A simple PTAS for Weighted Matroid Matching on Strongly Base Orderable Matroids

José A. Soto

Department of Mathematics
M.I.T.

2011
∅ \neq \mathcal{B} \subseteq 2^V is the basis system of a matroid if

- Every \(B \in \mathcal{B} \) has the same size.
- basis exchange property: For all \(A, B \in \mathcal{B} \) distinct there are \(a \in A \setminus B, b \in B \setminus A \) s.t. \(A - a + b \in \mathcal{B} \).
\[\emptyset \neq \mathcal{B} \subseteq 2^V \] is the basis system of a matroid if

- Every \(B \in \mathcal{B} \) has the same size.
- **basis exchange property**: For all \(A, B \in \mathcal{B} \) distinct there are \(a \in A \setminus B, b \in B \setminus A \) s.t. \(A - a + b \in \mathcal{B} \).

Independent sets \(\mathcal{I} \).

Independent Sets = Basis subset.

Examples of matroid bases
- **(Free)** Only \(V \).
- **(Uniform)** Sets of size \(k \).
- **(Graphic)** Spanning forests.
- **(Linear)** Vector space bases.
∅ ≠ ℬ ⊆ 2^V is the basis system of a matroid if

- Every $B ∈ ℬ$ has the same size.
- **basis exchange property:** For all $A, B ∈ ℬ$ distinct there are $a ∈ A \setminus B$, $b ∈ B \setminus A$ s.t. $A - a + b ∈ ℬ$.

Examples of matroid bases
- (Free) Only V.
- (Uniform) Sets of size k.
- (Graphic) Spanning forests.
- (Linear) Vector space bases.
∅ \neq B \subseteq 2^V \text{ is the basis system of a matroid if}

- Every \(B \in B \) has the same size.
- basis exchange property: For all \(A, B \in B \) distinct there are \(a \in A \setminus B, \ b \in B \setminus A \) s.t. \(A - a + b \in B \).

Independent sets \(\mathcal{I} \).

Independent Sets = Basis subset.
Matroids.

∅ ≠ \mathcal{B} ⊆ 2^V is the basis system of a matroid if

- Every \(B ∈ \mathcal{B} \) has the same size.
- **basis exchange property**: For all \(A, B ∈ \mathcal{B} \) distinct there are \(a ∈ A \setminus B, b ∈ B \setminus A \) s.t. \(A - a + b ∈ \mathcal{B} \).

Independent sets \(\mathcal{I} \).

Independent Sets = Basis subset.

Examples of matroid bases

- (Free) Only \(V \).
- (Uniform) Sets of size \(k \).
- (Graphic) Spanning forests.
- (Linear) Vector space bases.
Strongly Base Orderable (SBO) Matroids.

\[\emptyset \neq B \subseteq 2^V \] is the basis system of a SBO matroid

- Every \(B \in B \) has the same size.
- (SBO) basis exchange property: For all \(A, B \in B \) distinct
 \[\exists \text{ bijection } \pi : A \setminus B \rightarrow B \setminus A \text{ s.t. } \forall X \subseteq A, A \setminus X \cup \pi(X) \in B. \]

Examples of SBO matroid bases:
- (Uniform) Sets of size \(k \).
- (Gammoid) Maximum sets of clients connected to servers by edge-disjoint paths.
Strongly Base Orderable (SBO) Matroids.

\[\emptyset \neq \mathcal{B} \subseteq 2^V \] is the basis system of a SBO matroid

- Every \(B \in \mathcal{B} \) has the same size.
- (SBO) basis exchange property: For all \(A, B \in \mathcal{B} \) distinct

\[\exists \text{ bijection } \pi : A \setminus B \to B \setminus A \text{ s.t. } \forall X \subseteq A, \ A \setminus X \cup \pi(X) \in \mathcal{B}. \]
Strongly Base Orderable (SBO) Matroids.

$\emptyset \neq \mathcal{B} \subseteq 2^V$ is the basis system of a SBO matroid

- Every $B \in \mathcal{B}$ has the same size.
- (SBO) basis exchange property: For all $A, B \in \mathcal{B}$ distinct
 \exists bijection $\pi : A \setminus B \rightarrow B \setminus A$ s.t. $\forall X \subseteq A$, $A \setminus X \cup \pi(X) \in \mathcal{B}$.

Examples of SBO matroid bases
- (Uniform) Sets of size k.
- (Gammoid) Maximum sets of clients connected to servers by edge-disjoint paths.
Strongly Base Orderable (SBO) Matroids.

∅ ≠ B ⊆ 2^V is the basis system of a SBO matroid

- Every B ∈ B has the same size.
- **(SBO) basis exchange property:** For all A, B ∈ B distinct
 ∃ bijection π: A \ B → B \ A s.t. ∀X ⊆ A, A \ X ∪ π(X) ∈ B.

Examples of SBO matroid bases

- **(Uniform) Sets of size k.**
- **(Gammoid)**

Maximum sets of clients connected to servers by edge-disjoint paths.
Weighted Matroid Matching Problem

Problem

- Weighted graph $G = (V, E)$, $w: E \rightarrow \mathbb{R}^+$.
- Matroid $\mathcal{M} = (V, \mathcal{I})$.

A matching $M \subseteq E$ is **feasible** for \mathcal{M} if $V(M)$ is independent.

Goal: Find a maximum weight feasible matching.
Weighted Matroid Matching Problem

Problem

- Weighted graph $G = (V, E)$, $w: E \rightarrow \mathbb{R}^+$.
- Matroid $\mathcal{M} = (V, \mathcal{I})$.

A matching $M \subseteq E$ is **feasible** for \mathcal{M} if $V(M)$ is independent.

Goal: Find a maximum weight feasible matching.

Weighted Matching

Free matroid.

Weighted Matroid Intersection

$\mathcal{M}_1 \oplus \mathcal{M}_2$
Complexity of WMM

- Not in **oracle coNP** even for unweighted case.
- **NP-hard** even for unweighted case.
- Special subproblems in \mathbf{P}:
 - Weighted matching / Weighted Matroid Intersection.
 - (Lovász 1981) Unweighted case in \mathbf{P} for linear matroids.
 - (Tong et al. 1982) Weighted case in \mathbf{P} for gammoids.
Approximation algorithms

Unweighted

- **Greedy** gives 2-approximation.

(Fujito 1993) 3/2-approximation using local search.

(Lee et al. 2010) PTAS using local search.

(S. 2011) PTAS for SBO-matroids.
Approximation algorithms

Unweighted

- **Greedy** gives 2-approximation.
- (Fujito 1993) 3/2-approximation using local search.
Approximation algorithms

Unweighted

- **Greedy** gives 2-approximation.
- (Fujito 1993) 3/2-approximation using local search.
- (Lee et al. 2010) PTAS using local search.
Approximation algorithms

Unweighted
- **Greedy** gives 2-approximation.
- (Fujito 1993) 3/2-approximation using local search.
- (Lee et al. 2010) PTAS using local search.

Weighted
- **Greedy** gives 2-approximation.
Approximation algorithms

Unweighted

- **Greedy** gives 2-approximation.
- (Fujito 1993) 3/2-approximation using local search.
- (Lee et al. 2010) PTAS using local search.

Weighted

- **Greedy** gives 2-approximation.
- (S. 2011) PTAS for SBO-matroids.
WMM on SBO-matroids

Hardness
Still outside oracle coNP and NP-hard.

Weighted Parity on SBO-matroids
Find maximum weight paired basis of a SBO-matroid M. (with dummy pairs)

José A. Soto - M.I.T.
WMM on SBO-matroids

Hardness
Still outside **oracle coNP** and **NP-hard**.

Simplification:
\[G = \text{matching}. \]
Hardness
Still outside \textbf{oracle coNP} and \textbf{NP-hard}.

Simplification:
\(G = \text{matching}\).

Weighted Parity on SBO-matroids
Find maximum weight set of pairs \textit{feasible} for a SBO-matroid \(M\).
WMM on SBO-matroids

Hardness
Still outside \textbf{oracle coNP} and \textbf{NP-hard}.

Simplification:
$G = \text{matching}.$

Weighted Parity on SBO-matroids
Find maximum weight \textit{paired basis} of a SBO-matroid \mathcal{M}. (with dummy pairs)
Local moves

\textbf{t}-swap: For a current paired basis A

Swap at most t pairs to obtain paired basis B.

\textbf{Gain:} $w(B) - w(A)$. \textbf{High gain:} $w(B) - w(A) \geq w(A)/n^2$.
Local moves

t-swap: For a current paired basis A

Swap at most t pairs to obtain paired basis B.

Gain: $w(B) - w(A)$. **High gain:** $w(B) - w(A) \geq w(A)/n^2$.

Algorithm: For constant $1 \leq t \leq n$,

- Start with greedy solution.
- Do t-swaps with high gain until local optimum is found.
Local moves

\textbf{t-swap:} For a current paired basis A

Swap at most t pairs to obtain paired basis B.

\textbf{Gain:} $w(B) - w(A)$. \textbf{High gain:} $w(B) - w(A) \geq w(A)/n^2$.

\textbf{Algorithm:} For constant $1 \leq t \leq n$,

- Start with greedy solution.
- Do t-swaps with high gain until local optimum is found.

At most $O(\log_{(1+1/n^2)} 1/2) = O(n^2)$ moves suffice.

Can find an \textit{t-local optimum} in polynomial time ($O(n^{2t+2})$).
Main result for WMM on SBO-matroids.

Theorem

If paired basis A is a t-local optimum and $B = \text{OPT}$ then

$$w(B) \leq \left(1 + \frac{2}{t-1} \right) w(A).$$

PTAS: To get $(1 + \varepsilon)$-approx set $t = 1 + 2/\varepsilon$.

Running time $n^{O(1/\varepsilon)}$.
Main result for WMM on SBO-matroids.

Theorem

If paired basis A is a t-local optimum and $B = OPT$ then

$$w(B) \leq \left(1 + \frac{2}{t - 1}\right) w(A).$$

Auxiliar construction
Main result for WMM on SBO-matroids.

Theorem

If paired basis A is a t-local optimum and $B = \text{OPT}$ then

$$w(B) \leq \left(1 + \frac{2}{t-1}\right) w(A).$$

Auxiliar construction

- Matroid *with dummy pairs* is still SBO...
Main result for WMM on SBO-matroids.

Theorem

If paired basis A is a t-local optimum and $B = OPT$ then

$$w(B) \leq \left(1 + \frac{2}{t-1}\right) w(A).$$

Auxiliary construction

- Matroid *with dummy pairs* is still SBO...
- (multi)graph H of degrees 0 and 2.
Main result for WMM on SBO-matroids.

Theorem

If paired basis A is a t-local optimum and $B = \text{OPT}$ then

$$w(B) \leq \left(1 + \frac{2}{t - 1} \right) w(A).$$

Auxiliar construction

- Matroid *with dummy pairs* is still SBO...
- (multi)graph H of degrees 0 and 2.
- \vec{H}: Union of directed cycles.
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$.

For a pair p of A,

H_p: Reachable from p using $\leq 2(t - 1)$ edges.
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$.

For a pair p of A,

H_p: Reachable from p using $\leq 2(t - 1)$ edges.

$\text{swap}(p)$: Swap $H_p \cap A$ by $H_p \cap B$ (plus perhaps one dummy pair).
Proof of \(w(B) \leq (1 + 2/(t - 1)) w(A) \).

For a pair \(p \) of \(A \),

\(H_p: \) Reachable from \(p \) using \(\leq 2(t - 1) \) edges.

\(\text{swap}(p): \) Swap \(H_p \cap A \) by \(H_p \cap B \) (plus perhaps one dummy pair).
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$.

For a pair p of A,

H_p: Reachable from p using $\leq 2(t - 1)$ edges.

$\text{swap}(p)$: Swap $H_p \cap A$ by $H_p \cap B$ (plus perhaps one dummy pair).
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$.

For a pair p of A,

H_p: Reachable from p using $\leq 2(t - 1)$ edges.

$\text{swap}(p)$: Swap $H_p \cap A$ by $H_p \cap B$ (plus perhaps one dummy pair).

Since we swap at most t pairs

$$\frac{w(A)}{n^2} > \text{Gain}(\text{swap}(p)) = w(H_p \cap B) - w(H_p \cap A).$$
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$. (cont.)

$$\sum_{p\in A_{\text{long}}} \frac{w(A)}{n^2} > \sum_{p\in A_{\text{long}}} w(H_p \cap B) - w(H_p \cap A)$$
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$. (cont.)

\[
\sum_{p \in A_{\text{long}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{long}}} w(H_p \cap B) - w(H_p \cap A)
\]
Proof of \(w(B) \leq (1 + 2/(t - 1)) w(A) \). (cont.)

\[
\sum_{p \in A_{\text{long}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{long}}} w(H_p \cap B) - w(H_p \cap A)
\]
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$. (cont.)

\[
\sum_{p \in A_{\text{long}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{long}}} w(H_p \cap B) - w(H_p \cap A)
\]

\[
= (t - 1) w(B_{\text{long}}) - t w(A_{\text{long}}).
\]
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$. (cont.)

\[
\sum_{p \in A_{\text{long}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{long}}} w(H_p \cap B) - w(H_p \cap A)
= (t - 1) w(B_{\text{long}}) - t w(A_{\text{long}}).
\]

\[
\sum_{p \in A_{\text{rest}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{rest}}} w(H_p \cap B) - w(H_p \cap A)
\]
Proof of \(w(B) \leq \frac{1}{t} + \frac{2}{t-1} \) \(w(A) \). (cont.)

\[
\sum_{p \in A_{\text{long}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{long}}} w(H_p \cap B) - w(H_p \cap A) \\
= (t - 1) w(B_{\text{long}}) - t w(A_{\text{long}}).
\]

\[
\sum_{p \in A_{\text{rest}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{rest}}} w(H_p \cap B) - w(H_p \cap A)
\]
Proof of \(w(B) \leq (1 + 2/(t-1)) w(A) \). (cont.)

\[
\sum_{p \in A_{\text{long}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{long}}} w(H_p \cap B) - w(H_p \cap A) \\
= (t - 1) w(B_{\text{long}}) - t w(A_{\text{long}}).
\]

\[
\sum_{p \in A_{\text{rest}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{rest}}} w(H_p \cap B) - w(H_p \cap A) \\
= w(B_{\text{rest}}) - w(A_{\text{rest}}).
\]
Proof of $w(B) \leq (1 + 2/(t - 1)) w(A)$. (cont.)

\[
\sum_{p \in A_{\text{long}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{long}}} w(H_p \cap B) - w(H_p \cap A) = (t - 1) w(B_{\text{long}}) - t w(A_{\text{long}}).
\]

\[
\sum_{p \in A_{\text{rest}}} \frac{w(A)}{n^2} > \sum_{p \in A_{\text{rest}}} w(H_p \cap B) - w(H_p \cap A) = w(B_{\text{rest}}) - w(A_{\text{rest}}).
\]

\[
(t - 1) w(B) - t w(A) \leq ((t - 1) w(B_{\text{long}}) - t w(A_{\text{long}})) + t (w(B_{\text{rest}}) - w(A_{\text{rest}})) < \frac{w(A)}{n^2} (|A_{\text{long}}| + t |A_{\text{rest}}|) \leq w(A).
\]
Conclusions

First PTAS for Weighted Matroid Matching on Strongly Orderable Matroids.

Open Problems

- Can we get a PTAS for general matroids?
- Can we get a FPTAS for this class?