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In this paper we examine the problem of finding a Lipschitz function on an open domain with prescribed
boundary values and whose gradient is required to satisfy some nonhomogeneous pointwise constraints
a.e. in the domain. These constraints are supposed to be given by a measurable set-valued mapping with
convex, uniformly compact and nonempty-interior values. We discuss existence and metric properties of
maximal solutions of such a problem. We exploit some connections with weak solutions to discontinuous
Hamilton-Jacobi equations, and we provide a variational principle that characterizes maximal solutions.
We investigate the case where the original problem is supplemented with bilateral obstacle constraints
on the function values. Finally, as an application of these results, we prove existence for a specific class
of nonconvex problems from the calculus of variations, with and without obstacle constraints, under mild
regularity hypotheses on the data.

1. Introduction

Throughout this paper, Q is an open subset of R¥ with N > 1, and C' : @ = R" is a Borel
measurable set-valued mapping which is supposed to satisfy the following conditions:

C(z) is closed and convex for a.e. z € Q. (1a)
For all compact set K C 2, 3¢; >0, for a.e. z € K, ¢,B C C(x). (1b)
For all compact set K C §2, 3c; > 0, for a.e. z € K, C(z) C c2B. (1c)

Here, B stands for the closed unit ball of RY. Let us consider the following first-order
Dirichlet differential inclusion problem: find u € W1*°(2) N C(Q) such that

Vue C(z) a.e. inQ, @)
u=g on 892,

for g € Lip(0Q) := {w € C(8Q) | 3L > 0, Vz,y € 0Q, w(y) — w(z) < Ldista(z,y)}.
In fact, by considering a Lipschitz extension of g to {2 [15], we may assume that g €
Whe(Q) N C(Q).
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Several problems of the calculus of variations are related to this type of differential in-
clusion. For instance, (2) may describe the feasible functions for a variational problem
involving convex constraints on the gradient. In a different direction, the solutions of
(2) may be the a.e. subsolutions of a Hamilton-Jacobi equation H(x,Vu) = 0 in ©,
whose Hamiltonian H(z,&) is supposed to be convex and coercive with respect to £, and
C(z) = {¢€ e RN | H(z,&) < 0} is the O-sublevel set of H(z,-). In the latter case, the a.e.
solutions are related to the more restrictive differential inclusion:

Vu € dC(z) ae.inQ, 3)
u=g on 69

Other interesting cases that require to solve a problem as (3) are some attainment results
for relaxed problems of the calculus of variations, where C(z) is the closure of the de-

tachment set Df(z) = {£ € RN | f(z,&) > f**(x,£)} between the integrand in the energy
functional and its convex envelope.

Under appropriate continuity conditions, it is a well known result of the Hamilton-Jacobi
equations theory that (viscosity) solutions to some classes of equations are characterized
by a variational principle, which can be interpreted as a sort of minimal Lipschitz ex-
tension of the boundary data to the whole domain. This is accomplished by considering
the Finsler metric structures induced by the support functions of 0-sublevel sets of the
corresponding Hamiltonians. Recently, these metric methods have been adapted to prove
the variational principle together with other interesting results for more general Hamilton-
Jacobi equations under either semicontinuity [3] or just measurability [4] conditions, with
or without convexity (in this connection, see also [24]).

This note is intended to show how to exploit the results of 3, 4] to provide some metric
properties of the solutions of (2), compatibility conditions on the boundary data, and a
variational principle for the solutions to (3). In so doing, we compare some aspects of the
aforementioned works and we establish some new links between them. To this end, some
preliminaries are given in Section 2. The metric properties are discussed in Section 3. The -
connection with measurable Hamilton-Jacobi equations is reviewed in Section 4. Addi-
tionally, in Section 5, we investigate the case where the original problem is supplemented
with bilateral obstacle constraints on the function values. As an application of these
results, in Section 6 we prove existence for a specific class of nonconvex problems from
the calculus of variations, with and without obstacle constraints, under mild regularity
hypotheses on the data.

Finally, let us mention that the existence issue has been extensively treated in quite
general cases, including the vectorial case, by different methods as the convex integration
theory of Gromov and Baire’s category method. The book [9] provides an explanation of
these approaches. See also [25, 20].

2. Preliminaries on the induced metric structure

Given z € , let us denote by oc(z,-) : R¥N — [0,00) the support function of C(z), that
is,

oc(z,£") = oc@(¢") = sup (£,€), £ RV 4)
£€€C(2)
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By (1), for a.e. z € Q, o¢(x,-) is a continuous gauge which is strictly positive except at
the origin, namely,

1. oc(z, ) : RYN — [0,00) is continuous and convex.
2. YA>0,VE € RV, ao(z, A¥) = Moo(x, £).
3. oolx,6) =0iff & =0.

The gauge oc(z,-) is not a norm unless C(z) is symmetric in the sense that C(z) =
—C(z). In the general case, the triangle inequality holds: V¢},&3 € R, oc(z, & + &) <
oc(x,£}) + oc(x,£&5). Furthermore, it follows from (1b)-(1c) that

For all compact set K C Q, Jcy > ¢, > 0,
for a.e. 7 € K, V&* € RV, ¢}¢*] < a¢(z,€%) < €,

(5)
where | - | is the Euclidean norm in RN. By convexity, oc(z, £*) is Lipschitz continuous
with respect to &* for a.e. z € 2, and Borel measurable in z for each fixed £* (for the last
assertion, the reader is referred to [5] or [23, Example 14.51]). In particular, o¢(-,-) is a
Carathéodory function, hence Borel measurable as a function on Q x R¥.

The function o¢ defines a measurable Finsler metric on (2, a generalization of a Rieman-
nian metric that induces an intrinsic distance on Q. Under measurability conditions, the
introduction of a proper metric structure has been investigated in [11, 12, 13] for the
more general case of Lipschitz manifolds. Interesting refinements which will be useful in
our case in the context of Hamilton-Jacobi equations theory can be found in [3, 4]. For
any z,y € (2, we first denote by I'(; z,y) the set of all the Lipschitz continuous curves
v : [0,1] — © with 4(0) = z and (1) = y, we set I'(Q) := U, 4eal'(2; z,9), and for every
curve v € I'(Q2) we define

fol oc(v(t),¥(t))dt if the integral is well defined,
+o00 otherwise.

L{v|oc) = {
Next, for every n 2> 1 we denote by £,, the corresponding n-dimensional Lebesgue measure.
Following {14], we say that a curve v € I'(Q) is transversal to a Borel subset E of Q if
Li(vHE)) = Li({t € [0,1] | 7(t) € E}) = 0. We write v h E when 7 is transversal to E.
Then, it is possible to prove that the length functional L(- | o¢) : T'(2) — [0, 0o] induces
the finite-valued (possibly nonsymmetric) intrinsic distance distq(-,- | o¢) : @ x Q@ —
[0, 0) given by

disto(z,y | oc) = sup inf{L(y|oc) |7 € T(Q;x,y), v th E}. (6)
Ly(E)=0 v

We extend distq(-,- | oc) to @ x © by taking appropriate lower limits. In particular, if
z € 00 and y € 61, then

dista(z,y | o¢c) = liminf distq(¢,n | oc),
¢m—(z.w)

where ({,7) € 2 x Q. In general, the function disto(-, | o¢) so defined is just a pseu-
dodistance on 2 because it may fail to satisfy the triangle inequality. Actually, without
additional conditions on the geometry of {2, we may only have that distq(z,y | o¢) <
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dista(z, 2z | oc) + dista(2,y | oc) for every z,y € Q and z € Q. By (5) we have that
dista(:,- | o¢) is locally equivalent to the usual geodesic distance on 2. More precisely,
we have that for all compact set K C Q, Vz,y € K, cidiste(z,y) < dista(z,y | o¢) <

codistq(z, y), where distg(z,y) = inf{ fol [¥] | v € T(€z,9)}. As a consequence, we get
that c;|z — y| < dist(z,y | o¢) < o}z — y| locally in Q.

Remark 2.1. It is possible to simplify the expression (6) for the intrinsic distance under
appropriate semicontinuity assumptions. In fact, suppose that C : § =3 R" is upper
semicontinuous (uw.s.c.). Under local boundedness of images, which is valid here due to
(1c), the latter is equivalent to Vz € Q, limsup,_, C(z) C C(%) (cf. [23, Theo. 5.19]),
which, in turn, amounts to the upper semicontinuity of o¢(-,£*) for any &* € RN (cf. [23,
Ex. 5.6(c) and Cor. 11.35(a)]). Then, by either [12, Theorem 3.3] or [3, Proposition 3.4],
we have that disto(z,y-| oc) = inf{L(y | o¢) | v € (% z,y)}.

Next, we introduce a dual metric on  via polar operations (for a detailed exposition of
polarity the reader is referred to {22, Part III]). We begin by recalling that C(z), being a
closed convex neighborhood of the origin, can be expressed as

C(z) = {¢ €RY | 02(z,) < 1}, (7)
where 0g(z,£) = 0¢,,(£) is the polar gauge of o¢(z, ) = o¢(,) and in this case is given
by

00,(z,8) = sup —28) _ oy 87 ®)

£4£0 Uc(Ib‘, f*) l€*=1 UC(‘”:&")'
It is worth pointing out that
int C(z) = {¢ eRY | 03(z,€) < 1}, 9)
C(z) = {¢ e RY | 02 (z,£) = 1}. (10)
Furthermore, it is well known that V£ € RN, 62(z,£) = o¢(z)(£), where C(z)° is the
polar of C(z), that is, the convex set given by
Cz)° = {€" RV |VE € C(z), (£,€) <1} = {¢" €RY | oo(z,€") < 1}

Let C° : @ =3 R be the set-valued mapping defined by C°(z) := C(z)°. Therefore, we
can write

og(z,€) = oco(x,§). (11)
Both C° and o¢- are Borel measurable. On the other hand, it follows from (1b)-(1c)
that for all compact set K C € and for ae. ¢ € K, ¢;'B C C°(z) C c;'B, hence
VE € RN, ;1¢| < oco(x,€) < c7M€]. By virtue of (8) we have the following Cauchy-
Schwartz type inequality

Vz € Q, v&a g* € RN7 (51 5*) < UC°(x’ 5)00(37 6*) (12)

3. Differential inclusion problems under Dirichlet boundary conditions

Suppose (1) and consider the Dirichlet differential inclusion problem (2). It follows from
(7) and (11) that for every Lipschitz function u we have

Vu(z) € C(z) forae. 2 €Q & ogco(z,Vu(z)) <1 for ae. z €. (13)
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The boundary data is supposed to satisfy the following compatibility condition:

Laa(g | oc) <1, (14)

where

o S0 0@
Loa(g | oc) = zi‘égg diste(z,y | oc)

(15)

The necessity of (14) is a direct consequence of (13) together with
Proposition 3.1. Under (1), if u € W2(Q) then

Vr,y € Q, u(y) - u(m) < "o'C'° ("Vu)lloodiStQ(x)y | GC)’ (16)

where ||oco (-, Vu) |l = ess-sup{oce(z, Vu(z)) | z € Q}. If in addition u € C(Q) then the
latter holds for all z,y € Q. In any case, we have

u(y) — u(z)
o(*y V)|l oo = sup ———"—"—.
loce (s V)l v dista(@,y | o0)

(17)
If C(z) = B for all z € Q, then (16) amounts to |u(z) — u(y)| < ||Vuldista(z,y),
which is a well known inequality in Sobolev spaces theory (cf. [2, Chap. IX, Rem. 8]).
This result has been proved in the context of minimal Lipschitz extension problems in the
homogeneous case [9, Thm. 2.17] and in the continuous nonhomogeneous case [6, Props.
2.8 and 2.9]. Here we give a proof for the general measurable case.

Proof of Proposition 3.1. We denote by A, the set of all the points in  where u
is not differentiable. By Rademacher’s theorem, Ly(A4,) = 0. Let v € T(Q;z,y) be
such that v i A,. Then u(7y(-)) is differentiable almost everywhere in [0, 1] and more-
over u(v(1)) — u((0)) = Jo (Vu(y(t)),¥(t))dt. By (12), we deduce that u(y) — u(z) <
Jo 0o (1(®), Vu(x(t))oc (v(t), #())dt < lloce(Vu)|leoi(y | oc). and (16) follows.

In the case where z € 00 or y € 09, we first fix £ > 0. By continuity, there exists ro > 0
such that for any ¢ € QN B,,(x) and 7 € QN B, (y) we have u(y) —u(z) < e +u(n) —u(().
From our previous analysis it follows that u(y) —u(z) < e+ |loce (-, Vu)|| odistq (¢, n | oc).
Letting ({,n) — (z,y) and since € > 0 is arbitrary, we get the desired inequality.

Next, set M := sup,_, ﬁ}%%. By (16), we have that M < [oce (-, Vu)||oo. For every
z € A, and £&* € RN we have that (Vu(z),£*) = limy_o+ ﬂfﬂ%ﬁﬂ < M limsup,_,g+
d‘“—t“(’”—'—h"—gl’—""—c) On the other hand, by [4, Prop. 4.2] (see also |3, Prop. 2.11] in the upper
semicontinuous case), for every £ € RY, limsup,,_,o+ i‘is—"ﬂﬁ,%f—"—”@ < a¢(z, £*). Thus, for
every T € Ay, we have that gce(z, Vu(z)) = supgo Ful=€) < M. Since Ly(As) =0,

00(1»5‘)

we get ||oce (-, Vu)lloo < M, which completes the proof. O

Under (14), it follows from (13) and Proposition 3.1 that any solution u to (2) satisfies
Laa(g | o¢) £ lloce (-, Vu)|loo < 1. Given X > 0, consider the following Lipschitz McShane
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type extensions of g to { (see [1] and the references therein):
w)(z) = inf {g(y)+ Adista(y,z|oc)},z €T, (18)
Yy

up(z) i= sup {9(y) — Adisto(z,y | 0c)}, z € Q. (19)

It is simple to see that uy, u* € W1*°(Q?) and moreover both functions satisfy
Vz,y € Q, u(y) — u(z) < Mdista(z,y | oc), (20)

< . Notice that if u satifies (20) then

which amounts to |joce(:, Vt)|leo
‘ uy<u<u onQ (21)

If XA > Laa(g | oc¢) then it is clear that u* = uy = g on 6Q. By arguing, for instance,
exactly as in the first part of the proof of [15, Thm. 1.8] where the specific case oc = | - |
is treated, we can easily verify that u*,uy € C(Q). Therefore, if

Loa(gloc) <AL L (22)

then u, and u* solve (2), and are respectively minimal and maximal in the class of all the
solutions u of (2) satisfying (20). It turns out that (14) is necessary and sufficient for the
solvability of (2).

Take o := Laq(g | o¢). The corresponding functions uy, and u*° satisfy ||oce (-, Vu) | =
Xo. Consequently, both uy, and 4 solve the following nonhomogeneous minimal Lipschitz
exrtenston problem:

min{|loce (-, Vu)lleo | u € g+ Wo (D)},

whose optimal value is indeed given by Ag. Notice that any solution u of the latter
satisfies uy, < u < w*® in Q. This motivates the introduction of the uniqueness set
U(g) := {z € Q| up,(z) = u*(x)}. It is easy to see that = € Q belongs to Uy(g) iff there
exist boundary points y1,y2 € 99 such that |g(y1) — 9(y2)| = dodista(y1,92 | o¢) and
dista(y1,z | o¢) + dista(z,y2 | o¢) = distq(yi,y2 | oc). The first condition forces y1,y2
to realize the supremum in the definition of )y, while the second one means that U(g)
consists of distq(-,- | o¢)-segments joining those boundary points if they exist.

4. Maximal solutions and Hamilton-Jacobi equations

From now on, we suppose that the compatibility condition (14) holds. In the previous
section we have seen that for every A satisfying (22) the corresponding McShane extension
(18) provides a solution to (2). The maximal of those solutions is obtained by taking A = 1,
that is,

a(z) = yie%fn {9(y) + dista(y,z | 0¢)}, €. (23)

Motivated by Bellman’s approach to optimal control problems, this type of formula is
well-known in connection with Hamilton-Jacobi equations, providing a sort of extended
Hopf-Lax variational principle. The aim of this section is to discuss such a connection,
from the continuous to the general measurable case.
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Let He : 2 x RY — R be the Hamiltonian defined by

He(z,8) = oco(z,€) — 1. (24)

This function is convex continuous with respect to £ for a.e. x € (2, and we have the
following;:

C(z) = {€ € R | He(z,¢) < 0}. (25a)
8C(z) = {£ e RV | Ho(z,€) = 0}. (25b)

When Hg is continuous, which in our setting amounts to the continuity of C' : @ =% RV,
general results of the Hamilton-Jacobi theory (see, for instance, [17, Chap. 5]) together
‘with Remark 2.1, ensure that @ given by (23) is the unique viscosity solution of the
following Hamilton-Jacobi equation with boundary conditions:
{Hg(:c, Vu)=0 inQ, 26)

u=g on J5).

Before recalling the standard definition of viscosity solutions, let us introduce the notion
of tangent functions.

Definition 4.1. Given a Ls.c. (resp. u.s.c.) function u, a C! function 9 is called sub-
tangent (resp. supertangent) to u at zg if zp is a local minimizer (resp. maximizer) of

(v —1).
Consider the Hamilton-Jacobi equation
He(z,Vu)=0 inQ. 27)

Definition 4.2 (Crandall-Lions). Suppose that Hc is continuous. We say that a ls.c.
(u.s.c.) function u is a viscosity super (resp. sub) solution of (27) if for any zo € Q and ¢
C*'-subtangent (resp. supertangent) to u at zo we have

He(zo, Vip(zo)) =2 0 (resp. < 0).

A continuous function that is a viscosity super and sub solution of (27) is called a viscosity
solution. A function u € C(f) is a viscosity solution (resp. subsolution) of the Dirichlet
problem (26) if it is a viscosity solution (resp. subsolution) of (27) and satisfies u = ¢
(resp. u < g) on 8Q.

Under the continuity assumption on He, because @ is a Lipschitz viscosity solution of
(27), it follows that @ is an a.e. solution of (26) in the sense that Hc(z, Vu(z)) = 0 for
a.e. T € () and satisfies u = g on 8Q. As a consequence, by (25b), it follows that @ solves

(3)-

Next, suppose that C : € = RY is only us.c. so that Hg(-,€) is ls.c. for fixed €.
Then the classical notion of viscosity solution is not appropriate. In the specific case of
eikonal equations of the type F(Vu) = n(z) with Ls.c. right-hand side, this drawback was
overcome in [21] by the introduction of the so called Monge solutions:
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Definition 4.3 (Newcomb-Su). A function u € C() is said to be a Monge solution
(resp. subsolution, supersolution) of (27) if for every zo € Q we have that

lim inf u(z) — u(xo) + distq(z, 0 | o¢)
T—TO I.’L‘ - 270'

=0 (resp. 2, ). (28)

A function © € C(Q) is said to be a Monge solution (resp. subsolution) of the Dirichlet
problem (26) if it is a Monge solution (resp. subsolution) of (27) and satisfies u = g (resp.
u < g) on 0.

Under the l.s.c. hypothesis on n(z), it is proved in [21] that a comparison principle holds for
Monge subsolutions and supersolution of F(Vu) = n(z) as well as existence/uniqueness
results for Dirichlet boundary conditions. All these results were substantially extended
in [3] to more general Hamilton-Jacobi equations with discontinuities. Furthermore, as in
[3, Theo. 5.4], it turns out that @ is indeed the unique Monge solution of (26) and it is
maximal in the class of all Monge subsolutions.

In the general case where He(x, £) is only measurable in z for fixed £ € RV, and following
the O-sublevel set approach of [4], we begin by recalling a couple of definitions about some
notions of limits for measurable set-valued mappings (see [14] for further details). For
any subset E and z € RV the density A,(E) of E at z is given by the formula

_ Jim £¥(EN B(z,T))
Ax(B) = lim = )

and the approzimate limsup of C : @ =3 RV at x; is defined as

ap limsup C(z) = ﬂ{Kconvex, compact | Az ({z | C(z) C K}) =1}. (29)

=0

Under our hypotheses, we have that

aplimsup C(z) = C(zo) for a.e. 25 € Q.

z—T0

See, for instance. [4, Prop. 4.1(i)].

Definition 4.4 (Camilli-Siconolfi). An u.s.c. function u is said to be a CS-viscosity
subsolution of (27) provided that for any zo and any C'-supertangent v to u at zp, it
results

V4(zo) € aplimsup C(z).
r—TH
A Ls.c function v is said to be a CS viscosity supersolution of (27) if
ess lim sup &*(Vy(z),C(z)) > 0 (30)
T T
for any zo, and any Lipschitz continuous subtangent % to v at zp, where esslimsup

denotes the essential limsup, defined for a measurable function g as esslimsup,_,,, g(z) =

inf.so{esssupp(,,.)9}, and d* (€, A) stands for the signed distance from the point £ to the
set A.
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Definition 4.4 was introduced in [4], and it copes with the nonconvex case as well. Monge
and CS-viscosity solutions are equivalent to their classical viscosity analogues when Hc
is continuous (see, for instance, (3, Prop. 4.5]).

Remark 4.5. A comparison principle is proved in [4] under the additional hypothesis of
the existence of a strict a.e. subsolution. Notice that under (1b), by taking A = ¢;/2 in
(18) the corresponding function u/2 is a strict a.e. subsolution, hence the comparison
principle for CS-viscosity solutions holds in our setting on any compact subset K of Q,
which will be sufficient in the following,.

Concerning a.e. solutions in the CS-viscosity theory, let us mention that the comparison
between CS-viscosity subsolutions and a.e. subsolutions was made in [4], and results in
an equivalence as follows:

Proposition 4.6. Under (1a) and (1c), the following assertions are equivalent for u €
c@):

() u is an a.e. subsolution of (26).
(#) wu is a CS-viscosity subsolution of (26).
(#8) Vz,y € Q, u(z) — u(y) < dista(y,z | o¢).

Now, we answer positively whether CS-viscosity supersolutions are a.e. supersolutions
without any regularity assumption.

Proposition 4.7. Suppose (1), and let u € Wh°(Q) be a CS-viscosity supersolution of
(27), then:

(3) u is a Monge supersolution of (27).
(i) wu is also an a.e. supersolution of (27).

Proof. (i) We must prove that u satisfies

lim inf u(x) — u(@o) + dista(z, 20 | oc)
T—T( L,D — -’L‘o|

<0. (31)

Inspired by [21, Prop. 2.5], suppose on the contrary that there exists zo € , and two
positive constants r,d such that u(z) — u(xe) + dista(z, 2o | o¢) > 8|z — 0|, Yz € B,(o)-
Without loss of generality, suppose that u(ze) = 0. Let p(x) = —distp, () (2, %o | o¢)+07.
Notice that ¢ satisfies the compatibility condition (14) with respect to dist, (5,)(:, " | o¢)
and u > ¢ on 8B,(zo). Next, recall that w(z) = minyesB, (z) {¢(y) + dist B, (o) (¥, z | o¢)}
is a CS-viscosity solution (the unique indeed) of

He(z,Vw) =0 in B, (),
w=y¢ on 8B, (zo).

By virtue of the comparison principle, # > w in B,(xo). But w(z,) = or > 0 = u(xy),
which is a contradiction.

() The proof consists mainly in noticing that the upper semicontinuity required in [3,
Prop. 4.6 (ii)] to prove the same assertion for Monge supersolutions is used only to appeal
to (3, Prop. 2.11], which has an analogous in [4, Prop. 4.2] but without the semicontinuity
requirement. We omit the details. O
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It was shown in [4] that the McShane extension @ is the unique CS-viscosity solution of
(26). Summarizing we have the following:

Proposition 4.8. Under (1) and (14), the McShane Lipschitz extension @ is the unique
CS-viscosity solution of the Dirichlet problem (26). Moreover, @ solves (3) and u < % for
every solution u of (2).

Remark 4.9. In [10] it is proposed to define a viscosity solution for a homogeneous
differential inclusion as a viscosity solution of d(Vu, K') = 0 for a suitable set K which is
supposed to be compact but not necessarily convex. It is proved in [10] that the function
%(z) = infyean ok (T—Y), T € Q, is a viscosity solution satisfying a null boundary condition
when {2 is convex. In the scalar case, we think that the Definition 4.4 is well suited to
cover the nonhomogeneous, nonregular and with more general boundary condition case.

5. Solutions under bilateral obstacle constraints

In this section, we assume that the Dirichlet inclusion problem (2) is supplemented with
a pointwise bilateral constraint on u, namely
{(u, Vu) € K(z) a.e. in £, (32)

u=g on 8%,
where K : @ = RN+ is given by
K (z) = [a(z), b(z)] x C(z)

for a set-valued map C : Q =3 RY satisfying (1), and some measurable functions a,b :
2 — R such that supa < infb for all z € 2. We may assume without lost of generality
that

—oo < infa < supa <0 < infb < supb < 4o0. (33)

In fact, we have that any solution u € Wh(Q) N C(Q) of (2) satisfies |u(z)| < ||9]lco,00 +
diamg (2 | 0¢), = € 2, where diamg (2 | o¢) = sup, yeq distq (#,y | o¢). Thus, with no
loss of generality, we may assume that both functions a and b are bounded. On the other
hand, if supa € [0, 00) then we set as(z) := a(z) —sup a — § and bs(z) := b(z) —supa—4,
for any § € (0,inf b—sup a) so that supas = —8 < 0 < inf b5. Then we solve the inclusion
(us, Vus) € Kjs(x) a.e. in Q with the Dirichlet condition us = g5 on 0%, where Kj(z) =
las(x), bs(x)] x C(x) and gs(z) := g(x) — supa — 4. By taking u(z) = us(z) + supa + 4,
we recover a solution of the original problem (32).

We now show that it is possible to formulate (32) as a problem of the type (2) in one
higher dimension and with unbounded domain given by R x Q. First, given a function
v € C(R2), we define 2, € C(R x ) by

z(y)=€v(r) fory=(r,z)eRx Q. (34)

Notice that u = g on 0Q iff z, = z, on R x Q. On the other hand, v € W1>(Q) iff
z, € Wi (Ja, B[x ) for some a < 3, and moreover we have that

V) = (S, Vs ) = ¢ (0(a), V(@) ¥ = (o)
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Thus, given a solution u of (32), the corresponding function z, solves the differential
inclusion problem

(35)

V,z € Cly) aeimQ:=RxQ,
z2=12z, on 60 =R x 49,

where C(y) = e"K (), y = (r,z) € §). This type of transformation has been used in [16]
to deal with some Hamilton-Jacobi equations of the type F(z,u,Vu) = 1 in Q. When
F = F(z,s,£) is positively homogeneous of degree 1 with respect to (s,£), it is shown in

[16] how (34) yields naturally to the equation F(y, V,z) = 1 in § for F((r,2), (s,£)) =
e""F(z,s,£). In our case, following the approach discussed in the previous section to find
maximal solutions of convex differential inclusions, the original problem (32) is related to
the Hamilton-Jacobi equation

(36)

/

Hyg(z,u,Vu) =0 a.e. in Q,
u=g on 092,

where the Hamiltonian is given by
Hy(z,3,8) = ogo(x,8,8) -1, z€Q,s€R, £ RV,
On the other hand, the transformed problem (35) yields to the boundary value problem

{H@(y, Vy2)=0 ae inQ, 37)

z2=12 on 6%,
where Ha(y,p) = 05.(y,p) — 1 = e "ok (z,8,) — 1, y=(1,2) € ﬁ, p=(s,&) € RN+L

By arguing as in [16}, and using the results of [4] in the measurable case, it is possible to
verify that the McShane Lipschitz extension

Z(y) = 13951 {zo(n) +distz(n,y | 05)}, yeRxQ, (38)
n

is indeed a CS-viscosity solution of (37), even though Qis unbounded, provided that the
following compatibility condition holds:

Lgaa(2g | 05) < 1. (39)

Here, 2, is given by (34) and L is defined as in (15). See [17] for similar results in the
continuous case.

Note that (39) is always stronger than (14). In fact, by considering curves with constant
first component in the definition of distg(n,¢ | o5) for n = (7,z) and ¢ = (r,y) with
7 € R and z,y € 0, one can readily see that dist;(n,{ | 05) < €"dista(z,y | o¢), hence

Loa A) — zo(n) — 2(¢)
(20 | 05) ni:ga st (7, C | o)
e"lg(z) — 9(¥)]
 cage 8ta((1,2), (1) | 02)

>Lea(g | oc)
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In general, the first inequality is a strict one.

By Proposition 4.8, Z is also an a.e. solution of (37). In particular, Z is an a.e. maximal

solution to (35), that is, V,Z(y) € 8C(y) for a.e. y € . Another property of z is the
following:

Z(r,z) = €"2(0, z).

This relation follows from os(y,p) = €"ok(x,p), and it has been already used in [16].
Therefore, taking

i(z) := (0, z),

we recover a solution to (32). In fact, we have that

(a(z), Va(z)) € 0K (z)

= [a(z), b(z)] x 8C(z) U {a(z)} x C(z) U {b(z)} x C(z) for a.e. z € Q. (40)

Finally, notice that the additional hypothesis
a,b e Wh°(Q) and Va(z), Vb(z) € (RV\ C(z)), forae z€Q, (41)
forces the stronger condition (4(x), Vi(z)) € [a(x), b(x)] x 8C(x) a.e. in ©, hence @ solves

VuedC(z) ae zeq,
a<u<b in Q, (42)
u=g on 9.

The previous discussion is summarized in the following:

Proposition 5.1. Suppose that (39) holds. Consider the function Z defined in (38), and
define t(zx) := 2(0,x). Then @ is a Lipschitz solution of (32). Moreover, @ satisfies (40).
Furthermore, under the additional hypothesis (41), the solution @ satisfies (42).

6. Application to a nonconvex problem of the calculus of variations

We will apply the previous results to prove existence of solutions to some nonconvex
problems of the calculus of variations.

Let © be a bounded open subset of RV. We will assume in addition that the boundary
0Q of Q is deformable Lipschitz. We refer the reader to [7, Def. 2.1] for the precise
definition of the deformable Lipschitz boundary property. Let us only mention here that
it permits to define an outward unit normal field and to establish an extended Gauss-
Green formula (see (2.2) on page 96 of {7]), which we will use in the proof of our existence
result. Examples of such a regular domain are the smooth (C?) domains, the star-shaped
domains and all the domains having the cone property.

Given a Carathodory function f : @ x RN — R, let us denote by f**(z,¢) the lower
convex envelope of f(x,£) with respect to &, that is, the greatest convex function below
f(z,-). Following the approach of [18, 19], we define the detachment set by

Dy(z) = {¢ €RY | f(z,€) > (2,6)},
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and consider the following conditions:
The set valued map C(z) := Dy(z), z € Q, satisfies (1). (43a)
Im e L°(RY), g L) : f*(z,¢)
= (m(x),€) + q(z), V& € Dy(x), a.e. in Q.
div(m) = 0 in the sense of distributions. (43c)

(43b)

Theorem 6.1. Let Q be a bounded domain in RN with deformable Lipschitz boundary.
Let f : @ x R¥N — R be a Carathodory function satisfying (43). If g € W(Q) N C(Q)
satisfies the compatibility condition (14) then the function @ given by (23) solves the
following problem:

min {/ﬂ f(z, Vu)dz |u € g+ Wy (Q)}. (44)

Let a,b: Q — R satisfy (33) and (41), and assume in addition that g satisfies (39), then
the function @ = Z(0, ) with Z given by (38) solves the following bilateral obstacle problem:

min {/ f(z, Vu)dr |a<u<b, ueg+Wye(Q)}. (45)
Q

Proof. Let & € W'*(Q2) N C(Q) be the function given by (23) with C(z) = D;(x).
By Proposition 4.8, 4 solves the following differential inclusion under Dirichlet boundary
conditions:

Vu € 8Ds(z), ae €K,
u=g on 0%},

Next we proceed to show the optimality of @ for (44). First, notice that for a.e. z € Q,
[**(z,€) satisfies the affine representation given by (43b) for any £ € 8D(z) C {¢ € RV |
fz,¢) = f*(z,()}. Thus

fn f(z, Va)ds = L £(z, Va)dz = L (m(=), Vii(z))dz + L o(x)dz.

By the extended Gauss-Green formula {7, Theo. 2.2 and 3.1} together with (43c), we have
that [,(m(z), Va(z))dz = f;, @(m,v)d#" !, where v is the outward unit normal to 8
and "1 is the (N — 1)-dimensional Hausdorff measure on R¥. Hence

Af(x,Vﬁ)M=/mg(m, u)dﬂ”'l—l-/ﬂq(x)da:.

On the other hand, by convexity, f**(x,£) > (m(z),£) + g(z) for all £ € RV, ae. in Q.
Let v € g + Wy () be another Lipschitz function, then

/f;f(:v,Vv)de/;f”(m,V'u)dm?_ -/(‘I(m(;v),Vv(:v))dx+/:lq(a:)dx.

Using once more the extended Gauss-Green formula, we get

/Q f(z,Vv) > /8 glm, )N+ fn g(@)dz = /n f(z, Va)da,

which proves the result for (44). The case of (45) is similar. O
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Remark 6.2. Concerning problem (44), the previous result generalizes [19, Theo. 1.4},
hence [18, Theo. 1.3], where the requirement on f**(z,-) to be affine on Dy(z) is sup-
plemented with some continuity properties on the integrand. We avoid such a regularity
hypothesis by exploiting some recent existence results for measurable Hamilton-Jacobi
equations and the connection with differential inclusions. Additionally, our result covers
a wider class of domains by requiring less regularity on the boundary, and it provides a
new existence result for bilateral obstacle problems.
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