p-Box: A “new” graph model

Mauricio Soto, Christopher Thraves

DIM, Universidad de Chile LAAS, Toulouse

March 17, 2015

LIAFA, Paris
Wireless Sensor Networks
Wireless Sensor Networks
Related Graphs Classes

- **Intersection Graphs:** $G = (V, E)$

 $V \rightarrow \mathcal{F}$ (Interval, Disk, Boxes)

 $u \rightarrow F_u$

 $uv \in E \iff F_u \cap F_v \neq \emptyset$

- **Tolerance Graphs:**

 $u \rightarrow (l_u, t_u)$

 $uv \in E \iff |l_u \cap l_v| \geq \min\{t_u, t_v\}$.
Related Graphs Classes

- **Intersection Graphs:** $G = (V, E)$
 \[V \rightarrow \mathcal{F} \text{ (Interval, Disk, Boxes)} \]
 \[u \mapsto F_u \]
 \[uv \in E \iff F_u \cap F_v \neq \emptyset \]

- **Max-Tolerance Graphs:**
 \[u \mapsto (l_u, t_u) \]
 \[uv \in E \iff |l_u \cap l_v| \geq \max\{t_u, t_v\}. \]
The Model

- **p-Box (1):**

\[
\nu \quad \leftrightarrow \quad (I_v, p_v)
\]

\[uv \in E \iff (p_v \in B_u) \land (p_u \in B_v)\]
The Model

- **p-Box (1):**
 \[v \leftrightarrow (l_v, p_v) \]
 \[uv \in E \iff (p_v \in B_u) \land (p_u \in B_v) \]

- **c-p-Box:**
 p-Box model where \(p_v \) is the center of its interval \(l_v \).
The Model

- p-Box (1):
 \[v \mapsto (l_v, p_v) \]
 \[uv \in E \iff (p_v \in B_u) \land (p_u \in B_v) \]

- c-p-Box:
 p-Box model where \(p_v \) is the center of its interval \(l_v \).

The set \(\{(l_v, p_v)\}_{v \in V} \) is called \((c-)p-Box\) (1) realization of \(G \).
Today

Boxicity(2) → p-Box(1) → c-p-Box(1) → Block

Cyclic segment → Max-Tolerance → Outerplanar

2DORG

Rooted directed path → Interval
Related Work

- H. Maehara ['84]: **Interval catch digraph** $vu \in D \iff p_v \in l_u$
Related Work

- H. Maehara ['84]: **Interval catch digraph** $vu \in D \iff p_v \in I_u$
- V, Chepoi, S. Felsner ['13]: **Separable rectangle graphs**
Related Work

- H. Maehara ['84]: **Interval catch digraph** $vu \in D \iff p_v \in I_u$
- V, Chepoi, S. Felsner ['13]: **Separable rectangle graphs**
- J.R. Correa, L. Feuilloley, P. Pérez-Lantero, J.A. Soto ['13, LATIN'14]: **Diagonal-corner-separated**
Related Work

- H. Maehara ['84]: **Interval catch digraph** \(vu \in D \iff p_v \in I_u \)
- V, Chepoi, S. Felsner ['13]: **Separable rectangle graphs**
- J.R. Correa, L. Feuilloley, P. Pérez-Lantero, J.A. Soto ['13, LATIN'14]: **Diagonal-corner-separated**
- D. Catanzaro, S. Chaplick, S. Felsner, B. V. Halldrsson, M. M. Halldrsson, T. Hixon, J. Stacho ['14]: **Hook Graph, Point-Tolerance Graphs**

\[L_1 \]
\[L_2 \]
\[L_3 \]
\[L_4 \]
Related Work

- H. Maehara ['84]: **Interval catch digraph** $vu \in D \iff p_v \in I_u$
- V, Chepoi, S. Felsner ['13]: **Separable rectangle graphs**
- J.R. Correa, L. Feuilloley, P. Pérez-Lantero, J.A. Soto ['13,LATIN’14]: **Diagonal-corner-separated**
- D. Catanzaro, S. Chaplick, S. Felsner, B. V. Halldórsson, M. M. Halldórsson, T. Hixon, J. Stacho ['14]: **Hook Graph, Point-Tolerance Graphs**

Point-Tolerance $= p - Box(1) \subsetneq DCS \subsetneq SRG$
Related Work

- **Max-Weighted-Independent-Set**
Related Work

- **Max-Weighted-Independent-Set**
 - NP-complete for **Box(2)**

Hixon ['13]: \(G \) is NP-complete.

Correa et al ['13]: MHS/MIS^2 [3, 2, 2]. (Wegner conjecture)
Related Work

- **Max-Weighted-Independent-Set**
 - NP-complete for *Box*(2)
 - Linear for Interval Graph (Chordal Graph)
Related Work

- **Max-Weighted-Independent-Set**
 - NP-complete for Box(2)
 - Linear for Interval Graph (Chordal Graph)
 - $O(n^3)$ Hixon['13](rediscover Lubiw['91])
Related Work

- **Max-Weighted-Independent-Set**
 - NP-complete for Box(2)
 - Linear for Interval Graph (Chordal Graph)
 - $O(n^3)$ Hixon[’13](rediscover Lubiw[’91])
 - $O(n^2)$ Correa et al[’13] but NP-complete for rectangles touching diagonal
Related Work

- **Max-Weighted-Independent-Set**
 - NP-complete for Box(2)
 - Linear for Interval Graph (Chordal Graph)
 - $O(n^3)$ Hixon[’13](rediscover Lubiw[’91])
 - $O(n^2)$ Correa et al[’13] but NP-complete for rectangles touching diagonal

- Hixon[’13]: $\chi(G)$ is NP-complete.
Related Work

- **Max-Weighted-Independent-Set**
 - NP-complete for Box(2)
 - Linear for Interval Graph (Chordal Graph)
 - $O(n^3)$ Hixon['13](rediscover Lubiw['91])
 - $O(n^2)$ Correa et al['13] but NP-complete for rectangles touching diagonal

- Hixon['13]: $\chi(G)$ is NP-complete.
- Correa et al['13]: MHS/MIS $\in [3/2, 2]$. (Wegner conjecture)
Intersection Model

\[(p_1; p_1) \]
\[(p_2; p_2) \]
\[(p_3; p_3) \]
\[(p_4; p_4) \]

Kaufmann et al. [SODA'06]:

Max-tolerance = Intersection of isosceles triangles

\[c_{-p-Box}(1) \]
Intersection Model

\[B_1 \quad B_2 \quad B_3 \quad B_4 \]

\[(p_1, -p_1) \]

Kaufmann et al. [SODA’06]: Max-tolerance = Intersection of isosceles triangles

\[c - p - \text{Box} (1) \]
Intersection Model

Kaufmann et al. [SODA'06]:
Max-tolerance = Intersection of isosceles triangles

Max-tolerance c-p-Box (1).

$(p_1, -p_1)$

Graph:
1 -- 2

1 -- 3

3 -- 4

Line segments:

- B_1
- B_2
- B_3
- B_4
Intersection Model

Kaufmann et al. [SODA'06]:

Max-tolerance = Intersection of isosceles triangles

Max-tolerance = p-box (1).
Kaufmann et al. [SODA'06]:

Max-tolerance of isosceles triangles

Max-tolerance c-p-Box (1).

Intersection Model
Intersection Model

- Kaufmann et al. [SODA’06]: \textbf{Max-tolerance $=$ Intersection of isosceles triangles}

\textbf{Max-tolerance $\supset c$-p-Box(1).}
Combinatorial Characterization

Positions of representative points p_v induce an order of V.

\[x \rightarrow u \rightarrow v \rightarrow y \]
Combinatorial Characterization

Positions of representative points p_v induce an order of V.
Combinatorial Characterization

Positions of representative points p_v induce an order of V.

- Interval graphs: [S. Olariu '91]

\[
\begin{align*}
\text{Original Order:} & \quad x \rightarrow u \rightarrow v \rightarrow y \\
\text{Reordered Order:} & \quad x \rightarrow u \rightarrow v \rightarrow y
\end{align*}
\]
Combinatorial Characterization

Positions of representative points p_v induce an order of V.

- Interval graphs: [S. Olariu '91]

- Outerplanar: [T. Bilski '92] Page number 1.
Combinatorial Characterization

Positions of representative points p_v induce an order of V.

- Interval graphs: [S. Olariu '91]

- Outerplanar: [T. Bilski '92] Page number 1.

We will prove: \{Interval, Outerplanar\} \in c-p-Box (1)
Combinatorial Characterization cont.

Rooted directed path graph: intersection graphs of directed paths in a rooted directed tree
Combinatorial Characterization cont.

Rooted directed path graph: intersection graphs of directed paths in a rooted directed tree
Combinatorial Characterization cont.

Rooted directed path graph: intersection graphs of directed paths in a rooted directed tree

An inverse DFS on the tree is \((j \ i \ h \ g \ f \ e \ d \ c \ b \ a)\) inducing the order of the vertices of the graph: \((t \ z \ y \ w \ v \ x \ u)\)
The c-p-Box (1) class
Some Definitions

- Given an order π of the vertex, we note by:
 - $\ell_\pi(v)$ the most left neighbor of v.
 - $\rho_\pi(v)$ the most right neighbor of v.

Given a realization of G:
- $L(v)$ denotes the left extreme of I_v
- $R(v)$ denotes the right extreme of I_v
- v is safe if its position p_v belongs only to its neighbors' intervals.
Some Definitions

- Given an order π of the vertex, we note by:
 - $\ell_\pi(v)$ the most left neighbor of v.
 - $\rho_\pi(v)$ the most right neighbor of v.

- Given a realization of G:
 - $L(v)$ denotes the left extreme of I_v
 - $R(v)$ denotes the right extreme of I_v
 - v is safe if its position p_v belongs only to its neighbors intervals.
Theorem

\text{Interval} \subset \text{c-p-Box (1)}.
Theorem

\textbf{INTERVAL} \subset \textbf{c-p-Box} (1).

[S. Olariu 1991]
Interval Graphs and \(c-p \)-Box (1)

Theorem

\(\text{INTERVAL} \subset \text{c-p-Box} \ (1) \).

[S. Olariu 1991]

We greedily construct a realization according to order such that at step \(i \):

1. \(p_{k-1} < p_k \)
2. \(\rho(j) <_{\pi} \rho(k) \Rightarrow R(j) < R(k) \)
3. \(L(j) < p_{\ell(j)} \)
4. \(\rho(k) <_{\pi} j \Rightarrow R(k) < p_j \)
Theorem

\textbf{Interval} $\subset c$-p-Box (1).

[S. Olariu 1991]

We greedily construct a realization according to order s.t. at step i:

1. $p_{k-1} < p_k$
2. $\rho(j) <_\pi \rho(k) \Rightarrow R(j) < R(k)$
3. $L(j) < p_{\ell(j)}$
4. $\rho(k) <_\pi j \Leftrightarrow R(k) < p_j$

\textbf{First,} set position p_i after p_{i1} and s.t. is contained only by intervals associated to its previous neighbors.

\textbf{Second,} set the interval I_i s.t. it contains all its previous neighbors.

\textbf{Finally,} we modify, if necessary, the interval of previous vertices in order to satisfy conditions 2.
Interval Graphs and c-p-Box (1)

Theorem

Interval $\subset c$-p-Box (1).

[S. Olariu 1991]

We greedily construct a realization according to order s.t. at step i:

1. $p_{k-1} < p_k$
2. $\rho(j) <_\pi \rho(k) \Rightarrow R(j) < R(k)$
3. $L(j) < p_{\ell(j)}$
4. $\rho(k) <_\pi j \Leftrightarrow R(k) < p_j$

First, set position p_i after p_{i_1} and s.t. is contained only by intervals associated to its previous neighbors.

Second, set the interval l_i s.t. it contains all its previous neighbors.

Finally, we modify, if necessary, the interval of previous vertices in order to satisfy conditions 2.

All vertices are safe with respect to previous neighbors.
Outerplanar Graphs and c-p-Box (1)

Theorem

Outerplanar $\subseteq c$-p-Box (1).

- Non trivial biconnected components are dissections of polygons.

- Cycles are in c-p-Box (1)
- How to “glue” two cycles by an edge
- How to “glue” two biconnected components by a vertex
$C_n \in \text{c-p-Box}(1)$. Moreover, if π denotes the permutation induced by a realization Then, there exists a clockwise (or anticlockwise) labeling $l : V \rightarrow \{1, 2, \ldots, n\}$ such that:

1. $\pi(l^{-1}(1)) = 1 \land \pi(l^{-1}(n)) = n$.
Outerplanar and \(c\text{-}p\text{-}\text{Box} \ (1)\)

\(C_n \in c\text{-}p\text{-}\text{Box}(1)\). Moreover, if \(\pi\) denotes the permutation induced by a realization. Then, there exists a clockwise (or anticlockwise) labeling \(l : V \to \{1, 2, \ldots, n\}\) such that:

1. \(\pi(l^{-1}(1)) = 1 \land \pi(l^{-1}(n)) = n\).
2. \(p\text{-Box} \ (1): \ \forall u \in V, \ |l(u) - \pi(u)| \leq 1\).
$C_n \in c\text{-}p\text{-}Box(1)$. Moreover, if π denotes the permutation induced by a realization Then, there exists a clockwise (or anticlockwise) labeling $l : V \rightarrow \{1, 2, \ldots, n\}$ such that:

1. $\pi(l^{-1}(1)) = 1 \land \pi(l^{-1}(n)) = n$.
2. p-Box (1): $\forall u \in V, |l(u) - \pi(u)| \leq 1$.
3. c-p-Box (1): $\forall u \in V, l(u) = \pi(u)$.
$C_n \in c\text{-}p\text{-}Box(1)$. Moreover, if π denotes the permutation induced by a realization Then, there exists a clockwise (or anticlockwise) labeling $l : V \to \{1, 2, \ldots, n\}$ such that:

1. $\pi(l^{-1}(1)) = 1 \land \pi(l^{-1}(n)) = n$.
2. p-Box (1): $\forall u \in V, \ |l(u) - \pi(u)| \leq 1$.
3. c-p-Box (1): $\forall u \in V, \ l(u) = \pi(u)$.

Extremes vertices are safe!
\(C_n \in c\text{-}p\text{-}Box(1) \). Moreover, if \(\pi \) denotes the permutation induced by a realization Then, there exists a clockwise (or anticlockwise) labeling \(l : V \rightarrow \{1, 2, \ldots, n\} \) such that:

1. \(\pi(l^{-1}(1)) = 1 \land \pi(l^{-1}(n)) = n \).
2. p-Box (1): \(\forall u \in V, |l(u) - \pi(u)| \leq 1 \).
3. c-p-Box (1): \(\forall u \in V, l(u) = \pi(u) \).

Extremes vertices are safe!
Outerplanar and c-p-Box (1)

We can “glue” cycles by an edge in A DFS of weak dual
We construct a realization according to a BFS on the Block-tree of G scaling biconnected component.
p-Box (1) \ c-p-Box (1)
Any $H^{x, y, z}$ graph such that $l_z > l_y - 1$ does not belong to c-p-Box (1).
Any H_{l_x, l_y, l_z} graph such that $l_z > 3$ does not belong to p-Box (1).
• Any H^{l_x,l_y,l_z} graph such that $l_z \geq l_y \geq l_x \geq 2$ does not belong to c-p-Box (1).
• Any H^{l_x, l_y, l_z} graph such that $l_z \geq l_y \geq l_x \geq 2$ does not belong to c-p-Box (1).

• Any H^{l_x, l_y, l_z} graph such that $l_z \geq l_y \geq l_x > 3$ does not belong to p-Box (1).
Future Work and Open Questions

- Combinatorial characterization for c-p-Box (1).
Future Work and Open Questions

- Combinatorial characterization for \(c-p-\text{Box} \) (1).
 - Given an order?
Future Work and Open Questions

- Combinatorial characterization for c-p-Box (1).
 - Given an order?
- Recognition complexity of (c)-p-Box (1).
Future Work and Open Questions

- Combinatorial characterization for c-p-Box (1).
 - Given an order?
- Recognition complexity of (c)-p-Box (1).
- Related graph classes
Future Work and Open Questions

- Combinatorial characterization for \(c\text{-p-Box} \) (1).
 - Given an order?
- Recognition complexity of \((c\text{-})p\text{-Box} \) (1).
- Related graph classes
 - Unit-p-Box
Future Work and Open Questions

- Combinatorial characterization for c-p-Box (1).
 - Given an order?
- Recognition complexity of (c)-p-Box (1).
- Related graph classes
 - Unit-p-Box
 - p-Box with arcs
Duality gap p-Box (1), Correa et al. ['13]

- $\text{MIS}(G) \geq \max\{|I_x|, |I_y|\} = \max\{|H_x|, |H_y|\}$
- $\text{MHS}(G) \leq H \leq |H_x| + |H_y| \leq 2\text{MIS}(G)$
WMIS in p-Box (1), Cantazaro et al.[’13]

- $opt[u, v] = \max_{B_i \in [a, b]} \{ opt[a, B_i] + w(B_i) + opt[i, b] \}$
- $O(n^2)$ pairs computed in $O(n)$
c-p-Box with given order

\[
\begin{align*}
\text{min} & \quad \sum_{i \in V} r_i \\
\text{s.t.} & \quad x_i - x_{\ell_\pi(i)} \leq r_i - \varepsilon_1 \quad 1 \leq i \leq n \\
& \quad x_{\rho_\pi(i)} - x_i \leq r_i - \varepsilon_1 \quad 1 \leq i \leq n
\end{align*}
\]
c-p-Box with given order

\[\begin{align*}
\text{min} & \quad \sum_{i \in V} r_i \quad (1) \\
\text{s.t.} & \quad x_i - x_{\ell_{\pi}(i)} \leq r_i - \varepsilon_1 \quad 1 \leq i \leq n \quad (2) \\
& \quad x_{\rho_{\pi}(i)} - x_i \leq r_i - \varepsilon_1 \quad 1 \leq i \leq n \quad (3) \\
& \quad x_j - x_i \geq r_j \quad 1 \leq i < \pi_j \leq n, \ ij \not\in E, \ i \leftrightsquigarrow j \quad (4) \\
& \quad x_j - x_i \geq r_i \quad 1 \leq i < \pi_j \leq n, \ ij \not\in E, \ i \leftrightsquigarrow j \quad (5)
\end{align*}\]
c-p-Box with given order

\[
\begin{align*}
\text{min} \quad & \sum_{i \in V} r_i \\
\text{s.t.} \quad & x_i - x_{\ell_\pi(i)} \leq r_i - \varepsilon_1 \quad 1 \leq i \leq n \\
\quad & x_{\rho_\pi(i)} - x_i \leq r_i - \varepsilon_1 \quad 1 \leq i \leq n \\
\quad & x_j - x_i \geq r_j \quad 1 \leq i < \pi j \leq n, \ ij \notin E, \ i \not\sim j \\
\quad & x_j - x_i \geq r_i \quad 1 \leq i < \pi j \leq n, \ ij \notin E, \ i \not\sim j \\
\quad & x_j - x_i \leq r_i \quad 1 \leq i < \pi j \leq n, \ ij \notin E, \ i \not\parallel j \\
\quad & x_j - x_i \leq r_j \quad 1 \leq i < \pi j \leq n, \ ij \notin E, \ i \not\parallel j
\end{align*}
\]
c-p-Box with given order

\[\begin{align*}
\text{min} & \quad \sum_{i \in V} r_i \quad \quad \quad \quad \quad \quad (1) \\
\text{s.t.} & \quad x_i - x_{\ell_\pi(i)} \leq r_i - \varepsilon_1 & 1 \leq i \leq n \quad (2) \\
& \quad x_{\rho_\pi(i)} - x_i \leq r_i - \varepsilon_1 & 1 \leq i \leq n \quad (3) \\
& \quad x_j - x_i \geq r_j & 1 \leq i < \pi j \leq n, \ ij \notin E, \ i \not\sim j \quad (4) \\
& \quad x_j - x_i \geq r_i & 1 \leq i < \pi j \leq n, \ ij \notin E, \ i \not\sim j \quad (5) \\
& \quad x_j - x_i \leq r_i & 1 \leq i < \pi j \leq n, \ ij \notin E, \ i \not\sim j \quad (6) \\
& \quad x_j - x_i \leq r_j & 1 \leq i < \pi j \leq n, \ ij \notin E, \ i \not\sim j \quad (7) \\
& \quad x_{i+1} - x_i \geq \varepsilon_2 & 1 \leq i \leq n - 1 \quad (8) \\
& \quad x_1 = 0, \ x_n = L
\end{align*}\]
Containment Relations

- Cyclic segment
- Max-Tolerance
- Outerplanar
- Boxcity(2) → p-Box(1) → c-p-Box(1) → Block
- 2DORG
- Rooted directed path → Interval