ZI-TOEPLITZ ARRAYS

MARIA ISABEL CORTEZ

ABSTRACT. In this paper we give a definition of Toeplitz sequences and odometers
for Z% actions for d > 1 which generalizes that in dimension one. For these new con-
cepts we study properties of the induced Toeplitz dynamical systems and odometers
classical for d = 1. In particular, we characterize the Z%regularly recurrent systems
as the minimal almost 1-1 extensions of odometers and the Z?-Toeplitz systems as
the family of subshifts which are regularly recurrent.

1. INTRODUCTION

Toeplitz sequences have been introduced in dynamical systems by Jacobs and Keane
n [11]. Since then, they have been extensively studied in different contexts and they
have been used to provide a series of examples with interesting dynamical properties
(see for example [16], [10], [7], [6]).

Toeplitz flows are characterized as minimal almost 1-1 symbolic extensions of odome-
ters systems by Markley and Paul. In [8] Downarowicz and Lacroix publish a proof of
this theorem. In addition, as it was shown by Gjerde and Johansen in [10], Toeplitz
systems also correspond, up to conjugacy, to the family of expansive Bratteli-Vershik
systems associated to Bratteli diagrams with the equal path number property.

The aim of this paper is to extend the definition of both odometers and Toeplitz flows
to Z%-actions and to settle down a characterization result, in this general context, in
the sense of Markley and Paul. A first approach to this problem was made by Dow-
narowicz in [5], where he introduces the Z2-Toeplitz arrays.

Since any element of a Z?-subshift may be seen as a tiling of R¢, Z%-Toeplitz arrays
are a class of interesting examples of perfect tilings.

In Section 2, we give some basic definitions relevant for the study of Z%actions and
in Section 3 we introduce the generalized notion of an odometer. In Section 4, we
introduce Z?-regularly recurrent systems and we characterize them as the minimal al-
most 1-1 extensions of odometers. In Section 5, we identify the set of eigenvalues of
odometers and the set of continuous eigenvalues of regularly recurrent systems and we
characterize those which are measure-theoretically conjugate to their maximal equicon-
tinuous factors. In Section 6, we define Z%Toeplitz arrays and we show that they are
the family of regularly recurrent Z?-subshifts. We prove that every Topelitz array
has, as in the case d = 1, a periodic structure that allows to identify the maximal
equicontinuous factor of the associated Toeplitz system. We generalize the notion of a
regular Toeplitz sequence to higher dimensions. In Section 7, we introduce the concept
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of a semicocycle. The last section contains an example of a Z2-Toeplitz system with
a determined finite number of ergodic measures and another example of a uniquely
ergodic Z?-Toeplitz system with positive entropy.

2. BASIC DEFINITIONS AND BACKGROUND

Let d > 1 be an integer. In this article, by a topological dynamical system we mean a
pair (X, Z%), where Z? acts, by homeomorphism, on a compact metric space X. Given
v e Z% and r € X we will identify v with the associated homeomorphism and we
denote by v(x) the action of v on x. The dynamical system (X,Z%) is free if v(x) = x
for some x € X implies v = 0. For a subgroup Z C Z% isomorphic to Z¢, the Z-orbit
of x € X is Oz(x) = {v(x) : v € Z} and the Z-system associated to = is (Qz(x), Z),
where Qz(z) is the closure of Oz(x) and the action of Z on Qz(z) is the restriction to
Z and Qz(x) of the action of Z¢ on X. When Z = Z¢ we write orbit and associated
system instead of Z%orbit and Z%associated system, respectively. The set of return
times of ¥ € X to A C X is Ta(x) = {v € Z%: v(z) € A}. The topological dynamical
system (X,Z%) is minimal if the orbit of any x € X is dense in X, and it is said to
be equicontinuous if for every € > 0 there exists § > 0 such that if z,y € X satisfy
d(x,y) < § then d(v(z),v(y)) < ¢ for all v € Z¢. We say that (X,Z%) is an extension
of (Y,Z%), or that (Y,Z?) is a factor of (X,Z?), if there exists a continuous surjection
m: X — Y such that 7 preserves the action. We call 7 a factor map. When the factor
map is bijective, we say that (X,Z¢) and (Y,Z%) are conjugate. The factor map 7 is
an almost 1-1 factor map and (X, Z%) is an almost 1-1 extension of (Y,Z%) by 7 if the
set of points having one pre-image is residual (contains a dense G; set) in Y. In the
minimal case it is equivalent to the existence of a point with one pre-image.

The set M(X) of invariant probability measures of X is the set of probability measures
p defined on B(X), the Borel g-algebra of X, such that u(v(B)) = u(B) for all v € Z4
and B € B(X). We say that (X, u,Z%), the topological dynamical system (X,Z%)
equipped with p € M(X), is a measure-theoretic dynamical system. A measure-
theoretic factor map ¢ from (X, p, Z%) to (Y, v, Z%), is a measurable function preserving
the action and such that u(¢=1(B)) = v(B) for all B € B(Y). If ¢ is bijective we say
that (X, u, Z%) and (Y, v, Z%) are measure-theoretically conjugate.

Consider a finite alphabet ¥ endowed with the discrete topology and Y2 with the
product topology. The elements x = {x(2)},cza of »7%" are called Z?-arrays. The shift
action on X% is defined by v(z) = {2(2+v)} g4, for all v € Z4 and z = {2(2)} ,epa €
$Z°  In this context, we will write 2 + v instead of v(z). If Z is a subset of Z4, 2(2)

denotes {z(z) : z € Z} € ¥¥. When X C 32" is closed and invariant by the shift
action, we say that (X,Z%) is a subshift.

3. d-DIMENSIONAL ODOMETERS

Let {Z;}i>0 C 7% be a decreasing sequence of subgroups isomorphic to Z% (or of rank
d) and let m; : Z%/Z;,1 — 7%/Z; the function induced by the inclusion Z;y1 C Z;,
7 > 0. Consider the inverse limit

G = 1im(2/Z;, ;)
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More precisely, G is defined as the subset of the product HiZOZd /Z; consisting of the
elements g = (g;)i>0 such that m;(gi+1) = ¢; for all ¢ > 0. The set G is a group
equipped with the addition defined by

g +h = (g; +; hi)i>o,

where +; is the operation induced on Z?/Z; by the addition in Z<.
Every Z9/Z; is endowed with the discrete topology and I;5¢Z%/Z; with the product
topology. Thus G is a compact topological group whose topology is spanned by the
cylinder sets

[i;a] = {g € G : g; = a}, with a € Z%/Z; and i > 0.
If H is a subgroup of G then it acts by homeomorphisms on G by h(g) =h+g, h € H,
g € G. Since for all h € H and for all cylinders [i; a] we have h([i;a]) C [i;a+; hi], the
topological dynamical system (G, H) is equicontinuous. Moreover, if H is dense in G
then (G, H) is a minimal equicontinuous system.
Consider the homomorphism 7 : 7 — HiEOZd /Z; defined for v € Vi by

7(v) = {mi(v) }iz0,

where 7; : Z% — 7%/ Z; is the canonical projection. The image of Z¢ by 7 is dense in G,
which implies that the Z-action v(g) = 7(v) + g, v € Z%, g € G, is well defined and
(G,Z%) is a minimal equicontinuous system. We call (G,Z%) an odometer system or
simply an odometer. It is straightforward that an odometer (G, Z%) is a free dynamical
system if and only if 7 : Z¢ — G is one to one, which is equivalent to (,~, Z; = {0}
Notice that for all g in a cylinder set [i;a] of an odometer G' = lim._;(Z¢/Z;, ;), the
set of return times of g to [i;a] is Z;, i > 0. Through this paper we will use these
properties and we will identify G with (G, Z%).

Lemma 1. Let G; = limhi(Zd/Zi(j),m) be two odometers (j =1,2). There is a factor
map 7 : (G1,Z2%) — (G2, Z%) if and only if for every ZZ»(Q) there exists some Z]gl) such
that z\" € 7.

Proof. If m: G1 — G4 is a factor map then by continuity, given ¢ > 0 and a € Zd/Zi(Z)7
there exist £ > 0 and b € Zd/Zlgl) such that [k;b] C 7 '[i;a). Let v € Z,gl), we have
that v(g) € [k;b] for all g € [k;b], which implies that w(v(g)) = v(n(g)) € [i;a]. Since
7(g) € [i;a] it holds that Tj;.q)(7(g)) = Z-(2), which proves that v € ZZ.(Q).

7
Suppose that for every i > 0 there exists ZT(ll) - 7% Since the sequences {Zi(J)}izo

% 1
(j = 1,2) are decreasing, we can take n; < n;11 for all i > 0. The function 7 : G; — G2
defined by 7((g:)i>0) = (jn,(gn,))iz0 Where jn, : Z4/Z\Y — 74/7 is the function

induced by the inclusion Zg) - Zi(2)7 is a factor map. O

A scale is a sequence {4;}i>0 € GL(d,Z) such that for every ¢ > 0 there exists
Q; € GL(d,Z) satisfying A;+1 = A;Q;.

Let G = lim. ;(Z?/Z;, ;) be an odometer. Any sequence {4;}i>0 of integer matrices
such that for all ¢ > 0 the columns of A; represent a base of Z; is a scale. We say that
{4;}i>0 is a scale associated to G if the odometer lim. ;(Z¢/A;Z%, ;) is conjugate to G.
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It is direct that the scale {A;};>¢ is associated to the odometer G = lim.;(Z?/A;Z4, m;),
but an odometer can be associated to several scales.
We can formulate Lemma 1 in terms of scales:

Lemma 2. Let G; = limﬁi(Zd/Zi(j), m;) be two odometers (j = 1,2). There is a factor
map 7 : G1 — Go if and only if given {AEJ)}QO a scale associated to G (j = 1,2) for
all AZ(.Q) there exists A,(j) such that AS) = Agz)Q for some Q € GL(d,Z).

We could think that all d-dimensional odometers correspond to a product (up to con-
jugation) of d one-dimensional odometers. It can be proved that a product of d one-
dimensional odometers coincides with an odometer having an associated scale consist-
ing of diagonal matrices. However, it is not true that all d-dimensional odometers
(d > 2) admit a scale formed by diagonal matrices. Examples can be constructed in
any dimension d > 2:

Example 3. Examples of d-dimensional odometers which are not conjugate to a prod-
uct of d one-dimensional odometers.

If d = 2, consider the sequence {A;}i>0 € GL(2,7Z) given by
3i+1 7. 111
A= [ 7.3 111 }
If d > 2 consider {A;}i>0 € GL(d,Z) defined by
3+l if k=1 mod Zs
Ai(k k) =< 11771 if k =2 mod Z3
7l if k=0 mod Zs
7-11" if k=1 mod Z3
Ai(k,k+1)=2¢ 3.7 if k=2mod Z3
11-3" if k=0 mod Zs
Ak, i) =0ifj € {1, dy\ {k,k+1}, k=1, ...d.
In both cases {A;};>0 is a scale and ;5 A;Z¢ = {0}. This means that

G = lim.;(Z%/A;Z4, ;) contains a copy of Z? and therefore G # {0}. Suppose there
exists a factor map 7 : G — G’ with G’ an odometer having an associated scale formed

by diagonal matrices {D;};>0 with D;(k, k) = dz(k) for k € {1,..,d}. By Lemma 2, we
have that dgk) divides every element in the k-th row of some Aj;. Since m.c.d{A;(k,1) :
Il =1,..,d} =1, we have that D; = id, dgk) = 1 and then G’ = {0}. This proves that
G is not conjugate to a product of d one-dimensional odometers.

4. CHARACTERIZATION OF MINIMAL ALMOST 1-1 EXTENSIONS OF ODOMETERS

Let (X,Z%) and (Y, Z%) be two topological dynamical systems. (Y,Z?) is said to be the
mazimal equicontinuos factor of (X, Z%) if it is an equicontinuos factor of (X, Z%) such

that for any other equicontinuous factor (Y’,Z%) of (X,Z%) there exists a factor map
m:Y — Y’ that satisfies mo f = f/, with f : X — Y and f’ : X — Y’ factor maps.
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It is well known that every topological dynamical system has a maximal equicontinuous
factor and if (X,Z?) is a minimal almost 1-1 extension of a minimal equicontinuous
system (Y, Z%), then (Y, Z?) is the maximal equicontinuous factor of (X, Z%) (for more
details see [1]).

4.1. Regularly recurrent systems. A subset S of Z% is said to be syndetic if there
exists a finite subset K of Z¢ such that Z? =S+ K = {s+k:s€ S, k€ K}.

Let (X, Z%) be a topological dynamical system and let z € X. The point x is uniformly
recurrent if for every open neighborhood V' of x the set Ty (z) is syndetic. It is well
known that (Qz4(z),Z%) is minimal if and only if  is uniformly recurrent.

A point x € X is regularly recurrent if for every open neighborhood V' of x there is
a subgroup Z of Z% isomorphic to Z? such that Z C Ty (x). We say that a system
is regularly recurrent if it is the orbit closure of a regularly recurrent point. Since
every subgroup Z of Z¢ isomorphic to Z% is syndetic, regularly recurrent systems are
minimal.

In this section we will show that regularly recurrent systems are exactly the minimal
almost 1-1 extensions of the odometers.

Lemma 4. Let (X,Z%) be a minimal topological dynamical system and let x € X. If
Z C 7% is a group isomorphic to Z then (Qz(x), Z) is minimal.

Proof. Let V C X be a neighborhood of x. Pick a minimal set M in X x Z¢/Z (with
the natural product action). This set projects onto a minimal subset of X, hence onto
X. Thus for every z € X there exists a point (z,a) € M and this point is uniformly
recurrent. Adding —a on the second axis is a conjugacy, hence (z,0) is also uniformly
recurrent. This implies that {z : z(z) € V| z € Z} is syndetic. O

Lemma 5. Let (X,7Z%) be a topological dynamical system and let x € X be a reqularly
recurrent point. For all closed neighborhood V' of x there exists a subgroup Z of 7%
isomorphic to Z* such that Z C Ty (z) and {w(Qz())}ywerasz is a clopen partition of
X.

Proof. Let Z C Z% be a subgroup isomorphic to Z%. If u and w are two elements
of Z in the same class of Z9/Z then u(Qz(z)) = w(Qz(x)). So, it makes sense to
speak about w(Qz(x)) for w € Z%/Z. By minimality of (X,Z%) we have that X =
UweZd/Z w(Qz(z)). From Lemma 4, for every w € Zd/Z the system (w(Qz(x)), Z)
is minimal. Thus if u,w € Z%/Z satisty w(Qz(z)) N u(Qz(x)) # O then u(Qz(z)) =
w(§2z(x)). This implies that {w(Qz(2))}yezd/z 1 a clopen covering of X.

Let V C X be a closed neighborhood of = and let Z C Z? be a subgroup isomorphic
to Z% such that Z C Ty (x). Consider the subgroup Z’ of Z¢ spanned by the set
{we 74 : Qz(x) = w(Qz(z))}. Since Z C Z', we have that Z’ is isomorphic to
7%, and, because Qyz (z) = Qz(z), the group Z’ is contained in Ty (z). Finally, for
w € Z% due to Qz(z) = w(Qz (x)) if and only if Qz(x) = w(Qz(x)), it holds that
{w(Qz/(z))}yeza/z is a clopen partition of X. O

Corollary 6. Let (X,Z%) be a topological dynamical system and let x € X. The point
x 1is reqularly recurrent if and only if there exists {C;}i>0, a fundamental system of
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clopen neighborhoods of x, such that there is a subgroup Z; C Z% isomorphic to Z% such
that for all y € C; the set of return times of y to C; is Z;, for every i > 0.

Proof. If x € X has a fundamental system of neighborhoods as is written above, it is
a regularly recurrent point.

If x is a regularly recurrent point we take Vi an open neighborhood of x and we
apply Lemma 5 to V. We obtain a group Z; C T, (z), isomorphic to Z%, such that
{w(Qz, (%)) }wera/z, is a clopen partition of X. We set C1 = Qz, (z) which is a clopen
set with T¢, (y) = Z; for all y € (.

So, given C,, and Z,, we take an open neighborhood V,, 41 C C, of z and we apply
Lemma 5 to V,41. As in the case n = 1, we obtain C,4+1 and Z,11.

If we take lim;_.o diam(V},) = 0, we obtain that {C;}i>o is a fundamental system of
clopen neighborhoods of x. U

Theorem 7. A minimal topological dynamical system (X,Z%) is an almost 1-1 ex-
tension of an odometer G by m if and only if (X,Z%) is a regularly recurrent system.
Moreover, the set of reqularly recurrent points of X is exactly the pre-image of the set
of points in G which have only one pre-image by .

Proof. Let (X,Z%) be a minimal 1-1 extension of an odometer G = lim. ;(Z%/Z;, ;).
Let # : X — G be the almost 1-1 factor map and let x € X be such that {z} =
7Y (x)}. Since 7 is continuous, if 7(x) = (a;)i>0 € G then {7 1([i;a])}ix0 is
a decreasing sequence of clopen neighborhoods of z that satisfies ;o7 *([i;a;]) =
{z}. We know that for every g € [i;a;] it holds T, (g) = Z;, therefore for all
g € 1([i;a4)), T (li:ai]) (8) = Zi- So, by Corollary 6 we conclude that z is a regularly
recurrent point of X.

Let X be a regularly recurrent system and let € X be a regularly recurrent point.
By Corollary 6 there exists a decreasing sequence {C;}i>o of clopen neighborhoods of
z such that ;5o C; = {z}, and there is a subgroup Z; isomorphic to Z?¢ such that
Te,(y) = Z; for all y € Cy, i > 0. Since Cyy1 C C;, we have that Z;,1 C Z;, i > 0.
So, we can define the odometer G = lim. ;(Z%/Z;, ;). We define 7 : X — G by
7 = (f;)i>0 where f; is the continuous map f; : X — Z%/Z; given by f;(y) = z if and
only if y € 2(C;) for y € X, z € Z; and ¢ > 0. The function 7 is a factor map, and,
since ;o Ci = {z}, we have that f~1{0} = {x}. So, 7 is an almost 1-1 extension.

If #’ : X — G’ is another almost 1-1 factor map and G’ an odometer, G and G’ are
the maximal equicontinuous factor of (X,Z%) (therefore, they are conjugate). Thus
there exists a factor map 7’ : G’ — G such that 7" o/ = 7, which implies that
{z} = 7'=1{n(x)}. We conclude that the set of regularly recurrent points is exactly
the pre-image of the points in G which have only one pre-image. O

5. EIGENVALUES OF ODOMETERS, MEASURE-THEORETIC FACTOR MAPS.

5.1. Eigenvalues. Let (X, i, Z%) be a measure-theoretic dynamical system. A vector
a € R? is an eigenvalue of X if there exists f € Li(X) \ {0} such that

fv(z)) = exp(2iraTv)f(x) for all x € X and v € Z%. We call f an eigenfunction
associated to a. We say that an eigenvalue is a continuous eigenvalue if it has an
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associated continuous eigenfunction.

Since an odometer G is a compact group, the normalized Haar measure A of GG is the
only invariant probability measure of G. Thus when we speak about G as a measure-
theoretic dynamical system, we mean G equipped with the measure A and on G we
consider the action of Z% viewed as a subset of G.

Proposition 8. Let G = lim. ,,(Z%/Z,,,) be an odometer. The set of eigenvalues
of G is given by Eg = U,>ole € Re:alz € Z, V2 € Z,} C Q% Moreover, every
etgenvalue of G is a continuous eigenvalue.

Proof. Tt is clear that Eg C Q? because a’'z € Z for all z € Z,, if and only if o« = vTA; 1
for some v € Z¢ and A,, € GL(d,Z) such that Z, = A,Z".

For n > 0 we call C,, = [n;0]. Since v, w € Z? satisfy C,, + v = C,, + w if and only if w
and v belong to the same class in Z%/Z,,, it makes sense to write C,, +v for v € Zd/Zn.
Notice that the collection P, = {C,, +v: v € Z%/Z,} is a clopen partition of G.

Let o € Eg and let n > 0 be such that a2z € Z for all z € Z,. This means that
exp(2ira’v) = exp(2imaTw) for all v € Z and w € v + Z,, which implies that

=2 veniyz, exp(2ira’v)lc, 1, is a well defined continuous function that verifies
f(g +w) = exp(2ira’w) f(g) for all g € G and w € Z.

Let o € R be an eigenvalue of G and let f € L3(G)\{0} be an associated eigenfunction.
For v € Z% we have that

exp(2iralv) ( / fdA): / fdA.
'n Cn+v

Since C,, + v =C,, + v+ z for all z € Z,, it holds that

(5.1) exp(2imal z) </C fd/\) = /C fdx for all z € Z,.

Observe that

exp(2ira’v
BP) = 5 SREES ([ sa) 1o
vezd )z (Cn) Chn
Since B(Pn) T B(G), by the increasing Martingale theorem, we have that E(f|P,)
converges to f in Li(G). Because f # 0, this implies there exists m > 0 such that
me fdX\ # 0 and, by (5.1), we conclude that o’z € Z for all z € Z,,, which means
that a € Eg. O

Corollary 9. Let (X,Z%) be a regularly recurrent system and let G be its mazimal
equicontinuous factor. The set of continuous eigenvalues of X is Eg.

Proof. 1t is clear that E¢q is contained in the set of continuous eigenvalues of X. Con-
versely, if o is a continuous eigenvalue of X we can take f : X — S! an associated
continuous eigenfunction which is a factor map between (X,Z?) and the dynamical
system (f(X),Z%), where the action of v € Z¢ on exp(2irz) € f(X) is given by
v(exp(2imx)) = exp(2im(a’v + x)), which is an isometry. Thus the system (f(X),Z?)
is equicontinuous and therefore there exists a factor map 7 : G — f(X). Since 7 is an
eigenfunction associated to o we conclude that o € Fg. O
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5.2. Measure-theoretic conjugation.

Proposition 10. Let (X1,Z%) and (Xo,Z%) be two minimal equicontinuous systems.
If ¢ : X1 — X3 is a measure-theoretic factor map then there exists a topological factor
map 7 : X1 — X9 such that m = ¢ a.e.

Proof. A minimal equicontinuous system (X,Z?) is conjugate to a system (G,Z%),
where G is a topological compact group with a continuous homomorphism ¢ : Z¢ — G
satisfying ¢(Z%) = G, and the action of Z? on G is defined by v(g) = (v) + g for all
v e Zand g € G, ([1] Theorem 3.6, [9] Theorem 1.8). The Haar measure ) is the only
invariant probability measure of (G, Z?) ([15] Theorem 6.20) and every eigenfunction
of this system is continuous because is a constant multiple of a character of G ([15]
Theorem 3.5), which implies that there exists an orthonormal basis of L3 (G) consisting
of continuous eigenfunctions of (G, Z%).

Let p; be the only invariant probability measure of (XZ-,Zd)7 for ¢ = 1,2, and let
{fn}n>0 be an orthonormal basis of Liz (X2) consisting of continuous eigenfunctions

of (X9,Z%). If ¢ : X; — Xy is a measure-theoretic factor map then f, o ¢ is an
eigenfunction of (X1,Z%), for all n > 0. Thus the ergodicity of the system implies
that for every n > 0 there exists a continuous eigenfunction g,, of (X1, Z%), such that
fno¢ = gn a.e. Thus it is possible to take a full measure Borel subset A of X7 such
that f,0¢ = gn on A, for all n > 0. Let {z;};>0 be a sequence in A which converges to
x € A, and let y € X3 an accumulation point of {¢(x;)}i>0. By continuity of f,, on Xs
and by continuity of f,o¢ on A, we have f,(y) = fno¢(zx) for all n > 0. Thus if y; and
y2 are two accumulation points of {¢(z;)}i>0 then g(y1) = g(y2) for all g € L%Q (X2),
which implies that y; = yo. This shows that ¢ is continuous on A. Since (X7,Z?) is
strictly ergodic, A is dense on X7, and since f, and g, are continuous on the whole
spaces, ¢|4 extends to a continuous map 7 on Xj, which is a factor map. O

Lemma 11. Let G be an odometer. If w : G — G is a factor map then w is injective.

Proof. We set G = lim._,(Z%/Z,,7,). Let g, h € G be two elements such that 7(g) =
7(h) = j. For all i > 0 there exists v; € Z?/Z; such that [i; g;] + v; = [i; h;]. Thus for
every i > 0 there exists n; > 0 such that [n; g,], [n; gn] + v, C 7 1([4;5;]) for all n > n;.
This implies that v, € Z;. Thus for n > 4 it holds that [n; gy], [n; hn] C [4; gi]. Because
this is true for all ¢ > 0 we conclude that g = h. U

Since odometers are uniquely ergodic, the invariant probability measures of a regu-
larly recurrent system (X,Z?) coincide on the sub o-algebra 7—!(B(G)), where 7 is
the almost 1-1 factor map between X and its maximal equicontinuous factor G. In
particular, due to the set of regularly recurrent points of X is the pre-image by m of a
Gs-set in G, its measure does not depend on the chosen measure p € M(X).

The proof of the next Theorem follows the same ideas used in the proof for d = 1 (see
4], [16]).

Theorem 12. Let (X,Z%) be a regularly recurrent system. The following statements
are equivalent:

(1) The set of regularly recurrent points of X is a full measure set.
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(2) (X,Z%) is uniquely ergodic and it is measure-theoretically conjugate to its maz-
1mal equicontinuous factor.

Proof. Let m : X — G be the almost 1-1 factor map between X and its maximal
equicontinuous factor. Let R C X be the set of regularly recurrent points.

Suppose that R is a full measure set. Let p € M(X) and let B € B(G). We have
B = (BNR)U(B\R) and u(B) = u(BNR). Since 7 is injective on R, BN R =
7 1 (m(BNR)) € 7 Y(B(G)). Thus u(B) = u(BN R) = A(m(B N R)). This implies
that (X, Z%) is uniquely ergodic. Because 7 is injective on R, a full measure set, it is a
measure-theoretic conjugation between X and G. Assume (2). Let ¢ : (X, ) — (G, )
be the measure-theoretic conjugation. Then 7 o ¢~ ! is a self-homomorphism of the
odometer. By Proposition 10 and Lemma 11, 7 is injective when restricted to an
invariant set A C X with u(A) = 1. If the set of regularly recurrent points of X is
not a full measure set for u, then by ergodicity, invariance and Theorem 7, the set of
points in G with non-singleton fibers in X is of full measure A. Let B be the pre-image
of this set. The intersection AN B supports . On the other hand, B\ A has the same
projection on G as B, because A removes only one point from each fiber. So, B\ A
has projection of full measure A and it is invariant, hence the measure A lifts to an
invariant measure v supported by this set. Because p and v have disjoint supports,
v # p contradicting unique ergodicity ([

Remark 13. Let us indicate a mistake in the paper [4]: Condition (6) in [4, Theorem
13.1] claims that for regularity of one-dimensional Toeplitz flows it suffices to find one
ergodic measure measure-theoretically conjugate to the odometer. This statement is
false; for example the Oxtoby sequence of [4, Example 10.3] is not regular and has two
ergodic measures, both isomorphic to the odometer. Clearly, similar examples exist in
higher dimensions.

6. Z4-TOEPLITZ ARRAYS

Let ¥ be a finite alphabet and Z C Z% a subgroup isomorphic to Z¢. For
x={x(v)}yeza € »%" we define:

Per(z,Z,0) ={w € Z :x(w+2) =0 forall z€ Z}, 0 € %,

Per(z,7) = U Per(z,Z,0).
oceX
When Per(z,Z) # () we say that Z is a group of periods of x. We say that = is a
Z2-Toeplitz array (or simply a Toeplitz array) if for all v € Z% there exists Z C Z¢
subgroup isomorphic to Z¢ such that v € Per(x, Z).

Proposition 14. The following statements concerning x € 7 gre equivalent:
(1) x is Toeplitz array.
(2) There ezists a sequence of positive integer numbers {pp tn>0 such that
P < Prtl, Pn divides pny1 and {—n,--- ,n}? C Per(x, p,Z%) for alln > 0.
(3) x is reqularly recurrent.
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Proof. Before we prove the equivalence between sentences (1),(2) and (3) notice that
for every subgroup Z C Z? isomorphic to Z%, there exists an integer p > 1 such that
pZ¢ C Z. In fact, since Z9/Z is finite, for all w € Z%/Z there exists k > 1 such
that kw = 0. This implies that for all v € Z% there exists k > 1 such that kv € Z.
In particular, there exist pi,..,pq > 1 with pie,..,pgeq € Z, where eq,..,e4 are the
canonical vectors in Z?. Thus pZ? C Z with p = H?lei.

We set D, = {—n,--- ,n}% and C, = {y € %" : y(D,,) = (Dy)} for all n > 0.
Suppose that z is a Toeplitz array. Let n > 0 and v € D,,. We take Z, C Z¢, subgroup
isomorphic to Z%, such that v € Per(z,Z,) and p, > 1 such that poZ® C Z,. For
p = lyep, py we have pZ® C Z, for all v € D,,. Thus Z, = mveDn Z, is a subgroup
isomorphic to Z¢ which satisfies D,, C Per(z, Z,). We define the sequence {Pn}n>0
by po = qo and for n > 0 we set p, = gnpn_1, Where g, > 1 is an integer such that
qnZ% C Z, for all n > 0. Thus {p, }n>0 is a sequence of positive integer numbers such
that p, < pn+t1, pn divides pp41 and D,, C Per(z, Z,) C Per(:n,and) for all n > 0.
Suppose there exists a sequence {p, }n>0 as in statement (2). Since D,, C Per(z, p,Z%)
the set of return times of x to C, contains p,Z? which implies that = is regularly
recurrent because {Cp}n>0 is a fundamental system of clopen neighborhoods of z.
Suppose that z is regularly recurrent. For n > 0 we take Z,, a subgroup isomorphic to
74 such that Z,, C T¢, (z). It holds that Z¢ = J, -, Per(z, Z,) which means that = is
a Toeplitz array. B O

A subshift (X, Z%) is a Z4-Toeplitz system (or simply a Toeplitz system) if there exists
a Toeplitz array x such that X = Qga(z). From Theorem 7 and Proposition 14
we conclude that the family of minimal subshifts which are almost 1-1 extensions of
odometers coincides with the family of Toeplitz systems.

As it was done for the case d = 1 in [16], in order to know the maximal equicontinuous
factor of a given Toeplitz system, we will introduce the generalization, for d > 1, of
the concepts of essential period and period structure.

Definition 15. Let z € 2. A group Z C Z% of periods of x is called group generated
by essential periods of x if Per(x,Z) C Per(x,Z’) implies that Z' C Z.

Lemma 16. Let x € %2°. If Z C 7% is a group of periods of x then there exists
K C 7% a group generated by essential periods of x such that Per(z,Z) C Per(x, K).

Proof. Let Z C Z< be a group of periods of 2. We call Z the set of the groups H C Z¢%
isomorphic to Z¢ which satisfy Per(x,Z) C Per(z, H). Let K be the subgroup of Z¢
generated by ., H. Let H € Z and let w be an element in Per(z, Z, o) for some
o € X. Since w + z € Per(x,Z,0) for all z € Z we have that w+ z € Per(z,H, o)
for all z € Z. This means that 0 = z(w + z) = z(w + 2z + h) for all z € Z and for
all h € H which is equivalent to say that w + h € Per(z,Z,0) for all h € H. Thus,
if m is a finite positive integer and h; is some element in H; € Z for 1 <i<m
then w + k € Per(x,Z,0) where k = > /" h;. So, w+ K C Per(xz,Z,0). This
implies that w € Per(x, K, o). It holds that K € Z and since every H which satisfies
Per(z,K) C Per(x, H) is also in Z, it follows that K is a group generated by essential
periods of x. O
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Corollary 17. Let x € Y2 be q Toeplitz array. There exists a sequence {Zy}n>0 of
groups generated by essential periods of x such that Z,+1 C Z,, and
U,so Per(z, Zy) = Z4.

Proof. From Proposition 14 (2) we conclude there exists a decreasing sequence {Z), },>0
of groups of periods of x such that |, -, Per(z, Z),) = Z4. We set Zj a group generated
by essential periods of = such that Per(z, Z}) C Per(z, Zy). For n > 0 we set 2! =
Z! N Z,_1 which is a subgroup isomorphic to Z%, and since Per(z, Z,_1), Per(z, Z!) C
Per(z,Z!"), Z!! is a group of periods of z. Thus, by Lemma 16, there exists a group
Z, generated by essential periods of z, such that Per(z,Z]) C Per(z,Z,). Since
Zn,_1 is a group generated by essential periods of z, we have Z, C Z,_ 1. Thus
{Zy}n>0 is a decreasing sequence of groups generated by essential periods of x such
that ,~q Per(z, Z,) = Z°. O

Definition 18. A sequence of groups as in Corollary 17 is called a period structure of
T.

In the sequel, we will show that from a period structure {Z, },,>0 of a 7Z4%-Toeplitz array
x it is possible to construct a sequence of nested finite clopen partitions of 4 (). From
this sequence of partitions it will be easy to define an almost 1-1 factor map between
the Toeplitz system (£2,4(x),Z?) and the odometer G = lim._,,(Z%/Z,, 7).

Let 2 € X2 be a Toeplitz array, let y € Qya(x) and let Z C Z? be a subgroup
isomorphic to Z¢. Since (Qz(y), Z) is minimal, if Z is a group of periods of y then
Qz(y) € Cz(y), where

Cz(y) = {2’ € Qua(x) : Per(2',Z,0) = Per(y,Z,0), ¥ o €X}.

We will use the following convention: For a Z-periodic subset C of Qy4(z), i.e., such
that C +w = C' +w' whenever w —w’ € Z we will write C' + v instead of C' + w, where
v is the projection of w to Z%/Z.

Proposition 19. Let x € X%° be a Toeplitz array and let y € Qua(z). If Z C 7% is a
group generated by essential periods of y then Qz(y) = Cz(y) and {Cz(y) + v}yeza/z
is a clopen partition of Qya(x).

Proof. Tt holds that Qz(y)+w C Cz(y)+w for all w € Z?/Z. Since {Qz(y)+w}yezi z
is a covering of Qza(z), so is {Cz(y) +w}ezd/z. Furthermore, (Cz(y) +w) N (Cz(y) +
v) # 0 if and only if Cz(y) +w = Cz(y) + v, for w,v € Z?/Z, which implies that
{Cz(y) + w}yeza/z is a clopen covering of Qya(z).

If Cz +w = Cz + v for some v,w € Z%/Z, then k(v — w) € Tey, ) (y) for all k € Z.
This implies that Per(y, Z) C Per(y, Z'), where Z' C Z% is some subgroup isomorphic
to Z% generated by v — w and d — 1 elements of some base of Z. Since Z is a group
generated by essential periods of y then Z’ C Z. Thus v = w and {Cz(y) + v},ez4/z
is a clopen partition of Qya(z). Because Qz(y) + w is contained in Cz(y) + w, both
sets must be equal because {27 (y) + v},eza/7 is a covering of Qyq(x). O
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Proposition 20. Let = € Y2 be a Toeplitz array. If {Z,}n>0 is a period structure
of x then the odometer G = lim. ,,(Z/Z,, 7,) is the mazimal equicontinuous factor of

(QZd (.%'), Zd) :

Proof. By Proposition 19, if {Z,}>¢ is period structure of the Toeplitz array x, then
{Cz (z) +w : w € Z%Z,} >0 is a sequence of nested clopen partitions of Qya(x).
This implies that the function f, : Qya(x) — Z%/Z, given by f,.(y) = w if and only if
y € Cz () +w is a well defined continuous function, y € Qya(z), n > 0. The function
71 Qga(z) — G given by ™ = (fn)n>0 is a factor map. Since (,50Cz, @) = {z}, we
have that 771{0} = {z} and then 7 is an almost 1-1 factor map. O

Proposition 21. For every odometer G there exists a Toeplitz array x € {0, I}Zd such
that G is the maximal equicontinuous factor of (Qya(x), 7).

Proof. Let G = lim._,,(Z%/Z,,n,) be an odometer. We distinguish two cases:
Case 1: There exists m > 0 such that Z,, = Z,, for all n > m. In this case G is the
finite group Z?/Z,, and then every minimal almost 1-1 extension will be conjugate to
G. For example, z € {0,1}%" defined by z(v) = 0 for all v € Zp, and z(v) = 1 if not,
provides a Toeplitz sequence x such that G is the maximal equicontinuous factor of
the system associated to x.
Case 2: For every m > 0 there exists n > m such that Z,, # Z,,. In this case we can
take a subsequence {Z,, },>0 such that Z,, 1 # Z,, and |Z,,/Z,41| > 3 for all n > 0. By
Proposition 1, G is conjugate to the odometer obtained from this sequence. In order
to construct the Toeplitz array = we will define a sequence {(wp,vn)}n>0 C Z% x Z4
as follows: we set vg = 0 and we choose some element wy € Z¢ \ Zp. Forn > 0, we
take v € wp_1 + Z,—1 which satisfies ||v| = min{||lw|| : w € wy—1 + Z,—1}, where
[v]| = max;<i<q [v@| with v = (oM, v@)). We set v, = v and we choose w,, €
Wp—1+ Zn-1 \ (vn + Z,). The sequence is well defined because |Z,,/Z,+1| > 3 for all
n > 0. We define,

Ky = VA \ (’UO + Zo) U (’LU() + Zo)

K, = U w + Zy, forn > 0.
WE(Wn—14+Zn—1)\(vn+ZnUwn+2Zy)
The family of sets {v, + Z,, K, : n > 0} is a partition of Z¢. Thus z € {0, 1}Zd given
by:
[0 ifzeU,>vn+ Zn

(62) 2(2) = { 1 if 2 € Uyso Kn
is well defined. Since Jj_qvj + Z; C Per(z,Z,,0) and U K; C Per(z, Zy, 1), it
holds that Z¢ = |, ~ Per(x, Z,) and then z is a Toeplitz array. To conclude that G
is the maximal equicontinuous factor of the system associated to x, by Proposition 20,
it suffices to show that {Z,},>0 is a period structure of x.
Let n > 0 and Z C Z? a subgroup isomorphic to Z? such that Per(z, Z,) C Per(z, Z).
Given z € Z, this implies that 0 = z(v,) = (v, + 2). Thus v, + 2 € Uj_o(v; + Z;) U
(wp, + Zyp). If v, + 2 € wy, + Z,, we obtain that z(w) = 0 for all w € w, + Z,, which
is not possible, and if v, + 2z € v; + Z; for some 0 < j < n we get z(w) = 0 for all



Z%-Toeplitz arrays 13

w € w; + Z; which also contradicts the construction of x. So, z € Z,, and we conclude
that Z,, is a group of essential periods of x. O

Remark 22. Example 3 and Proposition 21 imply that, for d > 2, there are Toeplitz
systems in {0, l}Zd such that their maximal equicontinuous factors are not products of
d one-dimensional odometers.

6.1. Aperiodic part of a Toeplitz array. Let = € Y2 be a Toeplitz array, let
7 : Qya(x) — G be the almost 1-1 factor map between €,4(x) and its maximal equicon-
tinuous factor G, and let {Z,,},>0 be a period structure of .

We define

Dg={ge G:3y;,yo € 7 {g} such that y;(0) # 12(0)},
and for y € Qza(x) the set

Aper(y) = 2\ | Per(y, Zy).
n>0
In analogy of the case d = 1, in the next proposition we will show that Aper(y) does
not depend on the choice of a period structure {Z,},>0 and that it is exactly the
aperiodic part of .

Proposition 23. Ify € Qui(x) and 7(y) = g € G then:
(1) w € Aper(y) if and only if g+ w € Dg.
(2) w ¢ Aper(y) if and only if there exists a subgroup Z of 7Z¢ isomorphic to 7%
such that w € Per(y, Z).
(3) y is a Toeplitz array if and only if Aper(y) = (.
(4) If y' € 7= g} then v (w) = y(w) for all w € Z¢\ Aper(y).

Proof. If w € Aper(y) then for all n > 0 there exists z, € Z, such that (y + w)(0) #
(y +w + 2,)(0). Since g+ w and g+ w + z, are in [n; g,], we have that

limy, oo m(y + w + 2,,) = limy 00 & + w + 2z, = g+ w. Thus for every accumulation
point y’ of {y + w + 2, }n>0 it holds that 7(y') = g + w and ¥/(0) # (y + w)(0). So,
g+w € Dg. If g+w € Dg then there is ¥ € 7! (g +w) such that (y +w)(0) # y'(0).
By minimality and since ',y + w are in (),5o @ *([n; gn]) we have that for all n > 0
there exists 2, € Z,, such that (y +w + 2,)(0) = y/(0) # (y +w)(0) which implies that
w € Aper(y).

To show (2) it is obvious that if w ¢ Aper(y) then w € Per(y, Z) for some subgroup
Z C 7% isomorphic to Z?. Conversely, suppose that w € Per(y, Z) for some Z C
7% subgroup isomorphic to Z¢. By Lemma 16, we can suppose that Z is a group
generated by essential periods of y. From Proposition 19, {Cz(y) + w}ezd/z is a
clopen partition of Qya(x). Let 2’ € Cz(y) be a Toeplitz array and let {Z)},>0 be
a periodic structure of /. Consider the sequence {Z},},>0 given by Zj = Z and Z],
a group of essential periods of ' such that Per(z,Z,_, N Z!)) C Per(x,Z],) for all
n > 0. Since {Cz, (2/) +w : w € Z4/Z] }n>0 is a sequence of nested clopen partitions
of Qza(x) such that ,,~, Cz: (¢') = {2}, we can prove, as it was done in the proof of
Proposition 20, that G' = lim.,(Z%/Z!,7,). Since {Z'},>0 and {Z,},>0 define the
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same odometer, Lemma 1 implies that there exists n > 0 such that Z, C Z) = Z.
Thus Per(y, Z) C Per(y, Z,), which implies that w ¢ Aper(y).
Properties (3) and (4) follow of property (1). O

6.2. Regular Toeplitz arrays. Let z € 52" be a Toeplitz array and 7 : Qza(z) — G
the almost 1-1 factor map between Qa(x) and its maximal equicontinuous factor
G =lim.,(Z?/Z,, ). For all n > 0 we define
. _ |Per(z, Z,) 0 22/ 7,
" 12/ 2y ’

where [Z?/Z,] is a subset of Z¢ which contains exactly one representative element of
every class in Z/Z,.

Since Per(x,Z,) C Per(z, Zny1) and |Z/Zy 1| = |22/ Zy| - | Zn)Zns1| we have that
T+l > Tp. Thus lim, o7, = r € (0,1] exists. The Topelitz array = is said to be
reqular if r = 1.

Proposition 24. Let x € Y2 e q Toeplitz array. The following statements are
equivalent:
(1) x is regular.
(2) The set of Toeplitz arrays of Qya(x) is a full measure set for every u € M(X).
(3) AM(Dg) = 0, where X is the Haar measure on G.
(4) (Qga(x), d) is uniquely ergodic and it is measure-theoretically conjugate to its
mazximal equicontinuous factor.

Proof. The statements (2) and (4) are equivalent by Theorem 12. As it was done in
[16], the set of Toeplitz arrays of Q;4(x) is given by (,cpe C +v € 7~ H{B(G)}, where
C={y€Qya(zx):0¢ Aper(y)}. Thus, for all u € M(Qya(z)) it holds that

p({y € Qga(z) : Aper(y) = 0}) = r, which shows that (1) and (2) are equivalent.

We have G\{g € G : |7 {g}| = 1} = U, ez (Dc+v), which means that J,cz4(Da+v)
is the complement of {g : 7~ 1{g} is a Toeplitz array}. Thus if the set of Toeplitz arrays
is a full measure set for some p € M(Qya(z)), then the complement of | J, o4 (Da +v)
is a full measure set for A, which implies that A(Dg) = 0. Conversely, if A\(Dg) = 0
then A(U,ez4(Da + v)) = 0, which implies A({g : 7 '{g} is a Toeplitz array}) = 1.
Let u € M(Qga(z)). Since u(r=tA) = A\(A) for all A € B(G), the set of Toeplitz array
is a full measure set for . This shows that (2) is equivalent to (3). O

7. SEMICOCYCLES

The notion of a semicocycle has been extensively used in the theory of one-dimensional
Toeplitz flows (see [4]). In this paper it is not used but we develop it for higher
dimensional actions for further utility.

Let 2 € ¥Z° be a Toeplitz array and let {p,}n>0 be the sequence of integer numbers
of Proposition 14(2). Since for all n > 0 there exists ¢, > 1 such that p,y1 = ¢npn,
the odometer G' = lim._,,(Z%/p,Z%, ) is a free odometer, that is an odometer which
is a free dynamical system. Thus the function 7 : Z% — G defined in Section 3 is an
homomorphism between the groups Z? and 7(Z%). So, we can identify 7(Z?) with Z<
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and write Z? instead of 7(Z%). The odometer G induces on Z? the topology generated
by the family of sets {w + p,Z¢ : w € Z% n > 0} that we call ©g. The function
v — z(v) is continuous with respect ©g because {—n,..,n}? C Per(x,p,Z%) for all
n > 0. The last one means that x : Z¢ — ¥ is a semicocycle on G in the following
sense:

Definition 25. Let G = lim.,(Z%/Z,,T,) be a free odometer and let K be a compact
metric space. A function f : Z¢ — K is a semicocycle on G if it is continuous with
respect O, where O¢ is the topology on Z? inherited from G.

The functions f : Z¢ — K may be seen as elements of the topological dynamical system
(K Zd, 7%), where K 2% is endowed with the product topology and the action of v € Z¢
on f={f(2)},epa € K% is the shift action, it means v(f) = {f(v + 2) fn>0-

We will skip the proofs of Theorems 26 and 27 below, because they follow by the same
ideas as used in [4] for dimension one.

Theorem 26. If f € K2 is q semicocycle on some odometer G then f is a regqularly
recurrent point of (sz7 7%).

Theorem 26 provides another characterization of Z%Toeplitz arrays: we have showed
that every Toeplitz array x € Y2 is a semicocycle on some odometer G. By Theorem
26, if x € 2% is a semicocycle on some odometer G with values in a finite set 3 then
x is regularly recurrent and therefore a Toeplitz array.

Proposition 7 and Theorem 26 imply that (Qya(f),Z?) is a minimal almost 1-1 exten-
sion of some odometer, where €4 (f) represents the closure orbit of the semicocycle f
in KZ. Notice that G need not be the maximal equicontinuos factor of (Qa(f), 29,
for instance, in the first part of this section it was shown that every Toeplitz array
is a semicocycle on an odometer which is a product of d one-dimensional odometers.
While for d > 1 it is not true that any Toeplitz system has a maximal equicontinuous
factor which is a product of d one-dimensional odometers.

Let f € K% be a semicocycle on an odometer G. Since we have identified 7(Z4) with
Z% it makes sense to define F' = {(v, f(v)) : v € Z4} C G x K and
F(g)={ke K :(gk) € F} forged.

We call Cy the set of g € G such that [F(g)| = 1 and Dy = G\ Cf. Since f is
continuous we have that F(v) = {v} for all v € Z¢. Thus C} is the subset where f can
be continuously extended by f(g) = F(g).

The semicocycle f is said to be invariant under no rotation if F(g+ g’) = F(g’) for
every g’ € (G implies that g = 0.

Theorem 27. A topological dynamical system (X,Z%) is a minimal almost 1-1 exten-
sion of (G,Z%) if and only if it is conjugate to (Qua(f),Z%), where f is a semicocycle
on G, invariant under no rotation.

We say that a Toeplitz array x is non periodic if * + v = x implies that v = 0. A
semicocycle defined by a non periodic Toeplitz array is not extendable to a continuous
function on the whole odometer. For contrast, a constant semicocycle defines a periodic
array. Notice that x is non periodic if and only if x is a semicocycle on G, its maximal
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equicontinuous factor. In fact, if x is a semicocycle on G then it is a free dynamical
system and therefore x is non periodic. Conversely, if z is non periodic then G is a free
dynamical system. Since z is continuous with respect to O¢g, x is a semicocycle on G.
In Proposition 28 we mean x as a semicocycle on its maximal equicontinuous factor G.

Proposition 28. If x is non periodic and j € G then:
(1) o € F(j) if and only if there exists y € 7~ *{j} such that y(0) = o.
(2) D, = De.

Proof. Always we can suppose that 7(z) = 0. If o € F(j) then j is the limit of some
sequence {n;};>o € Z% such that lim; e x(n;) = o. Thus every accumulation point y
of {x + n;}i>o satisfies y(0) = o and 7(y) = 7(z) +j = j. By minimality of ), and by
continuity of =, if y € 771{j} satisfies y(0) = o then o € F(j). Property (2) follows
directly from (1). O

8. EXAMPLES

In this section we will give two examples of Z2-Toeplitz arrays. In the first example we
will construct a Toeplitz array z such that M(§2(Z)) has a determined finite number
of ergodic measures and in the second one the Toeplitz array & will be constructed
such that (Qy2(Z), Z?) is uniquely ergodic with positive entropy.

We set some notation that we use in both examples.

Let {gn}n>0 be a sequence of integer numbers such that g, > 3 for all n > 0. We set
po =1 and p, = H?golqi for n > 0.

For n > 0 we put

© 1 :
dn——  otherwise

and l,, = g1 — rn — 1. We define Dy = {0}? and

dn—1 : :
. _{ Il — 1 if gy is even
=

n n
Dy, ={2€Z: _Zlipi—l <z < Zripi—l}Z /i
=1 i=1

Notice that D, is the disjoint union of the sets D,,_1, = D,,_1 + v, for v € S, where
Sp={pn12€Z: —1, <z<r,}%
The "boundary” of S,, is S, = {(t1,t2) € Sy, : t1 or tg is in {rppn—1, —lnpn-1}}
Since ¢, > 3 for all n > 0, then {r, },>0 and {l,, }»>0 are increasing sequences and thus
22 = U, Dn.
Let ¢ > 1 be an integer and consider the alphabet ¥ = ¥y = {01, ..,04}. For n > 0
we take ¥, = {Bn1, - ,Bnk,} a set of different blocks in XP» such that for all
1<k <kp,

(1) Bpk(Dn-1,0) = Bn-1.1,

(2) Bn,k(Dn—l,v) €, forallv e Sn,
where By; = o; for all 1 <7 <gq.
From property (1) and since {D,, },~0 covers Z?, we have that there is only one element
T in (),sofz € 5% : 2(D,) = Bp.1}. Property (2) implies that (D, + v) € ¥, for
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Pn+1

Pn+1

FIGURE 1. The square D, 1 for g, = 6. The points ”.” represent the set 9S,,.

all v € p,Z?%. Thus, property (2) insures that Z(D,_1 + v) = By,_1, for all v € pnZ?,
which means that D,,_1 C Per(z,p,Z?). So, Z is a Z>-Toeplitz array.

For all n > 0 and 1 < k < g we define C,,, = {x € Qu2(Z) : 2(Dy) = By},
C, = Ui’;l Cpi and P, = {Cpp +w : w € Dy, 1 < k < k,}. From property (2) we
have that P, covers the orbit of  and since the sets in P,, are clopen, P, is a clopen
covering of Q2 (Z).

Lemma 29. If for all n > 0 the following statements are satisfied:
(1) If there exists w € Dy, such that for some 1 < k, k' < ky, By, p(v+w) = By, 1 (v)
for allv € D, such that v+ w € D, then w =0,
(2) By i(v) = By (v) for every v € 05y, and 1 < k, k' < ky,
then the coverings Py, are partitions spanning the topology of Qz2(Z).

Proof. Let z € Z? and let w € D,,. Suppose that Z + p,z +w € C,,. Let B, . be the
block in 3, such that (Z+ppz+w)(Dy) = By, . Since T+pyz is also in C),, there exists
1 < K <k, such that (Z+p,2)(Dy) = By . This implies that By, jr(w +v) = By, 1 (v)
for all v € D, satisfying v + w € D,,. From statement (1) we have w = 0 and thus we
conclude that Tg, (%) = p,Z?, which implies T¢, (z) = pp,Z? for all x € C,, because
(Qz2(%),Z%) is minimal. Thus if (Cyx 4+ v) N (Cp s + w) # O for some v, w € D,, and
1 < k, kK < k,, then v — w € p,Z?, which implies that w — v = 0. If v = w then
Cpn i N Cy iy # 0, which is possible if and only if By, = B, s/, i.e, when k = k. This
proves that P, is a partition.

Suppose that z1 and 2 are two points of {)72(Z) which belong to the same set of P,,.
Namely, z1,z2 € Cy , + v, for some v, € D, and 1 < j, < k,,. Let y1,y2 € C, 5, be
such that z; = y;+v, for i = 1,2, and let u € Z? be some vector in D,,_1. If v,+u € D,
then y1 (vp, +u) = y2(vy, +u) which implies that z1(u) = x2(u). If v,+u ¢ D, consider
z € 72\ {0} and w € D,, such that v, +u = p,z +w. Since y; + p,z and yo + ppz
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are in Cy, (Y1 +pn2)(Dpn) = By, and (Y2 + pn2)(Dp) = By, for some 1 < 1y,ls < ky,.
Thus y1 (v, + u) = By, (w) and ya(v, +u) = By, (w). It holds w — u = v, — pp2,
which implies that w — u ¢ D,, because z # 0. Since u € D,,_1 and w € D,,, this is
possible only if w € 05,. Thus, from statement (2), we have B, ;, (w) = By, (w) and
then x1(u) = y1(vy, +u) = y2(vy, +u) = x2(u). This proves that z1(Dy—1) = z2(Dp—1).
So, if 1 and x9 are in the same set of P, for all n > 0, then x1 = z9, which means
that {P,}n>0 spans the topology of {2z2(7). O
For n > 0 we define the set A, = {(x1,..,23,)7 € (RT)* : ngl x; = pin} and the
incidence matrix A, € My, xk,.,(Z) between P, and P, 1 by
An(kyj) = ’{U S Dn+1 : Cn—f—l,j +v C Cn,k}|a 1<k< kn7 1 S] < kn—s—l'

We denote by lim. (A, Ay) the inverse limit

Ao

Aq As

A aN| JAD) e
that is, lim. (A, A,) = {(zn)n>0 € >0l : ApZny1 = xpn, V0 > 0}

Lemma 30. If the coverings P, are partitions spanning the topology of Qz2(Z) then
we can identify M(Qg2(Z)) with the inverse limit lim. ., (A, Ay).

Proof. Suppose that the coverings P, are partitions that span the topology of Q2 (z).

By property (2) we have that P41 is finer that P,. This implies that

Cng = U?Zl Usesn k) Cnv1g + v, with J(n, k,j) = {v € Dny1 : Cpgaj +v € Ci}
: _ ken .

Thus >3, An(k, §) = g and for g € M(Qz2(2)), (Crk) = 3525 An(k, 5)i(Cryr ;)

for all n > 0. The first one implies that lim. ,,(A,, A;,) is well defined and the second

one that (u, = (U(Cnp), .., 1(Crk,)))n>0 is in this inverse limit. Conversely, given

(Un = (Un1s s Unk,))n>0 € lime (A, Ay), since the P, are clopen and span the
topology of €252 (Z), there exists only one 1 € M(§z2(Z)) satisfying u(Cp i) = tp, i for
all 1 <k <k, and n > 0. |

We will construct the different examples by choosing appropriate sequences {3, }n>0
and {Qn}nz()'

8.1. An example of a Z2-Toeplitz system with a determined finite number
of ergodic measures. Let n > 0 and let k € {1,..,q}. We set ¢, = spq + 1 for some
Sp > 1 and

DS, ) = U {(t1,t2) € DS, : t1 or Lo is equal to pp_1(—ln + 1)},
1€{0,..,qgn—1—1}N(k+q¢Z)
We have that 05, is the disjoint union of the sets 95, ; and the cardinality of every
one of these sets is 4s,,_1.
For n > 0 we set k,, = ¢ and we define B,, , for 1 < k < g, as follows:

( ) ( n—1 0) n 1,1,

(2) ( n— 1v) n 1,2 ifU:pnfl(*lnjLi*l,l)a for i € {2a'-7q}a

(3) Bni(Dn-1,) = Bp—14, for v e 0S5y, with i € {1, .., ¢}.

(4) Bpk(Dn—1,0) = Bp—1, for all v € S, such that B,, (D,—1,,) was not defined
in the previous steps.
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Bn,3 Bn,l Bn,2 Bn,?) Bn,l Bn,Q Bn,3
Bn,Q Bn,2
Bn,l Bn,2 Bn,3 Bn,l
Bn,S Bn,l Bn,3
Bn,2 BTL,Q
Bn,l Bn,l
Bn,3 Bn,l Bn,2 Bn,3 Bn,l Bn,? Bn,S

FIGURE 2. For q = 3, s, = 2 and k € {1,2,3}, the picture represents the block
Bpy1,r if we consider that every empty square corresponds to the block B, .

Point (3) from the construction insures that statement (2) of Lemma 29 is satisfied. The
existence of w € Dy \ {0} such that By (v +w) = By x(v) for some 1 < k, k' < ky and
for every v € D, satisfying v+ w € Dy, contradicts (3) and (4) from the construction.
Using the same argument for n > 1, it is possible to show by an induction argument
that statement (1) of Lemma 29 is also satisfied. Thus we conclude that {P,}n>0 is
a sequence of partitions spanning the topology of Q72(%), and by Lemma 30, the set
M(Qz2(Z)) is given by lim. ,(An, Ay).

Let n > 0. In this case, the incidence matrix A, € Mgx,(N) between P,, and P41 is
given by

An(27])_{ g2 — (qg—1)(s, +1) ifj=1i

For i € {1,..,q}. For m > n and j € {1,..,q}, we define u%) = p%

j-th unitary vector in R?. Simple computations yields

ej, where e; is the




20 M.I. Cortez

_ (ea—q(@sn+1)) (g, —q(4sm+1))
o 4R G, ’
quence, then it converges to some «,, € [0, 1], and so,

where 1, Notice that {lnm}m>n is a decreasing se-

_ 1 ;

lim A, - A ) = () _ L (1—an) + 4

Jim A, MUy = U = Qn : qane;

L 1 i
The points u(”’l), e ,u(”’q) generate the convex ﬂmzn Ay ANy By choosing
¢> —24— for all n > 0, where § is some point in (0, 1), we have that o, > 0 for all n. > 0.

1-627™

This implies that for all n > 0, (™D ... 49 are linearly independent vectors and
then, they are the extreme points of ﬂm>n cor A Nppy1. Since Aputli) = ()
for all j € {1,..,q}, we have that u(!) = {u(" DY 50, ,ul® = {ul™D}, 54 are the

extreme points of lim. ,,(A,, A,). Thus (2(%), Z?) has exactly ¢ ergodic measures.
If the sequence {gy }n>0 is constant then «,, = 0 for all n > 0, which implies that in
this case (Q42(%), Z?) is uniquely ergodic.

8.2. An example of a uniquely ergodic Z?-Toeplitz system with positive en-
tropy. We take ko = ¢, qo = ko + 2, kn = f(kn—1) and ¢, = k,, + 2 for n > 0, where
f N — N is the function defined by

(n? —1)!

f(n)zm

, for all n € N.

Remark 31. Observe that f(n) is the number of partitions P = {A;}-/' of a set A
with |A] = n? — 1 such that |A;| =n+ 1 for alli € {1,..,n — 1}.

Given the alphabet ¥ = ¥, consider the subset ¥, of ¥ such that B € ¥, if and
only if:

(1) B
9) B
B

( n—1 0) n 1,1,

( nly)eﬁn 1\{Bn 11}forv€S\({0}U85)

3 (Dn LU) =B,_ 1,kn_1 for all v € 8Sn,

4) ‘{U € Sy \ ({0} @] GSn) : B(Dn—l,v) = anl,l}’ =kp_1+1, for all
le {2, . kn—l}

From remark 31, we easily see that |%,| = k,.

The point (3) from the construction insures that statement (2) of Lemma 29 is satisfied.
We have that By, ;(Dn—1,,) = Bp—1,1 if and only if v = 0. This and (1) from the
construction imply that statement (1) of Lemma 29 is satisfied. Thus {P,}n>0 is a
sequence of partitions which spans the topology of Q72(Z), and by Lemma 30, the set
M(Qz2(Z)) is given by lim. ,,(An, Ap).
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Bag  ++ s+ cee s+ oo | Bugl

)= R I - S

FIGURE 3. The blank region A is filled by a concatenation k2 — 1 blocks from
»Pn_ The block shown above belongs to ¥,41 if the concatenation filling A uses
exactly k, + 1 copies of every block from %, \ {Bn,1}

Let n > 0. The incidence matrix A, € My, «. ., (N) between P,, and Py, 41 is given by

n+1
1 ifi=1
A, i) =4 kn+1 ifi=2- ky—1

okp +5 ifi=k,

For j € {L,-++ kny1}, since ApAni1 = {5 =L kn + 1,k + 1,5k, +5)7} , we
n+1
have
1
I}—IE(ATL; An) = {(p?i(la kn + 17 T akn + 17 5kn + 5)T)n20}'
n+1

This implies that (Qy2(Z),Z?) is uniquely ergodic with unique invariant probability
measure (1 € M(Qz2(7)) defined by

Looifj=1
po Y
w(Cij)=q »r, Hi=2 k-l
S i =k
1+1

For every i > 0.

Consider U and V), two open coverings of €2z. We define
NU) = min{|U/'| : U'isasubcoveringof U} and UV YV ={UNV :U €U,V € V}.
The topological entropy of (€2(z), Z?) is defined by

1
hiop(Qz2 (%), Z%) = sup lim sup o ImN(\/ U-w),
u n—oo n
VELn,
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where L,, = {0,..,n — 1}2.
Notice that for n > 0 and @ > n we have that every C;; is a different atom of the
partition \/,c; ~Pp — v. This implies that

fV( \/ 1%1—1O Z ki

vELp,

and then

Ink Ink
8.3)  huop(Qy2(Z), Z?) > limsu " = limsu n .
( ) top( Z2( ) ) - n—>oop p% 'n,—>oop ((k0+2)(k1+2)(kn_1+2))2
We will prove that by choosing an appropriate ko = q, hiop(Qz2(Z), Z*) > 0.

In the next Lemma we skip 742" in each term of the equation (8.3). We will take care
of this inaccuracy after the proof of the lemma.

Lemma 32. If ¢ > 5 then there exists a > 0 such that for all n > 0,

In(f"(q))
(af(@)f?(q)-- "1 (q)?

Proof. Let n > 1. By using Stirling’s inequality we get

> a.

(n? —1)! n?—1,2 027(n?—-1))

> ( )

(n+ 1)1 e (n+ 1)1

NG

f(n) =

Since (n + 1)! < (n + 1)"+1

(8.4) Flny > (L 2m(n? - 1),

By using that (n? — 1)% >n —11in (8.4) we obtain

(85) Fny > Dy e(emt > ()

Let ¢ > 2 be an integer number. We call ¢, = f"(q) and S,11 = % for all

n > 0. From (8.5) we deduce

In(4=2=1%1 In(g,_q — 1) 1
Sn > 2 - 2 27
(g0 an-1)®> (90 an-2?% (90 Gn2)
and finally
In(q,_ In(An=tr) 1
(8.6) Sy > ) e .
(g0 -an-2)? (g0 am-2? (9 Gn2)

We can use recursively (8.6) to get

& In(ghy) S
90 i—1
(8.7)  Sn>1In(g) - <1n(q0 DD (qoqq_l)2> - (1 t2 (qoq_1)2)

i=1
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Since for every ¢ > 0 it holds ln( 0r) > ln( 1), then

n—1 ql—l) 1
(8.8) _< 0_1 +ZZ: “Gi-1) >> o o—l <1+ZO"%’—1)2>

1

On the other hand —qi < —q— for ¢ > 0, which implies that

0 @

(8.9) — Z = > Z (ql)i.

From (8.7), (8.8) and (8.9) we get
q n—1 1 3
Sp >Ingy— | In 0 )4 1> <>

qO ( (90—1) Z

2
q0 q0
—Ina— (1 1
o <n(%—1)+ )<Q81>

Finally we have

In(gn)

|
\/ N——— N
|
So

. q0
8.10 lim >lIngy — <ln +1
(8.10) n—co (qo - gn—1)> 0 (QO—l) g —1
Not hard computations show that In go — (In(;27) + 1) 0 if go > 5 which proves
the lemma. O
For n > 0 we set
In k, , Ink,

= (kO + 2)(k1 + 2) e (knfl + 2))27 n = (k(] . "knfl)zv

2
and y, = I = H”_l ( ks )) . From the proof of Lemma 32 we deduce that, for all

(8.11)

For n > 7 we have

(8.12)

> .
1+2(-5)" ~ 2 + 1
We can prove by induction that for n > 2

on® 1\
8.13 S i
(8.13) 2§17 <2>

From (8.11),(8.12) and (8.13), if kg > 7 then

1
k_,_Q_(%) n=1 for all n > 0. So,
—1

1

n— kn
N =F (1 St L N
> p— —
Y =\ 3 =\2 =

»-lk\r—t
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Thus, by Lemma 32, there exists a > 0 such that for all n > 0

In &k,
(ko +2)(k1+2) - (kn—1+2))?

> Q.

Which implies, by (8.3), that hiop(Qyz2(Z),Z?) > 0 if we take ¢ > 7.
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