
Zd-TOEPLITZ ARRAYS

MARIA ISABEL CORTEZ

Abstract. In this paper we give a definition of Toeplitz sequences and odometers
for Zd actions for d ≥ 1 which generalizes that in dimension one. For these new con-
cepts we study properties of the induced Toeplitz dynamical systems and odometers
classical for d = 1. In particular, we characterize the Zd-regularly recurrent systems
as the minimal almost 1-1 extensions of odometers and the Zd-Toeplitz systems as
the family of subshifts which are regularly recurrent.

1. Introduction

Toeplitz sequences have been introduced in dynamical systems by Jacobs and Keane
in [11]. Since then, they have been extensively studied in different contexts and they
have been used to provide a series of examples with interesting dynamical properties
(see for example [16], [10], [7], [6]).
Toeplitz flows are characterized as minimal almost 1-1 symbolic extensions of odome-
ters systems by Markley and Paul. In [8] Downarowicz and Lacroix publish a proof of
this theorem. In addition, as it was shown by Gjerde and Johansen in [10], Toeplitz
systems also correspond, up to conjugacy, to the family of expansive Bratteli-Vershik
systems associated to Bratteli diagrams with the equal path number property.
The aim of this paper is to extend the definition of both odometers and Toeplitz flows
to Zd-actions and to settle down a characterization result, in this general context, in
the sense of Markley and Paul. A first approach to this problem was made by Dow-
narowicz in [5], where he introduces the Z2-Toeplitz arrays.
Since any element of a Zd-subshift may be seen as a tiling of Rd, Zd-Toeplitz arrays
are a class of interesting examples of perfect tilings.
In Section 2, we give some basic definitions relevant for the study of Zd-actions and
in Section 3 we introduce the generalized notion of an odometer. In Section 4, we
introduce Zd-regularly recurrent systems and we characterize them as the minimal al-
most 1-1 extensions of odometers. In Section 5, we identify the set of eigenvalues of
odometers and the set of continuous eigenvalues of regularly recurrent systems and we
characterize those which are measure-theoretically conjugate to their maximal equicon-
tinuous factors. In Section 6, we define Zd-Toeplitz arrays and we show that they are
the family of regularly recurrent Zd-subshifts. We prove that every Topelitz array
has, as in the case d = 1, a periodic structure that allows to identify the maximal
equicontinuous factor of the associated Toeplitz system. We generalize the notion of a
regular Toeplitz sequence to higher dimensions. In Section 7, we introduce the concept
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2 M.I. Cortez

of a semicocycle. The last section contains an example of a Z2-Toeplitz system with
a determined finite number of ergodic measures and another example of a uniquely
ergodic Z2-Toeplitz system with positive entropy.

2. Basic Definitions and Background

Let d ≥ 1 be an integer. In this article, by a topological dynamical system we mean a
pair (X,Zd), where Zd acts, by homeomorphism, on a compact metric space X. Given
v ∈ Zd and x ∈ X we will identify v with the associated homeomorphism and we
denote by v(x) the action of v on x. The dynamical system (X,Zd) is free if v(x) = x
for some x ∈ X implies v = 0. For a subgroup Z ⊆ Zd isomorphic to Zd, the Z-orbit
of x ∈ X is OZ(x) = {v(x) : v ∈ Z} and the Z-system associated to x is (ΩZ(x), Z),
where ΩZ(x) is the closure of OZ(x) and the action of Z on ΩZ(x) is the restriction to
Z and ΩZ(x) of the action of Zd on X. When Z = Zd we write orbit and associated
system instead of Zd-orbit and Zd-associated system, respectively. The set of return
times of x ∈ X to A ⊆ X is TA(x) = {v ∈ Zd : v(x) ∈ A}. The topological dynamical
system (X,Zd) is minimal if the orbit of any x ∈ X is dense in X, and it is said to
be equicontinuous if for every ε > 0 there exists δ > 0 such that if x, y ∈ X satisfy
d(x, y) < δ then d(v(x), v(y)) < ε for all v ∈ Zd. We say that (X,Zd) is an extension
of (Y,Zd), or that (Y,Zd) is a factor of (X,Zd), if there exists a continuous surjection
π : X → Y such that π preserves the action. We call π a factor map. When the factor
map is bijective, we say that (X,Zd) and (Y,Zd) are conjugate. The factor map π is
an almost 1-1 factor map and (X,Zd) is an almost 1-1 extension of (Y,Zd) by π if the
set of points having one pre-image is residual (contains a dense Gδ set) in Y . In the
minimal case it is equivalent to the existence of a point with one pre-image.
The set M(X) of invariant probability measures of X is the set of probability measures
µ defined on B(X), the Borel σ-algebra of X, such that µ(v(B)) = µ(B) for all v ∈ Zd

and B ∈ B(X). We say that (X,µ,Zd), the topological dynamical system (X,Zd)
equipped with µ ∈ M(X), is a measure-theoretic dynamical system. A measure-
theoretic factor map φ from (X,µ,Zd) to (Y, ν,Zd), is a measurable function preserving
the action and such that µ(φ−1(B)) = ν(B) for all B ∈ B(Y ). If φ is bijective we say
that (X, µ,Zd) and (Y, ν,Zd) are measure-theoretically conjugate.
Consider a finite alphabet Σ endowed with the discrete topology and ΣZd

with the
product topology. The elements x = {x(z)}z∈Zd of ΣZd

are called Zd-arrays. The shift
action on ΣZd

is defined by v(x) = {x(z +v)}z∈Zd , for all v ∈ Zd and x = {x(z)}z∈Zd ∈
ΣZd

. In this context, we will write x + v instead of v(x). If Z is a subset of Zd, x(Z)
denotes {x(z) : z ∈ Z} ∈ ΣZ . When X ⊆ ΣZd

is closed and invariant by the shift
action, we say that (X,Zd) is a subshift.

3. d-dimensional odometers

Let {Zi}i≥0 ⊆ Zd be a decreasing sequence of subgroups isomorphic to Zd (or of rank
d) and let πi : Zd/Zi+1 → Zd/Zi the function induced by the inclusion Zi+1 ⊆ Zi,
i ≥ 0. Consider the inverse limit

G = lim
←i

(Zd/Zi, πi)
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More precisely, G is defined as the subset of the product Πi≥0Zd/Zi consisting of the
elements g = (gi)i≥0 such that πi(gi+1) = gi for all i ≥ 0. The set G is a group
equipped with the addition defined by

g + h = (gi +i hi)i≥0,

where +i is the operation induced on Zd/Zi by the addition in Zd.
Every Zd/Zi is endowed with the discrete topology and Πi≥0Zd/Zi with the product
topology. Thus G is a compact topological group whose topology is spanned by the
cylinder sets

[i; a] = {g ∈ G : gi = a}, with a ∈ Zd/Zi and i ≥ 0.

If H is a subgroup of G then it acts by homeomorphisms on G by h(g) = h+g, h ∈ H,
g ∈ G. Since for all h ∈ H and for all cylinders [i; a] we have h([i; a]) ⊆ [i; a +i hi], the
topological dynamical system (G,H) is equicontinuous. Moreover, if H is dense in G
then (G,H) is a minimal equicontinuous system.
Consider the homomorphism τ : Zd → Πi≥0Zd/Zi defined for v ∈ Zd by

τ(v) = {τi(v)}i≥0,

where τi : Zd → Zd/Zi is the canonical projection. The image of Zd by τ is dense in G,
which implies that the Zd-action v(g) = τ(v) + g, v ∈ Zd, g ∈ G, is well defined and
(G,Zd) is a minimal equicontinuous system. We call (G,Zd) an odometer system or
simply an odometer. It is straightforward that an odometer (G,Zd) is a free dynamical
system if and only if τ : Zd → G is one to one, which is equivalent to

⋂
i≥0 Zi = {0}.

Notice that for all g in a cylinder set [i; a] of an odometer G = lim←i(Zd/Zi, πi), the
set of return times of g to [i; a] is Zi, i ≥ 0. Through this paper we will use these
properties and we will identify G with (G,Zd).

Lemma 1. Let Gj = lim←i(Zd/Z
(j)
i , πi) be two odometers (j = 1, 2). There is a factor

map π : (G1,Zd) → (G2,Zd) if and only if for every Z
(2)
i there exists some Z

(1)
k such

that Z
(1)
k ⊆ Z

(2)
i .

Proof. If π : G1 → G2 is a factor map then by continuity, given i ≥ 0 and a ∈ Zd/Z
(2)
i ,

there exist k ≥ 0 and b ∈ Zd/Z
(1)
k such that [k; b] ⊆ π−1[i; a]. Let v ∈ Z

(1)
k , we have

that v(g) ∈ [k; b] for all g ∈ [k; b], which implies that π(v(g)) = v(π(g)) ∈ [i; a]. Since
π(g) ∈ [i; a] it holds that T[i;a](π(g)) = Z

(2)
i , which proves that v ∈ Z

(2)
i .

Suppose that for every i ≥ 0 there exists Z
(1)
ni ⊆ Z

(2)
i . Since the sequences {Z(j)

i }i≥0

(j = 1, 2) are decreasing, we can take ni ≤ ni+1 for all i ≥ 0. The function π : G1 → G2

defined by π((gi)i≥0) = (jni(gni))i≥0 where jni : Zd/Z
(1)
ni → Zd/Z

(2)
i is the function

induced by the inclusion Z
(1)
ni ⊆ Z

(2)
i , is a factor map. ¤

A scale is a sequence {Ai}i≥0 ⊆ GL(d,Z) such that for every i ≥ 0 there exists
Qi ∈ GL(d,Z) satisfying Ai+1 = AiQi.
Let G = lim←i(Zd/Zi, πi) be an odometer. Any sequence {Ai}i≥0 of integer matrices
such that for all i ≥ 0 the columns of Ai represent a base of Zi is a scale. We say that
{Ai}i≥0 is a scale associated to G if the odometer lim←i(Zd/AiZd, πi) is conjugate to G.
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It is direct that the scale {Ai}i≥0 is associated to the odometer G = lim←i(Zd/AiZd, πi),
but an odometer can be associated to several scales.
We can formulate Lemma 1 in terms of scales:

Lemma 2. Let Gj = lim←i(Zd/Z
(j)
i , πi) be two odometers (j = 1, 2). There is a factor

map π : G1 → G2 if and only if given {A(j)
i }i≥0 a scale associated to Gj (j = 1, 2) for

all A
(2)
i there exists A

(1)
k such that A

(1)
k = A

(2)
i Q for some Q ∈ GL(d,Z).

We could think that all d-dimensional odometers correspond to a product (up to con-
jugation) of d one-dimensional odometers. It can be proved that a product of d one-
dimensional odometers coincides with an odometer having an associated scale consist-
ing of diagonal matrices. However, it is not true that all d-dimensional odometers
(d ≥ 2) admit a scale formed by diagonal matrices. Examples can be constructed in
any dimension d ≥ 2:

Example 3. Examples of d-dimensional odometers which are not conjugate to a prod-
uct of d one-dimensional odometers.

If d = 2, consider the sequence {Ai}i≥0 ∈ GL(2,Z) given by

Ai =
[

3i+1 7 · 11i

7 · 3i 11i+1

]
.

If d > 2 consider {Ai}i≥0 ∈ GL(d,Z) defined by

Ai(k, k) =





3i+1 if k = 1 mod Z3

11i+1 if k = 2 mod Z3

7i+1 if k = 0 mod Z3

Ai(k, k + 1) =





7 · 11i if k = 1 mod Z3

3 · 7i if k = 2 mod Z3

11 · 3i if k = 0 mod Z3

Ai(k, j) = 0 if j ∈ {1, .., d} \ {k, k + 1}, k = 1, .., d.

In both cases {Ai}i≥0 is a scale and
⋂

i≥0 AiZd = {0}. This means that
G = lim←i(Zd/AiZd, πi) contains a copy of Zd and therefore G 6= {0}. Suppose there
exists a factor map π : G → G′ with G′ an odometer having an associated scale formed
by diagonal matrices {Di}i≥0 with Di(k, k) = d

(k)
i for k ∈ {1, .., d}. By Lemma 2, we

have that d
(k)
i divides every element in the k-th row of some Aj . Since m.c.d{Aj(k, l) :

l = 1, .., d} = 1, we have that Di = id, d
(k)
i = 1 and then G′ = {0}. This proves that

G is not conjugate to a product of d one-dimensional odometers.

4. Characterization of minimal almost 1-1 extensions of odometers

Let (X,Zd) and (Y,Zd) be two topological dynamical systems. (Y,Zd) is said to be the
maximal equicontinuos factor of (X,Zd) if it is an equicontinuos factor of (X,Zd) such
that for any other equicontinuous factor (Y ′,Zd) of (X,Zd) there exists a factor map
π : Y → Y ′ that satisfies π ◦ f = f ′, with f : X → Y and f ′ : X → Y ′ factor maps.
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It is well known that every topological dynamical system has a maximal equicontinuous
factor and if (X,Zd) is a minimal almost 1-1 extension of a minimal equicontinuous
system (Y,Zd), then (Y,Zd) is the maximal equicontinuous factor of (X,Zd) (for more
details see [1]).

4.1. Regularly recurrent systems. A subset S of Zd is said to be syndetic if there
exists a finite subset K of Zd such that Zd = S + K = {s + k : s ∈ S, k ∈ K}.
Let (X,Zd) be a topological dynamical system and let x ∈ X. The point x is uniformly
recurrent if for every open neighborhood V of x the set TV (x) is syndetic. It is well
known that (ΩZd(x),Zd) is minimal if and only if x is uniformly recurrent.
A point x ∈ X is regularly recurrent if for every open neighborhood V of x there is
a subgroup Z of Zd isomorphic to Zd such that Z ⊆ TV (x). We say that a system
is regularly recurrent if it is the orbit closure of a regularly recurrent point. Since
every subgroup Z of Zd isomorphic to Zd is syndetic, regularly recurrent systems are
minimal.
In this section we will show that regularly recurrent systems are exactly the minimal
almost 1-1 extensions of the odometers.

Lemma 4. Let (X,Zd) be a minimal topological dynamical system and let x ∈ X. If
Z ⊆ Zd is a group isomorphic to Zd then (ΩZ(x), Z) is minimal.

Proof. Let V ⊆ X be a neighborhood of x. Pick a minimal set M in X × Zd/Z (with
the natural product action). This set projects onto a minimal subset of X, hence onto
X. Thus for every x ∈ X there exists a point (x, a) ∈ M and this point is uniformly
recurrent. Adding −a on the second axis is a conjugacy, hence (x, 0) is also uniformly
recurrent. This implies that {z : z(x) ∈ V, z ∈ Z} is syndetic. ¤

Lemma 5. Let (X,Zd) be a topological dynamical system and let x ∈ X be a regularly
recurrent point. For all closed neighborhood V of x there exists a subgroup Z of Zd

isomorphic to Zd such that Z ⊆ TV (x) and {w(ΩZ(x))}w∈Zd/Z is a clopen partition of
X.

Proof. Let Z ⊆ Zd be a subgroup isomorphic to Zd. If u and w are two elements
of Zd in the same class of Zd/Z then u(ΩZ(x)) = w(ΩZ(x)). So, it makes sense to
speak about w(ΩZ(x)) for w ∈ Zd/Z. By minimality of (X,Zd) we have that X =⋃

w∈Zd/Z w(ΩZ(x)). From Lemma 4, for every w ∈ Zd/Z the system (w(ΩZ(x)), Z)
is minimal. Thus if u,w ∈ Zd/Z satisfy w(ΩZ(x)) ∩ u(ΩZ(x)) 6= ∅ then u(ΩZ(x)) =
w(ΩZ(x)). This implies that {w(ΩZ(x))}w∈Zd/Z is a clopen covering of X.
Let V ⊆ X be a closed neighborhood of x and let Z ⊆ Zd be a subgroup isomorphic
to Zd such that Z ⊆ TV (x). Consider the subgroup Z ′ of Zd spanned by the set
{w ∈ Zd : ΩZ(x) = w(ΩZ(x))}. Since Z ⊆ Z ′, we have that Z ′ is isomorphic to
Zd, and, because ΩZ′(x) = ΩZ(x), the group Z ′ is contained in TV (x). Finally, for
w ∈ Zd due to ΩZ′(x) = w(ΩZ′(x)) if and only if ΩZ(x) = w(ΩZ(x)), it holds that
{w(ΩZ′(x))}w∈Zd/Z is a clopen partition of X. ¤

Corollary 6. Let (X,Zd) be a topological dynamical system and let x ∈ X. The point
x is regularly recurrent if and only if there exists {Ci}i≥0, a fundamental system of
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clopen neighborhoods of x, such that there is a subgroup Zi ⊆ Zd isomorphic to Zd such
that for all y ∈ Ci the set of return times of y to Ci is Zi, for every i ≥ 0.

Proof. If x ∈ X has a fundamental system of neighborhoods as is written above, it is
a regularly recurrent point.
If x is a regularly recurrent point we take V1 an open neighborhood of x and we
apply Lemma 5 to V1. We obtain a group Z1 ⊆ TV1

(x), isomorphic to Zd, such that
{w(ΩZ1(x))}w∈Zd/Z1

is a clopen partition of X. We set C1 = ΩZ1(x) which is a clopen
set with TC1(y) = Z1 for all y ∈ C1.
So, given Cn and Zn, we take an open neighborhood Vn+1 ⊂ Cn of x and we apply
Lemma 5 to Vn+1. As in the case n = 1, we obtain Cn+1 and Zn+1.
If we take limi→∞ diam(Vn) = 0, we obtain that {Ci}i≥0 is a fundamental system of
clopen neighborhoods of x. ¤

Theorem 7. A minimal topological dynamical system (X,Zd) is an almost 1-1 ex-
tension of an odometer G by π if and only if (X,Zd) is a regularly recurrent system.
Moreover, the set of regularly recurrent points of X is exactly the pre-image of the set
of points in G which have only one pre-image by π.

Proof. Let (X,Zd) be a minimal 1-1 extension of an odometer G = lim←i(Zd/Zi, πi).
Let π : X → G be the almost 1-1 factor map and let x ∈ X be such that {x} =
π−1{π(x)}. Since π is continuous, if π(x) = (ai)i≥0 ∈ G then {π−1([i; ai])}i≥0 is
a decreasing sequence of clopen neighborhoods of x that satisfies

⋂
i≥0 π−1([i; ai]) =

{x}. We know that for every g ∈ [i; ai] it holds T[i;ai](g) = Zi, therefore for all
g ∈ π−1([i; ai]), Tπ−1([i;ai])(g) = Zi. So, by Corollary 6 we conclude that x is a regularly
recurrent point of X.
Let X be a regularly recurrent system and let x ∈ X be a regularly recurrent point.
By Corollary 6 there exists a decreasing sequence {Ci}i≥0 of clopen neighborhoods of
x such that

⋂
i≥0 Ci = {x}, and there is a subgroup Zi isomorphic to Zd such that

TCi(y) = Zi for all y ∈ Ci, i ≥ 0. Since Ci+1 ⊆ Ci, we have that Zi+1 ⊆ Zi, i ≥ 0.
So, we can define the odometer G = lim←i(Zd/Zi, πi). We define π : X → G by
π = (fi)i≥0 where fi is the continuous map fi : X → Zd/Zi given by fi(y) = z if and
only if y ∈ z(Ci) for y ∈ X, z ∈ Zi and i ≥ 0. The function π is a factor map, and,
since

⋂
i≥0 Ci = {x}, we have that f−1{0} = {x}. So, π is an almost 1-1 extension.

If π′ : X → G′ is another almost 1-1 factor map and G′ an odometer, G and G′ are
the maximal equicontinuous factor of (X,Zd) (therefore, they are conjugate). Thus
there exists a factor map π′′ : G′ → G such that π′′ ◦ π′ = π, which implies that
{x} = π′−1{π(x)}. We conclude that the set of regularly recurrent points is exactly
the pre-image of the points in G which have only one pre-image. ¤

5. Eigenvalues of odometers, measure-theoretic factor maps.

5.1. Eigenvalues. Let (X, µ,Zd) be a measure-theoretic dynamical system. A vector
α ∈ Rd is an eigenvalue of X if there exists f ∈ L2

µ(X) \ {0} such that
f(v(x)) = exp(2iπαT v)f(x) for all x ∈ X and v ∈ Zd. We call f an eigenfunction
associated to α. We say that an eigenvalue is a continuous eigenvalue if it has an
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associated continuous eigenfunction.
Since an odometer G is a compact group, the normalized Haar measure λ of G is the
only invariant probability measure of G. Thus when we speak about G as a measure-
theoretic dynamical system, we mean G equipped with the measure λ and on G we
consider the action of Zd viewed as a subset of G.

Proposition 8. Let G = lim←n(Zd/Zn, πn) be an odometer. The set of eigenvalues
of G is given by EG =

⋃
n≥0{α ∈ Rd : αT z ∈ Z, ∀z ∈ Zn} ⊆ Qd. Moreover, every

eigenvalue of G is a continuous eigenvalue.

Proof. It is clear that EG ⊆ Qd because αT z ∈ Z for all z ∈ Zn if and only if α = vT A−1
n

for some v ∈ Zd and An ∈ GL(d,Z) such that Zn = AnZd.
For n ≥ 0 we call Cn = [n; 0]. Since v, w ∈ Zd satisfy Cn + v = Cn + w if and only if w
and v belong to the same class in Zd/Zn, it makes sense to write Cn +v for v ∈ Zd/Zn.
Notice that the collection Pn = {Cn + v : v ∈ Zd/Zn} is a clopen partition of G.
Let α ∈ EG and let n ≥ 0 be such that αT z ∈ Z for all z ∈ Zn. This means that
exp(2iπαT v) = exp(2iπαT w) for all v ∈ Zd and w ∈ v + Zn, which implies that
f =

∑
v∈Zd/Zn

exp(2iπαT v)1Cn+v is a well defined continuous function that verifies
f(g + w) = exp(2iπαT w)f(g) for all g ∈ G and w ∈ Zd.
Let α ∈ Rd be an eigenvalue of G and let f ∈ L2

λ(G)\{0} be an associated eigenfunction.
For v ∈ Zd we have that

exp(2iπαT v)
(∫

Cn

fdλ

)
=

∫

Cn+v
fdλ.

Since Cn + v = Cn + v + z for all z ∈ Zn, it holds that

(5.1) exp(2iπαT z)
(∫

Cn

fdλ

)
=

∫

Cn

fdλ for all z ∈ Zn.

Observe that

E(f |Pn) =
∑

v∈Zd/Zn

exp(2iπαT v)
λ(Cn)

(∫

Cn

fdλ

)
1Cn+v.

Since B(Pn) ↑ B(G), by the increasing Martingale theorem, we have that E(f |Pn)
converges to f in L2

λ(G). Because f 6= 0, this implies there exists m ≥ 0 such that∫
Cm

fdλ 6= 0 and, by (5.1), we conclude that αT z ∈ Z for all z ∈ Zm, which means
that α ∈ EG. ¤
Corollary 9. Let (X,Zd) be a regularly recurrent system and let G be its maximal
equicontinuous factor. The set of continuous eigenvalues of X is EG.

Proof. It is clear that EG is contained in the set of continuous eigenvalues of X. Con-
versely, if α is a continuous eigenvalue of X we can take f : X → S1 an associated
continuous eigenfunction which is a factor map between (X,Zd) and the dynamical
system (f(X),Zd), where the action of v ∈ Zd on exp(2iπx) ∈ f(X) is given by
v(exp(2iπx)) = exp(2iπ(αT v + x)), which is an isometry. Thus the system (f(X),Zd)
is equicontinuous and therefore there exists a factor map π : G → f(X). Since π is an
eigenfunction associated to α we conclude that α ∈ EG. ¤
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5.2. Measure-theoretic conjugation.

Proposition 10. Let (X1,Zd) and (X2,Zd) be two minimal equicontinuous systems.
If φ : X1 → X2 is a measure-theoretic factor map then there exists a topological factor
map π : X1 → X2 such that π = φ a.e.

Proof. A minimal equicontinuous system (X,Zd) is conjugate to a system (G,Zd),
where G is a topological compact group with a continuous homomorphism ϕ : Zd → G

satisfying ϕ(Zd) = G, and the action of Zd on G is defined by v(g) = ϕ(v) + g for all
v ∈ Zd and g ∈ G, ([1] Theorem 3.6, [9] Theorem 1.8). The Haar measure λ is the only
invariant probability measure of (G,Zd) ([15] Theorem 6.20) and every eigenfunction
of this system is continuous because is a constant multiple of a character of G ([15]
Theorem 3.5), which implies that there exists an orthonormal basis of L2

λ(G) consisting
of continuous eigenfunctions of (G,Zd).
Let µi be the only invariant probability measure of (Xi,Zd), for i = 1, 2, and let
{fn}n≥0 be an orthonormal basis of L2

µ2
(X2) consisting of continuous eigenfunctions

of (X2,Zd). If φ : X1 → X2 is a measure-theoretic factor map then fn ◦ φ is an
eigenfunction of (X1,Zd), for all n ≥ 0. Thus the ergodicity of the system implies
that for every n ≥ 0 there exists a continuous eigenfunction gn of (X1,Zd), such that
fn ◦ φ = gn a.e. Thus it is possible to take a full measure Borel subset A of X1 such
that fn ◦φ = gn on A, for all n ≥ 0. Let {xi}i≥0 be a sequence in A which converges to
x ∈ A, and let y ∈ X2 an accumulation point of {φ(xi)}i≥0. By continuity of fn on X2

and by continuity of fn◦φ on A, we have fn(y) = fn◦φ(x) for all n ≥ 0. Thus if y1 and
y2 are two accumulation points of {φ(xi)}i≥0 then g(y1) = g(y2) for all g ∈ L2

µ2
(X2),

which implies that y1 = y2. This shows that φ is continuous on A. Since (X1,Zd) is
strictly ergodic, A is dense on X1, and since fn and gn are continuous on the whole
spaces, φ|A extends to a continuous map π on X1, which is a factor map. ¤

Lemma 11. Let G be an odometer. If π : G → G is a factor map then π is injective.

Proof. We set G = lim←n(Zd/Zn, πn). Let g,h ∈ G be two elements such that π(g) =
π(h) = j. For all i ≥ 0 there exists vi ∈ Zd/Zi such that [i; gi] + vi = [i; hi]. Thus for
every i ≥ 0 there exists ni ≥ 0 such that [n; gn], [n; gn]+vn ⊆ π−1([i; ji]) for all n > ni.
This implies that vn ∈ Zi. Thus for n > i it holds that [n; gn], [n; hn] ⊆ [i; gi]. Because
this is true for all i ≥ 0 we conclude that g = h. ¤

Since odometers are uniquely ergodic, the invariant probability measures of a regu-
larly recurrent system (X,Zd) coincide on the sub σ-algebra π−1(B(G)), where π is
the almost 1-1 factor map between X and its maximal equicontinuous factor G. In
particular, due to the set of regularly recurrent points of X is the pre-image by π of a
Gδ-set in G, its measure does not depend on the chosen measure µ ∈M(X).
The proof of the next Theorem follows the same ideas used in the proof for d = 1 (see
[4], [16]).

Theorem 12. Let (X,Zd) be a regularly recurrent system. The following statements
are equivalent:

(1) The set of regularly recurrent points of X is a full measure set.
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(2) (X,Zd) is uniquely ergodic and it is measure-theoretically conjugate to its max-
imal equicontinuous factor.

Proof. Let π : X → G be the almost 1-1 factor map between X and its maximal
equicontinuous factor. Let R ⊆ X be the set of regularly recurrent points.
Suppose that R is a full measure set. Let µ ∈ M(X) and let B ∈ B(G). We have
B = (B ∩ R) ∪ (B \ R) and µ(B) = µ(B ∩ R). Since π is injective on R, B ∩ R =
π−1(π(B ∩ R)) ∈ π−1(B(G)). Thus µ(B) = µ(B ∩ R) = λ(π(B ∩ R)). This implies
that (X,Zd) is uniquely ergodic. Because π is injective on R, a full measure set, it is a
measure-theoretic conjugation between X and G. Assume (2). Let φ : (X,µ) → (G, λ)
be the measure-theoretic conjugation. Then π ◦ φ−1 is a self-homomorphism of the
odometer. By Proposition 10 and Lemma 11, π is injective when restricted to an
invariant set A ⊂ X with µ(A) = 1. If the set of regularly recurrent points of X is
not a full measure set for µ, then by ergodicity, invariance and Theorem 7, the set of
points in G with non-singleton fibers in X is of full measure λ. Let B be the pre-image
of this set. The intersection A∩B supports µ. On the other hand, B \A has the same
projection on G as B, because A removes only one point from each fiber. So, B \ A
has projection of full measure λ and it is invariant, hence the measure λ lifts to an
invariant measure ν supported by this set. Because µ and ν have disjoint supports,
ν 6= µ contradicting unique ergodicity ¤

Remark 13. Let us indicate a mistake in the paper [4]: Condition (6) in [4, Theorem
13.1] claims that for regularity of one-dimensional Toeplitz flows it suffices to find one
ergodic measure measure-theoretically conjugate to the odometer. This statement is
false; for example the Oxtoby sequence of [4, Example 10.3] is not regular and has two
ergodic measures, both isomorphic to the odometer. Clearly, similar examples exist in
higher dimensions.

6. Zd-Toeplitz Arrays

Let Σ be a finite alphabet and Z ⊆ Zd a subgroup isomorphic to Zd. For
x = {x(v)}v∈Zd ∈ ΣZd

we define:

Per(x, Z, σ) = {w ∈ Zd : x(w + z) = σ for all z ∈ Z}, σ ∈ Σ,

P er(x, Z) =
⋃

σ∈Σ

Per(x,Z, σ).

When Per(x,Z) 6= ∅ we say that Z is a group of periods of x. We say that x is a
Zd-Toeplitz array (or simply a Toeplitz array) if for all v ∈ Zd there exists Z ⊆ Zd

subgroup isomorphic to Zd such that v ∈ Per(x,Z).

Proposition 14. The following statements concerning x ∈ ΣZd
are equivalent:

(1) x is Toeplitz array.
(2) There exists a sequence of positive integer numbers {pn}n≥0 such that

pn < pn+1, pn divides pn+1 and {−n, · · · , n}d ⊆ Per(x, pnZd) for all n ≥ 0.
(3) x is regularly recurrent.
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Proof. Before we prove the equivalence between sentences (1),(2) and (3) notice that
for every subgroup Z ⊆ Zd isomorphic to Zd, there exists an integer p > 1 such that
pZd ⊆ Z. In fact, since Zd/Z is finite, for all w ∈ Zd/Z there exists k > 1 such
that kw = 0. This implies that for all v ∈ Zd there exists k > 1 such that kv ∈ Z.
In particular, there exist p1, .., pd > 1 with p1e1, .., pded ∈ Z, where e1, .., ed are the
canonical vectors in Zd. Thus pZd ⊆ Z with p = Πd

i=1pi.
We set Dn = {−n, · · · , n}d and Cn = {y ∈ ΣZd

: y(Dn) = x(Dn)} for all n ≥ 0.
Suppose that x is a Toeplitz array. Let n ≥ 0 and v ∈ Dn. We take Zv ⊆ Zd, subgroup
isomorphic to Zd, such that v ∈ Per(x,Zv) and pv > 1 such that pvZd ⊆ Zv. For
p = Πv∈Dnpv we have pZd ⊆ Zv for all v ∈ Dn. Thus Zn =

⋂
v∈Dn

Zv is a subgroup
isomorphic to Zd which satisfies Dn ⊆ Per(x,Zn). We define the sequence {pn}n≥0

by p0 = q0 and for n > 0 we set pn = qnpn−1, where qn > 1 is an integer such that
qnZd ⊆ Zn for all n ≥ 0. Thus {pn}n≥0 is a sequence of positive integer numbers such
that pn < pn+1, pn divides pn+1 and Dn ⊆ Per(x,Zn) ⊆ Per(x, pnZd) for all n ≥ 0.
Suppose there exists a sequence {pn}n≥0 as in statement (2). Since Dn ⊆ Per(x, pnZd)
the set of return times of x to Cn contains pnZd which implies that x is regularly
recurrent because {Cn}n≥0 is a fundamental system of clopen neighborhoods of x.
Suppose that x is regularly recurrent. For n ≥ 0 we take Zn a subgroup isomorphic to
Zd such that Zn ⊆ TCn(x). It holds that Zd =

⋃
n≥0 Per(x,Zn) which means that x is

a Toeplitz array. ¤
A subshift (X,Zd) is a Zd-Toeplitz system (or simply a Toeplitz system) if there exists
a Toeplitz array x such that X = ΩZd(x). From Theorem 7 and Proposition 14
we conclude that the family of minimal subshifts which are almost 1-1 extensions of
odometers coincides with the family of Toeplitz systems.
As it was done for the case d = 1 in [16], in order to know the maximal equicontinuous
factor of a given Toeplitz system, we will introduce the generalization, for d ≥ 1, of
the concepts of essential period and period structure.

Definition 15. Let x ∈ ΣZd
. A group Z ⊂ Zd of periods of x is called group generated

by essential periods of x if Per(x,Z) ⊆ Per(x,Z ′) implies that Z ′ ⊆ Z.

Lemma 16. Let x ∈ ΣZd
. If Z ⊆ Zd is a group of periods of x then there exists

K ⊆ Zd a group generated by essential periods of x such that Per(x,Z) ⊆ Per(x,K).

Proof. Let Z ⊆ Zd be a group of periods of x. We call Ẑ the set of the groups H ⊆ Zd

isomorphic to Zd which satisfy Per(x,Z) ⊆ Per(x,H). Let K be the subgroup of Zd

generated by
⋃

H∈Ẑ H. Let H ∈ Ẑ and let w be an element in Per(x,Z, σ) for some
σ ∈ Σ. Since w + z ∈ Per(x,Z, σ) for all z ∈ Z we have that w + z ∈ Per(x,H, σ)
for all z ∈ Z. This means that σ = x(w + z) = x(w + z + h) for all z ∈ Z and for
all h ∈ H which is equivalent to say that w + h ∈ Per(x, Z, σ) for all h ∈ H. Thus,
if m is a finite positive integer and hi is some element in Hi ∈ Ẑ for 1 ≤ i ≤ m
then w + k ∈ Per(x,Z, σ) where k =

∑m
i=1 hi. So, w + K ⊆ Per(x,Z, σ). This

implies that w ∈ Per(x,K, σ). It holds that K ∈ Ẑ and since every H which satisfies
Per(x,K) ⊆ Per(x,H) is also in Ẑ, it follows that K is a group generated by essential
periods of x. ¤
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Corollary 17. Let x ∈ ΣZd
be a Toeplitz array. There exists a sequence {Zn}n≥0 of

groups generated by essential periods of x such that Zn+1 ⊆ Zn and⋃
n≥0 Per(x,Zn) = Zd.

Proof. From Proposition 14 (2) we conclude there exists a decreasing sequence {Z ′n}n≥0

of groups of periods of x such that
⋃

n≥0 Per(x, Z ′n) = Zd. We set Z0 a group generated
by essential periods of x such that Per(x,Z ′0) ⊆ Per(x,Z0). For n > 0 we set Z ′′n =
Z ′n∩Zn−1 which is a subgroup isomorphic to Zd, and since Per(x,Zn−1), P er(x,Z ′n) ⊆
Per(x,Z ′′n), Z ′′n is a group of periods of x. Thus, by Lemma 16, there exists a group
Zn generated by essential periods of x, such that Per(x, Z ′′n) ⊆ Per(x,Zn). Since
Zn−1 is a group generated by essential periods of x, we have Zn ⊆ Zn−1. Thus
{Zn}n≥0 is a decreasing sequence of groups generated by essential periods of x such
that

⋃
n≥0 Per(x,Zn) = Zd. ¤

Definition 18. A sequence of groups as in Corollary 17 is called a period structure of
x.

In the sequel, we will show that from a period structure {Zn}n≥0 of a Zd-Toeplitz array
x it is possible to construct a sequence of nested finite clopen partitions of ΩZd(x). From
this sequence of partitions it will be easy to define an almost 1-1 factor map between
the Toeplitz system (ΩZd(x),Zd) and the odometer G = lim←n(Zd/Zn, πn).
Let x ∈ ΣZd

be a Toeplitz array, let y ∈ ΩZd(x) and let Z ⊆ Zd be a subgroup
isomorphic to Zd. Since (ΩZ(y), Z) is minimal, if Z is a group of periods of y then
ΩZ(y) ⊆ CZ(y), where

CZ(y) = {x′ ∈ ΩZd(x) : Per(x′, Z, σ) = Per(y, Z, σ), ∀ σ ∈ Σ}.
We will use the following convention: For a Z-periodic subset C of ΩZd(x), i.e., such
that C +w = C +w′ whenever w−w′ ∈ Z we will write C + v instead of C +w, where
v is the projection of w to Zd/Z.

Proposition 19. Let x ∈ ΣZd
be a Toeplitz array and let y ∈ ΩZd(x). If Z ⊆ Zd is a

group generated by essential periods of y then ΩZ(y) = CZ(y) and {CZ(y) + v}v∈Zd/Z

is a clopen partition of ΩZd(x).

Proof. It holds that ΩZ(y)+w ⊆ CZ(y)+w for all w ∈ Zd/Z. Since {ΩZ(y)+w}w∈Zd/Z

is a covering of ΩZd(x), so is {CZ(y)+w}w∈Zd/Z . Furthermore, (CZ(y)+w)∩ (CZ(y)+
v) 6= ∅ if and only if CZ(y) + w = CZ(y) + v, for w, v ∈ Zd/Z, which implies that
{CZ(y) + w}w∈Zd/Z is a clopen covering of ΩZd(x).
If CZ + w = CZ + v for some v, w ∈ Zd/Z, then k(v − w) ∈ TCZ(y)(y) for all k ∈ Z.
This implies that Per(y, Z) ⊆ Per(y, Z ′), where Z ′ ⊆ Zd is some subgroup isomorphic
to Zd generated by v − w and d − 1 elements of some base of Z. Since Z is a group
generated by essential periods of y then Z ′ ⊆ Z. Thus v = w and {CZ(y) + v}v∈Zd/Z

is a clopen partition of ΩZd(x). Because ΩZ(y) + w is contained in CZ(y) + w, both
sets must be equal because {ΩZ(y) + v}v∈Zd/Z is a covering of ΩZd(x). ¤
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Proposition 20. Let x ∈ ΣZd
be a Toeplitz array. If {Zn}n≥0 is a period structure

of x then the odometer G = lim←n(Zd/Zn, πn) is the maximal equicontinuous factor of
(ΩZd(x),Zd).

Proof. By Proposition 19, if {Zn}≥0 is period structure of the Toeplitz array x, then
{CZn(x) + w : w ∈ Zd/Zn}n≥0 is a sequence of nested clopen partitions of ΩZd(x).
This implies that the function fn : ΩZd(x) → Zd/Zn given by fn(y) = w if and only if
y ∈ CZn(x) + w is a well defined continuous function, y ∈ ΩZd(x), n ≥ 0. The function
π : ΩZd(x) → G given by π = (fn)n≥0 is a factor map. Since

⋂
n≥0 CZn(x) = {x}, we

have that π−1{0} = {x} and then π is an almost 1-1 factor map. ¤

Proposition 21. For every odometer G there exists a Toeplitz array x ∈ {0, 1}Zd
such

that G is the maximal equicontinuous factor of (ΩZd(x),Zd).

Proof. Let G = lim←n(Zd/Zn, πn) be an odometer. We distinguish two cases:
Case 1: There exists m ≥ 0 such that Zn = Zm for all n ≥ m. In this case G is the
finite group Zd/Zm and then every minimal almost 1-1 extension will be conjugate to
G. For example, x ∈ {0, 1}Zd

defined by x(v) = 0 for all v ∈ Zm and x(v) = 1 if not,
provides a Toeplitz sequence x such that G is the maximal equicontinuous factor of
the system associated to x.
Case 2: For every m ≥ 0 there exists n > m such that Zn 6= Zm. In this case we can
take a subsequence {Zn}n≥0 such that Zn+1 6= Zn and |Zn/Zn+1| ≥ 3 for all n ≥ 0. By
Proposition 1, G is conjugate to the odometer obtained from this sequence. In order
to construct the Toeplitz array x we will define a sequence {(wn, vn)}n≥0 ⊆ Zd × Zd

as follows: we set v0 = 0 and we choose some element w0 ∈ Zd \ Z0. For n > 0, we
take v ∈ wn−1 + Zn−1 which satisfies ‖v‖ = min{‖w‖ : w ∈ wn−1 + Zn−1}, where
‖v‖ = max1≤i≤d |v(i)| with v = (v(1), · · · , v(d)). We set vn = v and we choose wn ∈
wn−1 + Zn−1 \ (vn + Zn). The sequence is well defined because |Zn/Zn+1| ≥ 3 for all
n ≥ 0. We define,

K0 = Zd \ (v0 + Z0) ∪ (w0 + Z0)

Kn =
⋃

w∈(wn−1+Zn−1)\(vn+Zn∪wn+Zn)

w + Zn, for n > 0.

The family of sets {vn + Zn,Kn : n ≥ 0} is a partition of Zd. Thus x ∈ {0, 1}Zd
given

by:

(6.2) x(z) =
{

0 if z ∈ ⋃
n≥0 vn + Zn

1 if z ∈ ⋃
n≥0 Kn

is well defined. Since
⋃n

j=0 vj + Zj ⊆ Per(x,Zn, 0) and
⋃n

j=0 Kj ⊆ Per(x,Zn, 1), it
holds that Zd =

⋃
n≥0 Per(x,Zn) and then x is a Toeplitz array. To conclude that G

is the maximal equicontinuous factor of the system associated to x, by Proposition 20,
it suffices to show that {Zn}n≥0 is a period structure of x.
Let n ≥ 0 and Z ⊆ Zd a subgroup isomorphic to Zd such that Per(x,Zn) ⊆ Per(x,Z).
Given z ∈ Z, this implies that 0 = x(vn) = x(vn + z). Thus vn + z ∈ ⋃n

j=0(vj + Zj) ∪
(wn + Zn). If vn + z ∈ wn + Zn we obtain that x(w) = 0 for all w ∈ wn + Zn which
is not possible, and if vn + z ∈ vj + Zj for some 0 ≤ j < n we get x(w) = 0 for all
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w ∈ wj + Zj which also contradicts the construction of x. So, z ∈ Zn and we conclude
that Zn is a group of essential periods of x. ¤
Remark 22. Example 3 and Proposition 21 imply that, for d ≥ 2, there are Toeplitz
systems in {0, 1}Zd

such that their maximal equicontinuous factors are not products of
d one-dimensional odometers.

6.1. Aperiodic part of a Toeplitz array. Let x ∈ ΣZd
be a Toeplitz array, let

π : ΩZd(x) → G be the almost 1-1 factor map between ΩZd(x) and its maximal equicon-
tinuous factor G, and let {Zn}n≥0 be a period structure of x.
We define

DG = {g ∈ G : ∃ y1, y2 ∈ π−1{g} such that y1(0) 6= y2(0)},
and for y ∈ ΩZd(x) the set

Aper(y) = Zd \
⋃

n≥0

Per(y, Zn).

In analogy of the case d = 1, in the next proposition we will show that Aper(y) does
not depend on the choice of a period structure {Zn}n≥0 and that it is exactly the
aperiodic part of y.

Proposition 23. If y ∈ ΩZd(x) and π(y) = g ∈ G then:
(1) w ∈ Aper(y) if and only if g + w ∈ DG.
(2) w /∈ Aper(y) if and only if there exists a subgroup Z of Zd isomorphic to Zd

such that w ∈ Per(y, Z).
(3) y is a Toeplitz array if and only if Aper(y) = ∅.
(4) If y′ ∈ π−1{g} then y′(w) = y(w) for all w ∈ Zd \Aper(y).

Proof. If w ∈ Aper(y) then for all n ≥ 0 there exists zn ∈ Zn such that (y + w)(0) 6=
(y + w + zn)(0). Since g + w and g + w + zn are in [n; gn], we have that
limn→∞ π(y + w + zn) = limn→∞ g + w + zn = g + w. Thus for every accumulation
point y′ of {y + w + zn}n≥0 it holds that π(y′) = g + w and y′(0) 6= (y + w)(0). So,
g+w ∈ DG. If g+w ∈ DG then there is y′ ∈ π−1(g+w) such that (y +w)(0) 6= y′(0).
By minimality and since y′, y + w are in

⋂
n≥0 π−1([n; gn]) we have that for all n ≥ 0

there exists zn ∈ Zn such that (y + w + zn)(0) = y′(0) 6= (y + w)(0) which implies that
w ∈ Aper(y).
To show (2) it is obvious that if w /∈ Aper(y) then w ∈ Per(y, Z) for some subgroup
Z ⊆ Zd isomorphic to Zd. Conversely, suppose that w ∈ Per(y, Z) for some Z ⊆
Zd subgroup isomorphic to Zd. By Lemma 16, we can suppose that Z is a group
generated by essential periods of y. From Proposition 19, {CZ(y) + w}w∈Zd/Z is a
clopen partition of ΩZd(x). Let x′ ∈ CZ(y) be a Toeplitz array and let {Z ′′n}n≥0 be
a periodic structure of x′. Consider the sequence {Z ′n}n≥0 given by Z ′0 = Z and Z ′n
a group of essential periods of x′ such that Per(x,Z ′n−1 ∩ Z ′′n) ⊆ Per(x, Z ′n) for all
n > 0. Since {CZ′n(x′) + w : w ∈ Zd/Z ′n}n≥0 is a sequence of nested clopen partitions
of ΩZd(x) such that

⋂
n≥0 CZ′n(x′) = {x′}, we can prove, as it was done in the proof of

Proposition 20, that G = lim←n(Zd/Z ′n, πn). Since {Z ′n}n≥0 and {Zn}n≥0 define the
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same odometer, Lemma 1 implies that there exists n ≥ 0 such that Zn ⊆ Z ′0 = Z.
Thus Per(y, Z) ⊆ Per(y, Zn), which implies that w /∈ Aper(y).
Properties (3) and (4) follow of property (1). ¤

6.2. Regular Toeplitz arrays. Let x ∈ ΣZd
be a Toeplitz array and π : ΩZd(x) → G

the almost 1-1 factor map between ΩZd(x) and its maximal equicontinuous factor
G = lim←n(Zd/Zn, πn). For all n ≥ 0 we define

rn =
|Per(x,Zn) ∩ [Zd/Zn]|

|Zd/Zn| ,

where [Zd/Zn] is a subset of Zd which contains exactly one representative element of
every class in Zd/Zn.
Since Per(x,Zn) ⊆ Per(x, Zn+1) and |Zd/Zn+1| = |Zd/Zn| · |Zn/Zn+1| we have that
rn+1 ≥ rn. Thus limn→∞ rn = r ∈ (0, 1] exists. The Topelitz array x is said to be
regular if r = 1.

Proposition 24. Let x ∈ ΣZd
be a Toeplitz array. The following statements are

equivalent:
(1) x is regular.
(2) The set of Toeplitz arrays of ΩZd(x) is a full measure set for every µ ∈M(X).
(3) λ(DG) = 0, where λ is the Haar measure on G.
(4) (ΩZd(x),Zd) is uniquely ergodic and it is measure-theoretically conjugate to its

maximal equicontinuous factor.

Proof. The statements (2) and (4) are equivalent by Theorem 12. As it was done in
[16], the set of Toeplitz arrays of ΩZd(x) is given by

⋂
v∈Zd C + v ∈ π−1{B(G)}, where

C = {y ∈ ΩZd(x) : 0 /∈ Aper(y)}. Thus, for all µ ∈M(ΩZd(x)) it holds that
µ({y ∈ ΩZd(x) : Aper(y) = ∅}) = r, which shows that (1) and (2) are equivalent.
We have G\{g ∈ G : |π−1{g}| = 1} =

⋃
v∈Zd(DG+v), which means that

⋃
v∈Zd(DG+v)

is the complement of {g : π−1{g} is a Toeplitz array}. Thus if the set of Toeplitz arrays
is a full measure set for some µ ∈M(ΩZd(x)), then the complement of

⋃
v∈Zd(DG + v)

is a full measure set for λ, which implies that λ(DG) = 0. Conversely, if λ(DG) = 0
then λ(

⋃
v∈Zd(DG + v)) = 0, which implies λ({g : π−1{g} is a Toeplitz array}) = 1.

Let µ ∈M(ΩZd(x)). Since µ(π−1A) = λ(A) for all A ∈ B(G), the set of Toeplitz array
is a full measure set for µ. This shows that (2) is equivalent to (3). ¤

7. Semicocycles

The notion of a semicocycle has been extensively used in the theory of one-dimensional
Toeplitz flows (see [4]). In this paper it is not used but we develop it for higher
dimensional actions for further utility.
Let x ∈ ΣZd

be a Toeplitz array and let {pn}n≥0 be the sequence of integer numbers
of Proposition 14(2). Since for all n ≥ 0 there exists qn > 1 such that pn+1 = qnpn,
the odometer G = lim←n(Zd/pnZd, πn) is a free odometer, that is an odometer which
is a free dynamical system. Thus the function τ : Zd → G defined in Section 3 is an
homomorphism between the groups Zd and τ(Zd). So, we can identify τ(Zd) with Zd
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and write Zd instead of τ(Zd). The odometer G induces on Zd the topology generated
by the family of sets {w + pnZd : w ∈ Zd, n ≥ 0} that we call ΘG. The function
v → x(v) is continuous with respect ΘG because {−n, .., n}d ⊆ Per(x, pnZd) for all
n ≥ 0. The last one means that x : Zd → Σ is a semicocycle on G in the following
sense:

Definition 25. Let G = lim←n(Zd/Zn, πn) be a free odometer and let K be a compact
metric space. A function f : Zd → K is a semicocycle on G if it is continuous with
respect ΘG, where ΘG is the topology on Zd inherited from G.

The functions f : Zd → K may be seen as elements of the topological dynamical system
(KZd

,Zd), where KZd
is endowed with the product topology and the action of v ∈ Zd

on f = {f(z)}z∈Zd ∈ KZd
is the shift action, it means v(f) = {f(v + z)}n≥0.

We will skip the proofs of Theorems 26 and 27 below, because they follow by the same
ideas as used in [4] for dimension one.

Theorem 26. If f ∈ KZd
is a semicocycle on some odometer G then f is a regularly

recurrent point of (KZd
,Zd).

Theorem 26 provides another characterization of Zd-Toeplitz arrays: we have showed
that every Toeplitz array x ∈ ΣZd

is a semicocycle on some odometer G. By Theorem
26, if x ∈ ΣZd

is a semicocycle on some odometer G with values in a finite set Σ then
x is regularly recurrent and therefore a Toeplitz array.
Proposition 7 and Theorem 26 imply that (ΩZd(f),Zd) is a minimal almost 1-1 exten-
sion of some odometer, where ΩZd(f) represents the closure orbit of the semicocycle f

in KZd
. Notice that G need not be the maximal equicontinuos factor of (ΩZd(f),Zd),

for instance, in the first part of this section it was shown that every Toeplitz array
is a semicocycle on an odometer which is a product of d one-dimensional odometers.
While for d > 1 it is not true that any Toeplitz system has a maximal equicontinuous
factor which is a product of d one-dimensional odometers.
Let f ∈ KZd

be a semicocycle on an odometer G. Since we have identified τ(Zd) with
Zd it makes sense to define F = {(v, f(v)) : v ∈ Zd} ⊆ G×K and
F (g) = {k ∈ K : (g, k) ∈ F} for g ∈ G.
We call Cf the set of g ∈ G such that |F (g)| = 1 and Df = G \ Cf . Since f is
continuous we have that F (v) = {v} for all v ∈ Zd. Thus Cf is the subset where f can
be continuously extended by f(g) = F (g).
The semicocycle f is said to be invariant under no rotation if F (g + g’) = F (g’) for
every g’ ∈ G implies that g = 0.

Theorem 27. A topological dynamical system (X,Zd) is a minimal almost 1-1 exten-
sion of (G,Zd) if and only if it is conjugate to (ΩZd(f),Zd), where f is a semicocycle
on G, invariant under no rotation.

We say that a Toeplitz array x is non periodic if x + v = x implies that v = 0. A
semicocycle defined by a non periodic Toeplitz array is not extendable to a continuous
function on the whole odometer. For contrast, a constant semicocycle defines a periodic
array. Notice that x is non periodic if and only if x is a semicocycle on G, its maximal
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equicontinuous factor. In fact, if x is a semicocycle on G then it is a free dynamical
system and therefore x is non periodic. Conversely, if x is non periodic then G is a free
dynamical system. Since x is continuous with respect to ΘG, x is a semicocycle on G.
In Proposition 28 we mean x as a semicocycle on its maximal equicontinuous factor G.

Proposition 28. If x is non periodic and j ∈ G then:
(1) σ ∈ F (j) if and only if there exists y ∈ π−1{j} such that y(0) = σ.
(2) Dx = DG.

Proof. Always we can suppose that π(x) = 0. If σ ∈ F (j) then j is the limit of some
sequence {ni}i≥0 ∈ Zd such that limi→∞ x(ni) = σ. Thus every accumulation point y
of {x + ni}i≥0 satisfies y(0) = σ and π(y) = π(x) + j = j. By minimality of Ωx and by
continuity of π, if y ∈ π−1{j} satisfies y(0) = σ then σ ∈ F (j). Property (2) follows
directly from (1). ¤

8. Examples

In this section we will give two examples of Z2-Toeplitz arrays. In the first example we
will construct a Toeplitz array x̄ such that M(ΩZ2(x̄)) has a determined finite number
of ergodic measures and in the second one the Toeplitz array x̄ will be constructed
such that (ΩZ2(x̄),Z2) is uniquely ergodic with positive entropy.

We set some notation that we use in both examples.
Let {qn}n≥0 be a sequence of integer numbers such that qn ≥ 3 for all n ≥ 0. We set
p0 = 1 and pn = Πn−1

i=0 qi for n > 0.
For n > 0 we put

rn =
{ qn−1

2 − 1 if qn−1 is even
qn−1−1

2 otherwise

and ln = qn−1 − rn − 1. We define D0 = {0}2 and

Dn = {z ∈ Z : −
n∑

i=1

lipi−1 ≤ z ≤
n∑

i=1

ripi−1}2 ⊆ Z2.

Notice that Dn is the disjoint union of the sets Dn−1,v = Dn−1 + v, for v ∈ Sn, where
Sn = {pn−1z ∈ Z : −ln ≤ z ≤ rn}2.
The ”boundary” of Sn is ∂Sn = {(t1, t2) ∈ Sn : t1 or t2 is in {rnpn−1,−lnpn−1}}.
Since qn ≥ 3 for all n ≥ 0, then {rn}n≥0 and {ln}n≥0 are increasing sequences and thus
Z2 =

⋃
n≥0 Dn.

Let q > 1 be an integer and consider the alphabet Σ = Σ0 = {σ1, .., σq}. For n > 0
we take Σn = {Bn,1, · · · , Bn,kn} a set of different blocks in ΣDn such that for all
1 ≤ k ≤ kn,

(1) Bn,k(Dn−1,0) = Bn−1,1,
(2) Bn,k(Dn−1,v) ∈ Σn−1 for all v ∈ Sn,

where B0,i = σi for all 1 ≤ i ≤ q.
From property (1) and since {Dn}n>0 covers Z2, we have that there is only one element
x̄ in

⋂
n≥0{x ∈ ΣZ2

: x(Dn) = Bn,1}. Property (2) implies that x̄(Dn + v) ∈ Σn for
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pn+1

pn+1

Dn,0

pn

. . . . . .

. . . . . .

.

.

.

.

.

.

.

.

Figure 1. The square Dn+1 for qn = 6. The points ”.” represent the set ∂Sn.

all v ∈ pnZ2. Thus, property (2) insures that x̄(Dn−1 + v) = Bn−1,1 for all v ∈ pnZ2,
which means that Dn−1 ⊆ Per(x̄, pnZ2). So, x̄ is a Z2-Toeplitz array.
For all n ≥ 0 and 1 ≤ k ≤ q we define Cn,k = {x ∈ ΩZ2(x̄) : x(Dn) = Bn,k},
Cn =

⋃kn
k=1 Cn,k and Pn = {Cn,k + w : w ∈ Dn, 1 ≤ k ≤ kn}. From property (2) we

have that Pn covers the orbit of x̄ and since the sets in Pn are clopen, Pn is a clopen
covering of ΩZ2(x̄).

Lemma 29. If for all n > 0 the following statements are satisfied:
(1) If there exists w ∈ Dn such that for some 1 ≤ k, k′ ≤ kn, Bn,k(v+w) = Bn,k′(v)

for all v ∈ Dn such that v + w ∈ Dn, then w = 0,
(2) Bn,k(v) = Bn,k′(v) for every v ∈ ∂Sn and 1 ≤ k, k′ ≤ kn,

then the coverings Pn are partitions spanning the topology of ΩZ2(x̄).

Proof. Let z ∈ Z2 and let w ∈ Dn. Suppose that x̄ + pnz + w ∈ Cn. Let Bn,k be the
block in Σn such that (x̄+pnz+w)(Dn) = Bn,k. Since x̄+pnz is also in Cn, there exists
1 ≤ k′ ≤ kn such that (x̄+pnz)(Dn) = Bn,k′ . This implies that Bn,k′(w + v) = Bn,k(v)
for all v ∈ Dn satisfying v + w ∈ Dn. From statement (1) we have w = 0 and thus we
conclude that TCn(x̄) = pnZ2, which implies TCn(x) = pnZ2 for all x ∈ Cn, because
(ΩZ2(x̄),Z2) is minimal. Thus if (Cn,k + v) ∩ (Cn,k′ + w) 6= ∅ for some v, w ∈ Dn and
1 ≤ k, k′ ≤ kn, then v − w ∈ pnZ2, which implies that w − v = 0. If v = w then
Cn,k ∩ Cn,k′ 6= ∅, which is possible if and only if Bn,k = Bn,k′ , i.e, when k = k′. This
proves that Pn is a partition.
Suppose that x1 and x2 are two points of ΩZ2(x̄) which belong to the same set of Pn.
Namely, x1, x2 ∈ Cn,jn + vn for some vn ∈ Dn and 1 ≤ jn ≤ kn. Let y1, y2 ∈ Cn,jn be
such that xi = yi+vn for i = 1, 2, and let u ∈ Z2 be some vector in Dn−1. If vn+u ∈ Dn

then y1(vn +u) = y2(vn +u) which implies that x1(u) = x2(u). If vn +u /∈ Dn, consider
z ∈ Z2 \ {0} and w ∈ Dn such that vn + u = pnz + w. Since y1 + pnz and y2 + pnz
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are in Cn, (y1 + pnz)(Dn) = Bn,l1 and (y2 + pnz)(Dn) = Bn,l2 for some 1 ≤ l1, l2 ≤ kn.
Thus y1(vn + u) = Bn,l1(w) and y2(vn + u) = Bn,l2(w). It holds w − u = vn − pnz,
which implies that w − u /∈ Dn because z 6= 0. Since u ∈ Dn−1 and w ∈ Dn, this is
possible only if w ∈ ∂Sn. Thus, from statement (2), we have Bn,l1(w) = Bn,l2(w) and
then x1(u) = y1(vn +u) = y2(vn +u) = x2(u). This proves that x1(Dn−1) = x2(Dn−1).
So, if x1 and x2 are in the same set of Pn, for all n ≥ 0, then x1 = x2, which means
that {Pn}n≥0 spans the topology of ΩZ2(x̄). ¤

For n ≥ 0 we define the set 4n = {(x1, .., xkn)T ∈ (R+)kn :
∑kn

i=1 xi = 1
pn
} and the

incidence matrix An ∈Mkn×kn+1(Z) between Pn and Pn+1 by

An(k, j) = |{v ∈ Dn+1 : Cn+1,j + v ⊆ Cn,k}|, 1 ≤ k ≤ kn, 1 ≤ j ≤ kn+1.

We denote by lim←n(4n, An) the inverse limit

40 41
A0oo 42

A1oo · · ·A2oo ,

that is, lim←n(4, An) = {(xn)n≥0 ∈ Πn≥04n : Anxn+1 = xn, ∀n ≥ 0}.
Lemma 30. If the coverings Pn are partitions spanning the topology of ΩZ2(x̄) then
we can identify M(ΩZ2(x̄)) with the inverse limit lim←n(4n, An).

Proof. Suppose that the coverings Pn are partitions that span the topology of ΩZ2(x̄).
By property (2) we have that Pn+1 is finer that Pn. This implies that
Cn,k =

⋃kn+1

j=1

⋃
v∈J(n,k,j) Cn+1,j + v, with J(n, k, j) = {v ∈ Dn+1 : Cn+1,j + v ⊆ Cn,k}.

Thus
∑kn

k=1 An(k, j) = qn and for µ ∈M(ΩZ2(x̄)), µ(Cn,k) =
∑kn+1

j=1 An(k, j)µ(Cn+1,j)
for all n ≥ 0. The first one implies that lim←n(4n, An) is well defined and the second
one that (µn = (µ(Cn,1), .., µ(Cn,kn)))n≥0 is in this inverse limit. Conversely, given
(un = (un,1, .., un,kn))n≥0 ∈ lim←n(4n, An), since the Pn are clopen and span the
topology of ΩZ2(x̄), there exists only one µ ∈M(ΩZ2(x̄)) satisfying µ(Cn,k) = un,k for
all 1 ≤ k ≤ kn and n ≥ 0. ¤
We will construct the different examples by choosing appropriate sequences {Σn}n≥0

and {qn}n≥0.

8.1. An example of a Z2-Toeplitz system with a determined finite number
of ergodic measures. Let n > 0 and let k ∈ {1, .., q}. We set qn = snq + 1 for some
sn > 1 and

∂Sn,k =
⋃

i∈{0,..,qn−1−1}∩(k+qZ)

{(t1, t2) ∈ ∂Sn : t1 or t2 is equal to pn−1(−ln + i)},

We have that ∂Sn is the disjoint union of the sets ∂Sn,k and the cardinality of every
one of these sets is 4sn−1.
For n > 0 we set kn = q and we define Bn,k, for 1 ≤ k ≤ q, as follows:

(1) Bn,k(Dn−1,0) = Bn−1,1,
(2) Bn,k(Dn−1,v) = Bn−1,i if v = pn−1(−ln + i− 1, 1), for i ∈ {2, .., q},
(3) Bn,k(Dn−1,v) = Bn−1,i, for v ∈ ∂Sn,i, with i ∈ {1, .., q}.
(4) Bn,k(Dn−1,v) = Bn−1,k, for all v ∈ Sn such that Bn,k(Dn−1,v) was not defined

in the previous steps.
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Bn,1

Bn,3 Bn,1 Bn,2 Bn,3 Bn,1 Bn,2 Bn,3

Bn,3 Bn,1 Bn,2 Bn,3 Bn,1 Bn,2 Bn,3

Bn,1

Bn,2

Bn,3

Bn,1

Bn,2

Bn,3

Bn,1

Bn,2

Bn,3

Bn,1

Bn,2

Bn,3

Bn,2 Bn,3

Figure 2. For q = 3, sn = 2 and k ∈ {1, 2, 3}, the picture represents the block
Bn+1,k if we consider that every empty square corresponds to the block Bn,k.

Point (3) from the construction insures that statement (2) of Lemma 29 is satisfied. The
existence of w ∈ D1 \ {0} such that B1,k(v + w) = B1,k′(v) for some 1 ≤ k, k′ ≤ k1 and
for every v ∈ Dn satisfying v + w ∈ D1, contradicts (3) and (4) from the construction.
Using the same argument for n > 1, it is possible to show by an induction argument
that statement (1) of Lemma 29 is also satisfied. Thus we conclude that {Pn}n≥0 is
a sequence of partitions spanning the topology of ΩZ2(x̄), and by Lemma 30, the set
M(ΩZ2(x̄)) is given by lim←n(4n, An).
Let n ≥ 0. In this case, the incidence matrix An ∈ Mq×q(N) between Pn and Pn+1 is
given by

An(i, j) =
{

4sn + 1 if j 6= i
q2
n − (q − 1)(4sn + 1) if j = i

For i ∈ {1, .., q}. For m ≥ n and j ∈ {1, .., q}, we define u
(j)
m = 1

p2
m

ej , where ej is the
j-th unitary vector in Rq. Simple computations yields

An · · ·Amu
(j)
m+1 =

1
qp2

n







1
...
...
...
1




+ ln,m




−1
...

q − 1
...
−1






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where ln,m = (q2
n−q(4sn+1))···(q2

m−q(4sm+1))
q2
n···q2

m
. Notice that {ln,m}m≥n is a decreasing se-

quence, then it converges to some αn ∈ [0, 1], and so,

lim
m→∞An · · ·Amu

(j)
m+1 = u(n,j) =

1
qp2

n




(1− αn)




1
...
...
...
1




+ qαnej




The points u(n,1), · · · , u(n,q) generate the convex
⋂

m≥n An · · ·Am4m+1. By choosing
q>
n

4q

1−δ
1

2n
for all n ≥ 0, where δ is some point in (0, 1), we have that αn > 0 for all n ≥ 0.

This implies that for all n ≥ 0, u(n,1), · · · , u(n,q) are linearly independent vectors and
then, they are the extreme points of

⋂
m≥n An · · ·Am4m+1. Since Anu(n+1,j) = u(n,j)

for all j ∈ {1, .., q}, we have that u(1) = {u(n,1)}n≥0, · · · , u(q) = {u(n,q)}n≥0 are the
extreme points of lim←n(4n, An). Thus (ΩZ2(x̄),Z2) has exactly q ergodic measures.
If the sequence {qn}n≥0 is constant then αn = 0 for all n ≥ 0, which implies that in
this case (ΩZ2(x̄),Z2) is uniquely ergodic.

8.2. An example of a uniquely ergodic Z2-Toeplitz system with positive en-
tropy. We take k0 = q, q0 = k0 + 2, kn = f(kn−1) and qn = kn + 2 for n > 0, where
f : N→ N is the function defined by

f(n) =
(n2 − 1)!

(n + 1)!n−1
, for all n ∈ N.

Remark 31. Observe that f(n) is the number of partitions P = {Ai}n−1
i=1 of a set A

with |A| = n2 − 1 such that |Ai| = n + 1 for all i ∈ {1, .., n− 1}.
Given the alphabet Σ = Σ0, consider the subset Σn of ΣDn such that B ∈ Σn if and
only if:

(1) B(Dn−1,0) = Bn−1,1,
(2) B(Dn−1,v) ∈ Σn−1 \ {Bn−1,1} for v ∈ Sn \ ({0} ∪ ∂Sn),
(3) B(Dn−1,v) = Bn−1,kn−1 for all v ∈ ∂Sn,
(4) |{v ∈ Sn \ ({0} ∪ ∂Sn) : B(Dn−1,v) = Bn−1,l}| = kn−1 + 1, for all

l ∈ {2, .., kn−1}
From remark 31, we easily see that |Σn| = kn.

The point (3) from the construction insures that statement (2) of Lemma 29 is satisfied.
We have that Bn,k(Dn−1,v) = Bn−1,1 if and only if v = 0. This and (1) from the
construction imply that statement (1) of Lemma 29 is satisfied. Thus {Pn}n≥0 is a
sequence of partitions which spans the topology of ΩZ2(x̄), and by Lemma 30, the set
M(ΩZ2(x̄)) is given by lim←n(4n, An).
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Bn,1

A

Bn,kn · · · · · · · · · · · · · · · Bn,kn

Bn,kn · · · · · · · · · · · · · · · Bn,kn

...

...

...

...

...

Bn,kn

...

...

...

...

...

Bn,kn

Figure 3. The blank region A is filled by a concatenation k2
n − 1 blocks from

ΣDn . The block shown above belongs to Σn+1 if the concatenation filling A uses
exactly kn + 1 copies of every block from Σn \ {Bn,1}

Let n ≥ 0. The incidence matrix An ∈Mkn×kn+1(N) between Pn and Pn+1 is given by

An(i, j) =





1 if i = 1
kn + 1 if i = 2, · · · , kn − 1
5kn + 5 if i = kn

For j ∈ {1, · · · , kn+1}, since An4n+1 = { 1
p2

n+1
(1, kn + 1, · · · , kn + 1, 5kn + 5)T } , we

have

lim←n
(4n, An) = {( 1

p2
n+1

(1, kn + 1, · · · , kn + 1, 5kn + 5)T )n≥0}.

This implies that (ΩZ2(x̄),Z2) is uniquely ergodic with unique invariant probability
measure µ ∈M(ΩZ2(x̄)) defined by

µ(Ci,j) =





1
p2

i+1
if j = 1

ki+1
p2

i+1
if j = 2, · · · , ki − 1

5ki+5
p2

i+1
if j = ki

For every i ≥ 0.

Consider U and V, two open coverings of Ωx̄. We define
N(U) = min{|U ′| : U ′ is a subcovering of U} and U ∨ V = {U ∩ V : U ∈ U , V ∈ V}.
The topological entropy of (ΩZ2(x̄),Z2) is defined by

htop(ΩZ2(x̄),Z2) = sup
U

lim sup
n→∞

1
|Ln| ln N(

∨

v∈Ln

U − v),
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where Ln = {0, .., n− 1}2.
Notice that for n ≥ 0 and i ≥ n we have that every Ci,j is a different atom of the
partition

∨
v∈Lpi

Pn − v. This implies that

N(
∨

v∈Lpi

Pn − v) ≥ ki

and then

(8.3) htop(ΩZ2(x̄),Z2) ≥ lim sup
n→∞

ln kn

p2
n

= lim sup
n→∞

ln kn

((k0 + 2)(k1 + 2) · · · (kn−1 + 2))2
.

We will prove that by choosing an appropriate k0 = q, htop(ΩZ2(x̄),Z2) > 0.
In the next Lemma we skip ”+2” in each term of the equation (8.3). We will take care
of this inaccuracy after the proof of the lemma.

Lemma 32. If q > 5 then there exists a > 0 such that for all n > 0,

ln(fn(q))
(qf(q)f2(q) · · · fn−1(q))2

> a.

Proof. Let n > 1. By using Stirling’s inequality we get

f(n) =
(n2 − 1)!

(n + 1)!n−1
> (

n2 − 1
e

)n2−1 (2π(n2 − 1))
1
2

(n + 1)!n−1
.

Since (n + 1)! < (n + 1)n+1,

(8.4) f(n) > (
n− 1

e
)n2−1(2π(n2 − 1))

1
2 .

By using that (n2 − 1)
1
2 > n− 1 in (8.4) we obtain

(8.5) f(n) > (
n− 1

e
)n2

e(2π)
1
2 > (

n− 1
e

)n2
.

Let q > 2 be an integer number. We call qn = fn(q) and Sn+1 = ln(qn+1)
(q0q1q2···qn)2

for all
n ≥ 0. From (8.5) we deduce

Sn >
ln( qn−1−1

e )q2
n−1

(q0 · · · qn−1)2
=

ln(qn−1 − 1)
(q0 · · · qn−2)2

− 1
(q0 · · · qn−2)2

,

and finally

(8.6) Sn >
ln(qn−1)

(q0 · · · qn−2)2
−

ln( qn−1

qn−1−1)

(q0 · · · qn−2)2
− 1

(q0 · · · qn−2)2
.

We can use recursively (8.6) to get

(8.7) Sn > ln(q0)−
(

ln(
q0

q0 − 1
) +

n−1∑

i=1

ln( qi
qi−1)

(q0 · · · qi−1)2

)
−

(
1 +

n−1∑

i=1

1
(q0 · · · qi−1)2

)
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Since for every i > 0 it holds ln( q0

q0−1) > ln( qi

qi−1), then

(8.8) −
(

ln(
q0

q0 − 1
) +

n−1∑

i=1

ln( qi

qi−1)

(q0 · · · qi−1)2

)
> − ln(

q0

q0 − 1
)

(
1 +

n−1∑

i=1

1
(q0 · · · qi−1)2

)

On the other hand − 1
q2
0

< − 1
q2
i

for i > 0, which implies that

(8.9) −
n−1∑

i=1

1
(q0 · · · qi−1)2

> −
n−1∑

i=1

1
(q2

0)i
.

From (8.7), (8.8) and (8.9) we get

Sn > ln q0 −
(

ln(
q0

q0 − 1
) + 1

) n−1∑

i=0

(
1
q2
0

)i

= ln q0 −
(

ln(
q0

q0 − 1
) + 1

)(
q2
0

q2
0 − 1

)(
1−

(
1
q2
0

)n)

Finally we have

(8.10) lim
n→∞

ln(qn)
(q0 · · · qn−1)2

≥ ln q0 −
(

ln(
q0

q0 − 1
) + 1

)
q2
0

q2
0 − 1

.

Not hard computations show that ln q0− (ln( q0

q0−1)+1) q2
0

q2
0−1

> 0 if q0 > 5 which proves
the lemma. ¤
For n > 0 we set

xn =
ln kn

(k0 + 2)(k1 + 2) · · · (kn−1 + 2))2
, x′n =

ln kn

(k0 · · · kn−1)2
,

and yn = xn
x′n

= Πn−1
i=0

(
ki

(ki+2)

)2
. From the proof of Lemma 32 we deduce that, for all

n ≥ 3

(8.11)
f(n)

f(n) + 2
>

1
1 + 2( e

n−1)n2 .

For n ≥ 7 we have

(8.12)
1

1 + 2( e
n−1)n2 >

2n2

2n2 + 1
.

We can prove by induction that for n ≥ 2

(8.13)
2n2

2n2 + 1
>

(
1
2

) 1
2n

.

From (8.11),(8.12) and (8.13), if k0 ≥ 7 then kn
kn+2 ≥ (1

2)
1

2
kn−1 for all n > 0. So,

y
1
2
n >

(
1
2

)Pn−1
j=0

1

2
kj ≥

(
1
2

)Pkn−1
j=0

1

2j

≥ 1
4
.
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Thus, by Lemma 32, there exists a > 0 such that for all n > 0
ln kn

(k0 + 2)(k1 + 2) · · · (kn−1 + 2))2
> a.

Which implies, by (8.3), that htop(ΩZ2(x̄),Z2) > 0 if we take q ≥ 7.
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Departamento de Ingenieŕıa Matemática, Universidad de Chile Casilla 170/3 correo 3,
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