching factors of conjugate tiling systems which are the orbit closure under
Euclidean motions of some self similar tilings are multiplicatively dependent. In
this paper we look at tiling systems which are the orbit closure under translations of
some self similar tilings, in order to give a necessary condition to have non periodic
common factors. The result we present in this paper is the following:

Theorem 1. Let S1(71) = 71 and S2(72) = T3 be two self-similar tilings satisfying
the Finite Pattern Condition, where S1 and Sy are primitive substitutions. Let \q
and A2 be the Perron eigenvalues of the substitution matrices associated to Sy and So
respectively. If there exist a non periodic tiling T and factors maps m; : Qr, — Qr,
fori e {1,2}, then Ay and Ay are multiplicatively dependent.

The problem we are interested in has been considered a long time ago by A. Cobham
in [Col] and [Co2] for fixed points of substitutions of constant length. He showed
that if p,q > 1 are two multiplicatively independent integers then a sequence x
on a finite alphabet is both p-substitutive and g-substitutive if and only if z is
ultimately periodic, where p-substitutive means that z is the image by a letter
to letter morphism of a fixed point of a substitution of constant length p. This
theorem was the starting point of a lot of work in many different directions such
as : numeration systems for N, substitutive sequences and subshifts, automata
theory and logic (for more details see [Be, BH1, BH2, BHMV, Dul, Du2, Du3, Ei,
Fab, Fag, Hal, Ha2, MV]). Later, in [Se] A. Semenov proved a “multidimensional”
Cobham type theorem, that is to say a Cobham theorem for recognizable subsets
of N4, This result can be stated in terms of self similar tilings, and in the case these
tilings are repetitive, our result is a generalization of Semenov Theorem.
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This paper is organized as follows: in Section 2 we give some basic definitions rele-
vant for the study of tiling systems and substitution tiling systems. In Section 3 we
study the frequencies of the patches in self-similar tilings and in their factors. First
we prove that the frequencies of the patches in a self-similar tiling 7 are included
in a finite union of geometric progressions of rate A, where \ is the stretching factor
of 7 (In [HZ] the authors remarked this fact for minimal substitution subshifts).
Next, we prove that the frequencies of the patches in a tiling 7', which is a factor
of two self-similar tiling systems with stretching factors A\; and Ao respectively, are
included in the intersection of two finite unions of geometric progressions, one of
rate A1 and the other of rate Ay. The proof of this result would be easier if the
factor maps were given by a kind of “sliding block code” (as it can be the case for
subshifts), because in this case the preimage of a patch would be a finite collection
of patches. Nevertheless, this is no longer the case for the tiling systems we con-
sider here (examples of factor maps, and even conjugacies, that are not given by
a “sliding block codes” are given in [Pe] and [RS]), but we overcome this problem
selecting carefully some patches in the preimages we considered. Finally, in Section
4 we deduce the main Theorem.

2. DEFINITIONS AND BACKGROUND

In this section we give the classical definitions concerning tilings. For more details
we refer to [Sol]. A tiling of R? is a countable collection T = {t; : i > 0} of closed
subsets of R? (which are known as tiles) whose union is the whole space and their
interiors are pairwise disjoint. We assume that the tiles are homeomorphic to closed
balls and that they belong, up to translations, to a finite collection of closed subsets
of R% whose elements are called prototiles. We say that two tiles are equivalent if
they are equal up to translations. It is often useful to consider every prototile as a
closed set endowed with a label. In this case, two tiles are equivalent if, in addition,
their labels coincide.

The translation of the tiling 7 by a vector v € R? is the tiling 7 + v obtained
after translating every tile of 7 by —v. The tiling 7 is said to be aperiodic (or non
periodic) if T + v =T implies v = 0.

The support of a tile t;, denoted by supp(t;), is the closed set that defines ¢;. For
every subset A of R? we define, as usual, 7 N A to be the set {t; N A :i > 0}. A
patch P is a finite collection of tiles. The support of a patch P, denoted by supp(P),
is the union of the supports of the tiles in P. The diameter of a patch P is the
diameter of its support, we call it diam(P). We define P + v as we defined 7 + v.
The tiling 7 satisfies the finite pattern condition FPC (or equivalently, we say that
it is locally finite) if for any r > 0, there are up to translation, only finitely many
patches with diameter smaller than r. This condition is automatically satisfied in
the case of a tiling whose tiles are polyhedra that meet face-to-face. A tiling 7
is repetitive if for any patch P in 7 there exists r» > 0, such that for every open
ball B,(v) the collection 7 N B,.(v) contains a patch P’ equivalent to P (when it is
clear from the context we will say that P ”"appears” in B,(v)). The non periodic
repetitive tilings that satisfy FPC are called perfect tilings.

2.1. Tiling systems. Let A be a finite collection of prototiles. We denote by T'(A)
(full tiling space) the space of all the tilings of R whose tiles are equivalent to some
element in A. We always suppose that T(A) is non empty. The group R? acts on
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T(A) by translations:
(v,T) =T +v forveR? and T € T(A).

Furthermore, this action is continuous with the topology induced by the following
distance: take 7, 7’ in T'(A), and define A the set of € € (0,1) such that there
exist v and v’ in B.(0) with

(T + U) N Bl/s(o) = (T/ + U/) N Bl/s(o)a

we set
n [ infA HfA#D

d7.7") —{ 1 A=
Roughly speaking, two tilings are close if they have the same pattern in a large
neighborhood of the origin, up to a small translation. A tiling system is a pair
(€2, R9) such that Q is a translation invariant closed subset of some full tiling space.
The orbit closure of the tiling 7 in T'(A) is the set Q7 = {7 + v : v € R?}. When
T satisfies the FPC, Q7 is compact (see [Ru]). If 7 is repetitive then all the orbits
are dense in Q7. In this case the tiling system (Q7,R) is said to be minimal.

A factor map between two tiling systems (€21, R?) and (22, R?) is a continuous map
71 Qy — Qg such that 7(7 +v) = 7(T) + v, for every 7 € ; and v € RY.

In symbolic dynamics it is well-known that topological factor maps between sub-
shifts are always given by sliding-block-codes. There are examples which show that
this result can not be extended to tiling systems ([Pe], [RS]). The following Lemma
shows that factor maps between tiling systems are not far to be sliding-block-codes.
A similar result can be found in [HRS].

Lemma 2. Let 71 and T3 be two tilings. Suppose Ty wverifies the FPC and w :
Qr, — Qg, is a factor map. Then, there exists a constant so > 0 such that to every
€ > 0 it is possible to associate R. > 0 satisfying the following: Let R > R.. If T
and T' in Qr, verify
7N BR-l—so(O) =7'Nn BR+50(0),

then

(7(7T) +v) N Br(0) = 7(7T") N Br(0)
for some v € B.(0).

Proof. The tiling 75 also satisfies the FPC because {27, is compact. Since the tilings
in Q7, have a finite number of tiles, up to translations, there exists d§(, > 0 such that
if y1 # y2 € R? satisfy (7 +y1) N Br(0) = (T +y2) N Br(0) for some T € Qr, and
some R > max{diam(p) : p prototile in 7}, then [|y1 — ya|| > & (for the details see
[So1)).

Let 0 < g < %. Since 7 is uniformly continuous, there exists so > 1 such that if
T and 7' in Qg verify 7 N B, (0) = 7' N By, (0) then

(W(T)-I—U)QB%(O) ZW(TI)QB%(O),
for some v € Bs, (0).

Let 0 < € < §p. By uniform continuity of 7 there exists 0 < § < % such that if 7
and 7" in Q7, verify 7N B1(0) =7'N B1(0) then

(2.1) (w(T) +v) N B1(0) = =(T") N B1(0),
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for some v € B.(0).
Now fix R > R. = + — sp and 7 and 7" two tilings in Q7 verifying

(2.2) T N BRs,(0) = T' N Bras, (0).

Then, on one hand, the tilings 7 and, 7" satisfy (2.1), and on the other hand, we
obtain that (7 + a) N By, (0) = (7’ + a) N B, (0) for every a in Br(0). From the
choice of sg, this implies that

(2.3) ((T) +a+t) N B (0) = (=(T') +a) N B (0),

for some t, € Bs,(0).
Since §p > ¢, from (2.1) we get

(2.4) (=(T) +v) N B (0) = w(T") N B (0).

We will show that t, = v for every a in Br(0). This property together with (2.3)
and (2.4) imply that

(r(T) + v) N Br(0) = 7(T") N B(0).

For a = 0, from (2.3) and (2.4) we have that t¢ = v or |[v — to| > dj. Since
[lto —v|| < o + & < 25y < &, we conclude tg = v.
For a € Br(0), consider s > 0 such that for every a’ € Bs(a) the patch

P=(m(T")+a)n B% O0)N((x(T") +a+ (a —a))N B%(O),

contains a tile.

From (2.3) we get 7(7)+a+t,+ (a—a’)Nsupp(P) = P. Replacing a by a’ in (2.3),
we obtain 7(7) +a+t, + (a’ —a)Nsupp(P) = P. This implies the norm of ¢, — ¢}, is
equal to 0 or greater than dj. Since [|t, — )| < 2§y < &, we get t, = t,. Thus we
conclude that the function that associates ¢, to a is constant, which implies that
to = to = v for every a in Br(0). O

2.2. Linearly recurrent tilings. A tiling 7 is linearly recurrent (or strongly
repetitive, or linearly repetitive) if there exists a constant L > 0 such that for
every patch P in 7, any ball of radius Ldiam(P) contains a translate of P. Every
tiling in the orbit closure of a linearly recurrent tiling is linearly recurrent with the
same constant. When 7 is linearly recurrent, we call (Q7,R%) a linearly recurrent
tiling system.

Lemma 3. Let 7; and T3 be two tilings verifying the FPC. If m : Q7 — Qr, is a
factor map and Ty is linearly repetitive, then (Qr,, R?) is linearly recurrent.

Proof. Let T € Qr,. Consider ¢ > 0 and R > 0 the positive number of Lemma
2 associated to €. Since 7 is linearly repetitive with some constant L, for any
y € R? there exists v € By (gysy)(y) such that Bris,(v) € Br(rysy)(y) and (T +
v) N Brys,(0) = 7 N Bris,(0). From Lemma 2, there exists ¢ € B.(0) such that
(m(T) +v+1t)N Br(0) = n(7) N Br(0). This implies that any ball of radius
L(R+ s¢) + 2¢ in (7)) contains a copy of (7)) N Br(0). Since Lsy + 2¢ is smaller
than some constant, it follows that 7(7) is linearly recurrent. (]
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2.3. Substitution tiling systems. Let M be a linear map on R?. It is called
expansive if there exists A > 1 such that

| M| > X||v||, for all v € R,

The map M is a similarity if | Mv| = A||v| for all v € RY.

Let a be an eigenvalue of the expansive (resp. similar) linear map M, and let v # 0
be an eigenvector associated to a. We have |[[Mwv|| = |a]||v]|, which implies that
la| > A (resp. |a| = \) and then, |det(M)| > A9 (resp. |det(M)| = A?). Thus, if
© is a Borel set in R%, we obtain

vol(M©) = | det(M)[vol(©) > \vol(©) if M is expansive.
vol(M©) = | det(M)|vol(©) = X¥vol(©) if M is a similarity.
Let A be a finite collection of prototiles and let M be a expansive linear map on

R?. A substitution is a function S on the set of prototiles A that associates to each
p in P a patch S(p) such that

e the support of S(p) is Msupp(p).
e for every g € A there exist n,, > 0 and vy, 4 € R? for each 1 <k < ny 4,
such that

Sp)={q+vpgr:1<k<mn,g qc A}

The substitution matriz of S is the matrix A € M 4% 4(Z") which contains, in the
coordinate (p,q), the number of different tiles in S(p) which are equivalent to g.
That is, Ap 4 = np,q for each p,q € A.

The substitution S can be defined on T'(A) in the following way: if ¢ is a tile in
T € T(A), such that ¢ is equivalent to the prototile p € A, we define

5(t) = S(p) + Mo,
where v € R? is such that supp(t) = supp(p) + v. Then, we define
S(T) = ] S(t) e T(A).

teT
The substitution is primitive if A is primitive, that is, there exists k > 0 such that
A¥ > 0. In this case, the Perron eigenvalue of A is | det(M)| ([Sol]).
In this paper, we always suppose that S is primitive.
The substitution tiling system associated to S is the tiling system (Xg,R?), where
Xg is the space of all the tilings 7 in T'(A) such that for every patch P of 7
there exist a prototile p € A and k > 0 satisfying P C S¥(p). The action of
R? on Xg is the translation. Because S is primitive, there always exist a tiling
To € T(A) and ko > 0 such that S*(75) = 7o. It is classical (in the primitive
case) that Q7 = Xg = Xg» for every k& > 0. So, without loss of generality we can
suppose that S(7p) = 7p. In addition, we will always suppose that the fixed point
of S satisfies the FPC. In this case Xg is a compact metric space and (Xg,R?) is
minimal.
A tiling 7 in T'(A) which satisfies the FPC is self-affine if it is the fixed point of
a substitution. The tiling 7 is said to be self-similar if it is the fixed point of a
substitution S which is defined by a similarity M with constant A (For more details
see [Sol]). We say A is the stretching factor of S or T .
Let 7y be a self-similar tiling which is the fixed point of a primitive substitution S
satisfying the FPC. The following two results are included in [So2].
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Lemma 4. 7y is linearly recurrent.

Lemma 5. There exists N > 0 such that if P is a patch in Ty whose support
contains a ball of radius R, then whenever P + v is a patch of Ty with v > 0,
loll > &.

These two lemmata mean that the minimal distance between two equivalent patches
in a self-similar tiling is neither too large nor too small compared to their sizes.

3. FREQUENCIES

Consider a tiling 7 of RY. For a set F' C R?, we write
TIF|={teT: :tNnF #0}.

A T-corona is a patch 7T [[supp(t)]], where ¢ is a tile in 7. Remark that for some
e € R? we could have T[[F + ¢€]] = T[[F]]. To avoid this situation we define, for
v € R T[F,v] = T[[F]] —v. When F is a ball Bg(v) we write 7[Br(v)] instead
of T[Bg(v),v].

In the sequel we suppose that 7 is a self-similar tiling which is the fixed point of
a primitive substitution S, with stretching factor A, satisfying the FPC.

3.1. Van Hove sequences. In order to define the notion of frequency of a patch
we need the concept of Van Hove sequences.

Let P be a patch in 75 and let © C R%. Denote by Lp(©) the number of patches
included in 7o N © which are equivalent to P ([Sol]).
A sequence (0,,),>0 of subsets of R? is a Van Hove sequence if for any r > 0,

lim vol((90,)1")

S T I

where
01" = {z € R : dist(x, ©) < 1},
and 00O is the border of O.

In [Sol], it was shown for any patch P in 7; there is a number freq(P) > 0 such
that for any Van Hove sequence (0,,)n>0,

im Lp(©n)
n—oo vol(©,,)

= freq(P).

Suppose that P and @ are two patches in 7y. In order to simplify the notation, we
will write Lp(Q), vol(P) and (OP)*" instead of Lp(supp(Q)), vol(supp(P)) and
(Osupp(P))™" respectively.

It is easy to show that (M"0),>¢ is a Van Hove sequence when M : R — R? is an
expansive linear map and © is a compact subset of R? with non empty interior and
such that vol(9©) = 0. Consequently, to compute freq(P) we will use the following
limit
. Lp(S*(p)
freq(P) = lim ———=
rea(P) = Jim S )

for any prototile p in A.
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3.2. Patch frequencies of a self-similar tiling. The next proposition extends
a result of C. Holton and L. Zamboni [HZ] obtained for minimal substitution sub-
shifts. But before we will need the following technical lemma;:

Lemma 6. Suppose that T satisfies the FPC. Then there exists a constant n > 0

such that for every y € R the ball B, (y) is contained in the support of a corona in
7.

Proof. Let t be a tile in 7 . The number
e = dist(9t, 9T [[supp(t)]])

is positive for every tile t. The FPC implies there is a finite number of coronas up
translations. Hence we get

n=min{n, :t €7} >0.
Notice that the set
{z € RY: dist(z,t) < n}

is contained in the support of 7 [[supp(t)]] for every tile ¢ in 7. Thus if y is a point
in R? belonging to the tile ¢ € 7 then the ball B, (y) is contained in the support of

T [[supp(t)]]. O

Proposition 7. There exists a finite set F' C R such that for every patch P in Ty
satisfying P = To|Br(y)], for some R > 0 and y € R?,

f

freq(P) = I

where f € F and k > 0 is such that
M=y < diam(P) < AFg,

with n is the constant of Lemma 6.

Proof. Let A be the prototile set associated to 7. We define
[ = max{diam(p) : p € A}.

Let P be a patch in 7y such that P = 7o[[Bg(y)]], for some R > 0 and y € R%.
This implies that

(3.1) diam(P) < 2(R+1).
Let £ > 0 be such that
(3.2) M=ty < diam(P) < MM

By Lemma 6, there exists a corona B which support contains the ball B, (M ~*y).
Because the support of S¥(B) contains the ball Byx, (y), by (3.2) we deduce that
S%(B) contains the patch P. From Lemma 5, we have

vol(S*(B)) Ak vol(B)

(3.3) Lp(S*(B)) < vol(Bg (0)) I vol(By(0))’

From (3.1) and (3.2) we obtain

1 1 1
<

= <
2(R+1) ~ diam(P) — A1y’
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which implies there exists C' not depending on k such that

AR o \°
(34) RS (t) =C
= xe—1
From (3.3) and (3.4) we conclude there exists a constant K, independent on P, k
and B, such that
Lp(S*(B)) < K.
Let P’ be any patch in 7y and let D be the set of all the 7g-coronas, up to translation.
We have
= Y Lp(P')N(P',P,B)
BeD
where N(P’, P, B) is some integer in {0,---, Lp(S*(B))} € {0,---, K}. Thus, for
pe Aand n >k,

Lp(S"(p) _ Lp(S*(S" ()
vol(5™(p)) vol(5™(p))
-y Lp(S"*(p))N(S*"(p), P, B)
sh vol(5™(p))

_ Lp(S™*(p)) vol(S"~*(p)) .

B BEZD VOl(Sn_k(p)) VOl(S"(p)) N(S (p)a P, B)
L Sn k .

- Akd EE: Véi‘gn k 5 ng (p),fﬂl?)

Because N (S*~"(p), P, B) is in {1, -+, K} for every n > k, we can take a conver-
gent subsequence to obtain

n—k
freq(P) = % nlLIr;O];) %N(S’“"@),P’ B)

1
= ym 2 frea(B)N(P, B),
BeD
where N (P, B) is some integer in {0, --- , K} for every B € D. Because D is finite,
to conclude it suffices to take

= {Z freq(B)Np : Np € {0, -- ,K}}.

BeD
O

Remark 8. From [Sol] we know (Q7,,R?) is uniquely ergodic. Hence, the fre-
quency of a patch P does not depend on the tiling. That is, freq(P) is the same
for every 7 in Q7.

3.3. Patch frequency in the factor. The next result extends Proposition 7 to
tiling factors of self-similar tiling systems. The main problem we have to overcome
is that the factor map is not necessarily given by a sliding block code. Hence the
first part of the next proof consists in selecting carefully the preimages of a given
patch P by means of a finite induction procedure. Then, we show that the frequency
of the patch P is the sum of the frequencies of the selected patches.
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Proposition 9. Let 7 be a non periodic tiling. If there exists a factor map m :
Qr, — Qr then there exists a finite set F' C R such that for every patch P in T
satisfying P = T [Bgr(y)], for some R > 0 and y € R?,

f

freq(P) = R

where f € F and k > 0 is such that
A3 < diam(P) < nAF L,
if R is big enough.

Proof. Let To € Q7 and let T3 € Q7, be such that 7(77) = Z2. Let so > 0 be the
constant of Lemma 2.

The linear recurrence of 77 implies that the tiling 75 is also linearly recurrent. Let
L be the constant of linear recurrence of 77 and let M and N be the constants of
Lemma 5 associated to 77 and 75 respectively. We set

K = max{(8LN)%, (8LM)%}

and
n; = max{diam(¢) : ¢ is a tile in 7;}, for ¢ € {1,2}.

Let € > 0. Let R. > 0 be the positive number associated to € as in Lemma 2.
Notice that R. can be chosen big enough in order that

So+m +mn+e
AN(2K +1)e
2Me — sg
(35) R. > max 2(771 + E) — (230 + 772)
n/\ﬂogx n(;]—,ll)-‘
2(s0-tn1tn2+26) 1 o

77)\“0g’\ n(A—1)

/2
Let R > R. and let P = T5[Br(y)], y € R%.
Suppose that vy, --- ,v; are all the points in Bap,(g4so+e4n+1.)(0) such that
T3|Br(v;)] = P.
If v; # v; we have [|v; — v;]| > £. This implies that in a ball of radius £ there

is at most one point v such that Z3[Br(v)] = P. Using (3.5) It follows that in
BoL(R+so+e+n1+n2)(0) there are at most

vol(Bar (Rt sotetn+n2)(0))

vol(B s (0)) SBLN)' <K

points v such that 73[Bgr(v)] = P. This implies that for any patch P we have
I<K.
For every 1 < <[ we set

P=" [BR+50+772 (vl)]

Now, for every 1 < i <[ we will define, by induction on 4, k; different patches as
follows (see figure 1).
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For i = 1, we take all the patches P’ in 7y satisfying the following two conditions:

(36) P/ = Z[BR+SO+HI+H2+26 (’U)] for some v € Rd
(3.7) Py = T[Brysgin, (v)].
Because 77 satisfies the FPC, there exists a finite number k; of different patches
satisfying the previous condition. We call these patches P; 1, -, P; x,. Moreover,
k1 is bounded by K. Indeed, if v and v’ are two different points in R? such that
Pij = Ti[Brsotn+na+2e(V)]
P = Ti[Brisytmtnt2:(v')];

for some 1 <1i,j < ky, then
P = ’Tl[BRJrSoJr?h (1})] = lrl[BRJrSoJr?h (U/)]'

From Lemma 5, this implies that
R+ sog+n2
—u

It follows that in a ball of radius W there is at most one point w which is the
center of some P; ;. Since 7; is linearly recurrent with constant L and for every
1<j<hk

lo —o'|l >

diam(Pl_,j) S 2(R + S0 + m + T2 + 25) + 27’]1,

all the patches P ; appear in the ball Bor(grysot2m +ma420)(0) in 71, Using (3.5)
this implies

vol(BarL (R st 2m +n2+2¢)(0))
VOl(B R+§0M+n2 (0))

1 < < (8LM)? < K.

For 1 < i < I, we take all the patches P’ in 77 satisfying the following three
conditions:

(3.8) P’ = Ti[Brtsytm+nst2:(v)] for some v € RY,
(39) P =T [BR+50+772 (’U)],
(3.10) if T1[BR+sotn. (v +1t)] = P; for some t € Bo.(0) then j > 1.

As for the case i = 1, we remark there is a finite number k; of different patches
satisfying the previous conditions, and that k; is smaller than K. We call these
patches P 1, , P x,.

Remark 10. The linear recurrence of 7; and (3.5) imply that if v € R satisfies

T1[BRtsot+ni+na+2¢ (V)] = Py j,

for some 1 < ¢ <l and 1 < j < k;, then 71[BRryso4n. (v + t)] # P; for every
t € Bo-(0)\ {0}.

Remark 11. From Remark 10 and from (3.10), if v € R? satisfies

71[BR+So+n1 +m2+2¢ (U)] =P,

forsomel <i <land1 < j < k;, then T1[Brysy4n, (V+1)] # Ps forevery 1 < s <i
and ¢ € B (0) \ {0}.
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P;;

n,s > 1

FIGURE 1

Remark 12. From the construction of the patches F; ;, if v € R? satisfies

’Tl[BRJrSoJrnz (1})] =P,

for some 1 < ¢ < [ and, j > 4 whenever 71[Brysotn, (v + t)] = P; for some
t € B.(0) \ {0}, then

T1[BR+so+m +ma+2¢(V)] = Pk,
for some 1 < k < k;.

In the sequel we will show that freq(P) = 22:1 257:1 freq(P; ;).
Lemma 13. Let v € R be such that

T1[BRtsot+ni+na+2¢ (V)] = Py j,

forsome 1 <i<landl<j<k;. Then there exists a point w(v) € B.(v) verifying
T2[Br(w(v))] = P Moreover, if v' # v then w(v') # w(v), and,

I ks
(3.11) Z freq i) < freq(P).

Proof. Consider v € R? such that

Ti[BR+sg+m+na+2: (V)] = Pij,
for some 1 <i<land 1< j <k Since T1[Bprtsy+y, (V)] = P;, we have

(lTl + 1)) N BR+50+772 (O) = (lTl + vi) N BR+50+772 (0)
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Thus from Lemma 2 we obtain that there exists ¢t € B.(0) verifying
(T2 + v +1) N Bryn, (0) = (T2 + i) N Bryxy, (0),
which implies that 73[Bgr(v + t)] = P. Now, if v’ € R? is another point such that

71[BR+sO+m+n2+2a(U/)] = Py jr,

for some 1 < i <l and 1 < j < E, in a similar way we get that there exists
t' € B.(0) satisfying 7o[Bgr(v' +t')] = P. Suppose that v +¢ = v’ +t'. This implies
that ||[v — /|| < 2e, i.e v — v’ € Ba-(0). But since

Py ; T1[BRetso+m+ma+2¢ (V)]
P = 7'1[BR+80+772 (U)]7
Py = ’Tl[BRJrSoJrnz (v + (’U/ - ’U))],

the condition (3.10) implies that i > 4. In the same way we obtain that i < 4,
which implies i = i’. Since 2 < %, we get that v/ — v = 0. Hence we deduce
that it is possible to associate to each v in R? which satisfies

T1[BR+sg+m+na+2¢ (V)] = Pij,
for some 1 <i <land1<j <k, apoint w(v) € R4 verifying
T3[Br(w(v))] = P,
and such that w(v) # w(v') if v # v'. Thus we deduce that

I ks
ZZfreq 55) < freq(P).

O

Lemma 14. Let v € R? be such that Tz[Bgr(v)] = P. Then there exists a point
P(v) € Bai41)e(v) verifying

ﬁ[BR+So+n1+ﬁ2+28 (p(’l)))] =P j,
for some 1 <i <l and 1 <j<k;. Moreover, if v # v then p(v') # p(v), and,

1k
(3.12) ZZ req(P; ;) > freq(P).

Proof. Let v € R? be such that
T3[Br(v)] = P,
and consider

P'=Ti[BRr+so+n+e(v)]-

Since L is the constant of linear recurrence of 7; and
diam(P’) < 2(R+ so +n2 +€) + 2m1,

there exists a translated of P’ which support is included in the ball

B2L(R+50 +n1+n2+¢) (0) .
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In other words, there exists v' € Bap(rysotn+nate)(0) such that the support of
the patch 71[[Brysytn,+e(v')]] is contained in the ball Bap (gt sotn,+mo4¢)(0) and
satisfies

P' = Ti[Brisotn+(V')]
= T1[BRysotna+e(v)]-
This implies that
(,Tl + U) N BR+50+772 (O) = (,Tl + U/) N BR+80+772 (O)
So, from Lemma 2 there exists ¢ € B(0) verifying
(T2 +v" 4+ ¢) N Bray, (0) = (T2 + v) N By, (0).

It follows that 72[Br(v' +t)] = P and, since v’ +t is in Br(g4so4n +ma42) (0), We
deduce that v +t = v;, for some 1 <14 <[. Because 71 [Bprysy+n, (V' +1)] = P; is
included in 71 [BRr4sg4ns+e(V)] = P’, we obtain that

7'1[BR+80+772 (U + t)] =F.
Now, we will show that in the ball B(g;41).(v) there is a point p(v) such that

ﬂ[BR+So+n1+ﬁ2+2€(p(U))] = Pm»j’
for some 1 < m <l and 1 < j < k,,. For that, consider the following algorithm
(see figure 3):
Step 0: We put vg = v+t and ig = 1.
Step 1: We have 71 [BRrysy41, (v0)] = Pi,-
If 71[BRysy+ns (Vo + 5)] = P; for some s € Bo.(0) implies j > io, then from
the definition of the patches P; j, we obtain that

T1[BR+-so+m +n2+2¢(v0)] = Pig m,

for some m in {1, -+ k;, }.
Step 2: If there exists s € B (0) such that 71 [Br4sy+n, (vo + §)] = P; with j < g,
then we put

io = min{j : 3s € Ba.(0) such that 71 [Br4sg4n. (Vo + s)] = Pj}.

If s € By (0) is such that 71 [Brysy+n, (Vo+s)] = P;, then we put vy = vo+s.
With these new values of vy and iy we go to the step 1.
This algorithm finishes in at most ! steps. The result is a point p(v) = vy which
distance to v is at most (21 4+ 1)e and such that

T1[BR+-so+m +n2+2¢(v0)] = Pig m,

for some m in {1, -, k;, }.
If w € R? is another point satisfying To[Br(w)] = P, we have
5 < lo-ul
N =
< p(v) = ol + [lp(v) = p(w)[| + l[p(w) — w]]
< 2(20+ Ve +[lp(v) = p(w)]-

Thus we get

_ — — < — .
0< 2NE < NE 2(20 + e < [|p(v) — p(w)]|
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P/

Y Bar(Rtsotmtnate)(0)
/

FIGURE 2
This implies it is possible to associate to each v in R? which satisfies T2[Br(v)] = P
a point p(v) € R? verifying

7'1[BR+30+771+772+25 (p(’l}))] = ‘Pi,j’
for some 1 <7 <!l and 1 < j < k;, and such that p(v) # p(w) if v # w. Hence we
deduce that

freq(P) < Z Z freq(P; ;).
i=1 j=1

O
From (3.11) and (3.12) we get

Ik
(3.13)

freq(P) = Z Z freq(P,;).

i=1 j=1
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‘Pioﬂn

FIGURE 3

As R > n/2, there exists k > 0 such that
(3.14) A2 < 2R+ 50 + 1+ 1m0 + 26) < pAFTL
Since
2(R+so+m +m2+2¢) <diam(P, ;) < 2(R+ so+m +n2 + 2) + 2m
and R > n/\ﬂog* %W, we have
nAF"2 < diam(P; ;) < nAF.
Hence, by Proposition 7, we get

f f
freq(P”)G{W,mfeF s
where F' is the finite set of Proposition 7. Thus we obtain

f

erQ(P) = Wa

where f is an element in

K
F’:{Zfi :fieFUAdF,VlgigK},

i=1
which is a finite subset of R<.

15
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Notice that
2R < diam(P) < 2(R + n2).
Thus from (3.14) we have
A2 = 2(s0 +m1 + 12 + 2¢) < diam(P) < AR,
and by the choice of R in (3.5), we obtain
A3 < diam(P) < nAF1L.

4. PROOF OF THEOREM 1
From Proposition 9, there exist two finite sets F} and Fb such that for R > 0 and
P = T[Bgr(0)] there exist ki and ko such that

f1 fo
freq(P) = T
1 2

for some f; € F} and f, € F.
Because F; and F3 are finite, we can find a € Fy, b € Fs, no > ni, me > my and
patches P, and P, in 7 such that

a b
freq(Py) = I = SV
a b
freq(PQ) = )\—7112 = W
This implies that
)\?27"1 — )\7271277711

which means that A\; and Ay are multiplicatively dependent.
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