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will start to move at time t = Ty.
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Consider a large ring that contains a smaller ball inside, and the ring
will start to move at time t = Ty.

Depending on the motion of the ring, the ball will just stay where it is
(in case it is not hit by the ring), or otherwise it is swept towards the
interior of the ring.

In this latter case the velocity of the ball has to point inwards to the
ring in order not to leave.
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Introduction and motivation

Mathematically,

(1.1)

—v(t) € N(C(1);v(t)) ae.t € [To,T];
V(T()) =V € C(TO),
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Mathematically,

(1.1)

—v(t) € N(C(1);v(t)) ae.t € [To,T];
V(T()) =V € C(TO),

where

@ v(7) is the position of the ball at time 7.
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Mathematically,

{—f/(t) e N(Ct);v(t)) ae.t€ [Ty, T); 0

V(T()) =y € C(To),

where
@ v(7) is the position of the ball at time 7.

e C(1) is the moving set (the ring and its interior).
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(1.1)

—v(t) € N(C(1);v(t)) ae.t € [To,T];
V(T()) =V € C(TO),

where
@ v(7) is the position of the ball at time 7.
e C(1) is the moving set (the ring and its interior).

@ N (C(t);v(t)) is some appropriate outward normal cone of C()
atv(r) € C(1).
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Introduction and motivation

Introduction and motivation

Mathematically,

(1.1)

—v(t) € N(C(1);v(t)) ae.t € [To,T];
V(T()) =V € C(TO),

where
@ v(7) is the position of the ball at time 7.
e C(1) is the moving set (the ring and its interior).
@ N (C(t);v(t)) is some appropriate outward normal cone of C()
atv(r) € C(1).
In the general setting, the set C(¢) is allowed to change its shape while
moving.
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Introduction and motivation

Here we consider the Clarke normal cone: For x € §
N(S;x) ={C€H: ((,v) <0Vv e Ts(x)},
where T(x) is the Clarke tangent cone:
v € Ts(x) < Vx; — x,Vt; — 0, 3v; — v such that x; + #;v; € SVi.

Also, we set N(S,x) = Qif x ¢ S.

A. Jourani and E. Vilches 1 generalized perturbed sweeping process



Introduction and motivation

Moreau’s perturbed sweeping process

—v(t) € N(C(1);v(t)) + F(t,v(1)) ae.t€ [Ty, T];
V(T()) =V € C(T())7

where
e C: [Ty, T] = H is a set-valued map with nonempty closed
values.
@ N(S,-) is the Clarke normal cone to S.

e F: [Ty, T| x H= H is a set-valued map with nonempty closed
convex values satisfying some standard conditions.
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Introduction and motivation

Moreau’s perturbed sweeping process

_i(t) € N (C);v(1) + F(t,v(t))  ae. 1 € [To, T];
V(To) =g € C(To),

It appears, for example, in:
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A. Jourani and E. Vilches On a generalized perturbed sweeping process



Introduction and motivation

Moreau’s perturbed sweeping process

—v(t) e N(C(t);v(1)) + F(t,v(t)) ae.te [Ty, T];
V(To) =g € C(To),
It appears, for example, in:

@ Granular materials (J.J. Moreau)
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V(To) =g € C(To),

It appears, for example, in:
@ Granular materials (J.J. Moreau)
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@ Crowd motion (F. Bernicot - J. Venel)

A. Jourani and E. Vilches On a generalized perturbed sweeping process



Introduction and motivation

Moreau’s perturbed sweeping process

_i(t) € N (C);v(1) + F(t,v(t))  ae. 1 € [To, T];
V(To) =g € C(To),

It appears, for example, in:
@ Granular materials (J.J. Moreau)
@ Electrical circuits (V. Acary - B. Brogliato)
@ Crowd motion (F. Bernicot - J. Venel)

e Hysteresis in elasto-plastic models (P. Krej¢i)
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Introduction and motivation

Moreau’s perturbed sweeping process: Existence theory

Main contributions:

@ J.J. Moreau (1971 [28], 1972 [29], 1977 [30], 1999 [31])
> C(t) convex and F = 0.

o C. Castaing - T.D. Ha - M. Valadier (1993 [14])
> C(t) convex and complement of a convex and F usc.

e M. Kunze - Monteiro-Marques (1996 [25], 2000 [27])
> C(t) convex and F = 0.

e H. Benabdellah (1999 [6])
>C(t) closed and F = 0.

@ G. Colombo - V. Goncharov (1999 [16])
> C(t) closed and F = 0.
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Introduction and motivation

Moreau’s perturbed sweeping process: Existence theory

Main contributions:

@ M. Bounkhel - L. Thibault (2005 [12])
> C(t) prox-regular and F usc.

@ J. Edmond - L. Thibault (2005 [17], 2006 [18])
> C(t) prox-regular and F usc.

e T. Haddad - A. Jourani - L. Thibault (2008 [20])
> C(t) a-far and F mixed usc.

e Thibault (2003 [33], 2008 [34], 2016 [35])
> C(t) convex and prox-regular.

@ A.Jourani - E. Vilches (2016 [24])
> C(t) a-far and F usc.
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Introduction and motivation

State-dependent perturbed sweeping process

—v(t) € N(C(t,v(1));v(1)) + F(t,v(t)) ae.t€ [Ty, T];
v(To) = vo € C(To, vo),

where

Q C: [T),T] x H= H is a set-valued map with nonempty closed
values.

@ N(S,-) is the Clarke normal cone to S.

@ F:[T),T] x H= H is a set-valued map with nonempty closed
convex values satisfying some standard conditions.
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Introduction and motivation

State-dependent perturbed sweeping process: Existence
theory

Main contributions:
@ M. Kunze - M. Monteiro-Marques (1998 [26])
> C(t,x) convex and F = 0.
@ N. Chemetov - M. Monteiro-Marques (2007 [15])
> C(t,x) prox-regular and F continuous.
@ M. Bounkhel - C. Castaing (2012 [11])
> C(t,x) convex and F = 0.

e T. Haddad (2013 [19])
> C(t,x) convex and F usc.
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Introduction and motivation

State-dependent perturbed sweeping process: Existence
theory

Main contributions:

@ D. Azzam-Laouir - S. Izza - L. Thibault (2014 [5])
> C(t,x) convex and F mixed usc.

@ J. Noel - L. Thibault (2014 [32])
> C(t,x) subsmooth and F usc.

e T. Haddad - I. Kecis - L. Thibault (2015 [21])
> C(t, x) prox-regular and F mixed usc.

@ A.Jourani - E. Vilches (2016 [22])
> C(t,x) subsmooth and F = 0.
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Introduction and motivation

Second-order perturbed sweeping process

{ —ii(r) € N (C(t,u(t),u(t)); u(r)) + F(t,u(r),i(t)) ae.t € [To,T];
(

u(To) = uo, u(To) = vo € C(To,uo,vo),

where,

Q C:[T),T] x Hx H = H is a set-valued map with nonempty
closed values.

@ N(S,-) is the Clarke normal cone to S.

@ F:[T),T] x Hx H= H is a set-valued map with nonempty
closed convex values satisfying some standard conditions.
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Introduction and motivation

Second-order perturbed sweeping process: Existence theory

Main contributions:
o C. Castaing (1988 [13])
> C(t,u,v) = C(u) convex and F = 0.
@ M. Bounkhel et al (2003 [8], 2004 [10], 2010 [9])
> C(t,u,v) = C(u) prox-regular and F(t,u,v) = F(t,v) usc.
@ D. Azzam-Laouir et al (2008 [3], 2011 [4], 2014 [2])
> C(t,u,v) = C(t) or C(u) prox-regular and F usc.
e F. Bernicot - J. Venel (2012 [7])
> C(t,u,v) = C(t) prox-regular and F(t,u,v) = F(t,u)
Lipschitz.
o S. Adly - B. Le (2016 [1])
> C(t,u,v) = C(t,u) prox-regular and F usc.
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Position of the problem

Generalized perturbed sweeping process (GPSP)

The generalized perturbed sweeping process (GPSP):
—u(t) = Bv(t) ae. t € [Ty, T);

—v(t) € N (C(t,u(t),v(t));v(t)) + F(t,u(t),v(t)) + Au(t) ae. € [To,T];
u(To) = uo,v(To) = vo € C(To,uo,vo),
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Generalized perturbed sweeping process (GPSP)

The generalized perturbed sweeping process (GPSP):
—u(t) = Bv(t) ae. t € [Ty, T);
—v(t) € N (C(t,u(t),v(t));v(t)) + F(t,u(t),v(t)) + Au(t) ae. € [To,T];
M(To) = MO7V(T0) =V € C(T()a M(),VO),

where,

@ H is a separable Hilbert space.
@ A: H— Hand B: H — H are two bounded linear operators.
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Generalized perturbed sweeping process (GPSP)

The generalized perturbed sweeping process (GPSP):

—u(t) = Bv(t) ae. t € [Ty, T);
—v(t) € N (C(t,u(t),v(t));v(t)) + F(t,u(t),v(t)) + Au(t) ae. € [To,T];
u(To) = uo,v(To) = vo € C(To,uo,vo),

where,

@ H is a separable Hilbert space.

@ A: H— Hand B: H — H are two bounded linear operators.

@ C: [Ty, T] x H x H = H is a set-valued map with nonempty and closed
values.

@ N(S,-) is the Clarke normal cone to S.

@ F: [Ty, T] x Hx H =% H is a set-valued map with nonempty closed convex
values satisfying some standard conditions.
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Position of the problem

Why consider the GPSP?

o If C(t,u,v) = C(1), F(t,u,v) = F(t,v),A = 0and B =0 we
recover the Moreau’s perturbed sweeping process.
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Why consider the GPSP?

o If C(t,u,v) = C(1), F(t,u,v) = F(t,v),A = 0and B =0 we
recover the Moreau’s perturbed sweeping process.

o If C(t,u,v) = C(t,v), F(t,u,v) = F(t,v),A =0and B =0 we
recover the state-dependent perturbed sweeping process.
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Position of the problem

Why consider the GPSP?

o If C(t,u,v) = C(1), F(t,u,v) = F(t,v),A = 0and B =0 we
recover the Moreau’s perturbed sweeping process.

o If C(t,u,v) = C(t,v), F(t,u,v) = F(t,v),A =0and B =0 we
recover the state-dependent perturbed sweeping process.

o If A = 0 and B = —I we recover the second-order perturbed
sweeping process.
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Position of the problem

Generalized perturbed sweeping process (GPSP)

The generalized perturbed sweeping process (GPSP):

—u(t) = Bv(t) ae. t € [Ty, T);
—v(t) € N (C(t,u(t),v(t));v(t)) + F(t,u(t),v(t)) + Au(t) ae. € [Ty, T];
u(To) = uo, v(To) = vo € C(To,uo,vo),
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Position of the problem

Generalized perturbed sweeping process (GPSP)

The generalized perturbed sweeping process (GPSP):

—u(t) = Bv(t) ae. t € [Ty, T);
—v(t) € N (C(t,u(t),v(t));v(t)) + F(t,u(t),v(t)) + Au(t) ae. € [Ty, T];

v(t) € C(t,u(t),v(r)) Vit € [To, T);
u(To) = ug, v(Ty) = vy € C(Ty, up, vo),
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e Foreach (u,v) € H x H, F(-,u,v) is measurable.
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Basic assumptions

Basic assumptions

(H"): F: [Ty, T) x H x H = H has nonempty closed and convex
values.
e Foreach (u,v) € H x H, F(-,u,v) is measurable.

e Forae.t € [Ty, T], F(t,-,-) is upper semicontinuous from
H x H into H,,,,
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Basic assumptions

Basic assumptions

(H"): F: [Ty, T) x H x H = H has nonempty closed and convex
values.

e Foreach (u,v) € H x H, F(-,u,v) is measurable.

e Forae.t € [Ty, T], F(t,-,-) is upper semicontinuous from
H x H into H,,,,

@ There exist ¢,d € L'(Ty, T) such that
d(0, F(t,u,v)) :=inf{||w||: w € F(t,u,v)} < c(@)||(u,v)| + d(2),

forae. t € [Ty, T] and all (u,v) € H x H.
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Basic assumptions

Basic assumptions (continued)

(H") C: [Ty, T] x H x H = H has nonempty closed values.
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Basic assumptions

Basic assumptions (continued)

(H") C: [Ty, T] x H x H = H has nonempty closed values.

@ There exist ( € AC([To, T];R), Ly > 0 and L, € [0, 1] such that
forall s,z € [Ty, T] and all x,y,u,v € H

Hauss(C(t, x, u), C(s,,v)) < [C(1) = C(s)| + Lillx = y[| + Lalu — v]].
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Basic assumptions

Basic assumptions (continued)

(H") C: [Ty, T] x H x H = H has nonempty closed values.

@ There exist ( € AC([To, T];R), Ly > 0 and L, € [0, 1] such that
forall s,z € [Ty, T] and all x,y,u,v € H

Hauss(C(t, x, u), C(s,,v)) < [C(1) = C(s)| + Lillx = y[| + Lalu — v]].

@ Forevery t € [Ty, T], every r > 0 and every pair of bounded sets
A,B C H, the set C(t,A, B) N rB is relatively compact.
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Basic assumptions

Convex sets

Proposition

Let S C H be a closed set. Then, S is convex if and only if
(x] —x3,x1 —x2) >0,

holds for all x\,x; € S and all x; € N (S;x;)) NB fori=1,2.
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Basic assumptions

p-uniformly prox-regular sets

Let S C H be a closed set. We say that S is p-uniformly prox-regular if

1
<XT _x;xl —X2> > _;Hxl _x2||27

holds for all x;,x, € Sand all x} € N (S;x;) N B fori =1,2.
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Basic assumptions

p-uniformly prox-regular sets

Proposition
Let S C H be a closed set. Then S is p-uniformly prox-regular if and

only if projg is well defined and locally Lipschitz continuous on
Uy(S) US.

Uy(5)

Figure: U,(S) :=={x € H: 0 <d(x,S) < p}.
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Basic assumptions

Uniformly subsmooth sets

Definition

S is uniformly subsmooth, if for every £ > 0 there exists 6 > 0, such
that
(x = x3,x1 — x2) 2 —€|lx1 — x2],

holds for all x1, x; € S satisfying ||x; — x2|| < J and all
xf €N(S;x))NBfori=1,2.
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Basic assumptions

equi-uniformly subsmooth sets

Definition
If E # ) the family (S(¢)):cg is equi-uniformly subsmooth, if for every
€ > 0 there exists § > 0, such that forall z € E

(] —x3,x1 — x2) > —¢llx1 — x2]],

holds for all x;, x, € S(z) satisfying ||x; — x2|| < 0 and all
xf € N(S(t);x) NBfori=1,2.
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Basic assumptions

Positively a-far sets

Definition
Let a €]0, 1]. A set S C H is positively a-far if there exists p > 0
such that if x € U,(S) then the following implication holds:

¢ € dds(x) then ||C]| > ay 3.1

where U,(S) := {x € H: 0 < d(x,S) < p} is the p-tube around S.
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Basic assumptions

Positively a-far sets

Definition

Let a €]0, 1]. A set S C H is positively a-far if there exists p > 0
such that if x € U,(S) then the following implication holds:

¢ € dds(x) then |[¢]| = a, (3.1

where U,(S) := {x € H: 0 < d(x,S) < p} is the p-tube around S.

Moreover, if E # (), we say that the family (S(¢)).cg is positively
a-far if every S(z) satisfies (3.1) with the same « and the same p > 0.
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Basic assumptions

Positively a-far sets

Let S C H be a ball-compact set.
Q@ Assume that

(x — m1,x — M) > &?di(x) Vx € U,(S),

for all my, 7y € Projg(x). Then S is positively a-far.
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Basic assumptions

Positively a-far sets

Let S C H be a ball-compact set.
Q@ Assume that

(x — m1,x — M) > &?di(x) Vx € U,(S),

for all my, 7y € Projg(x). Then S is positively a-far.
Q IfS is positively a-far then

(x — 71,0 — M) > (2% — 1)d3(x) Vx € U,(S),

for all my,m € Projg(x).
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Basic assumptions

Relation between some classes

o If Sis convex then S is positively 1-far (with p = 4-00).
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Basic assumptions

Relation between some classes

o If Sis convex then S is positively 1-far (with p = 4-00).

o If S is p-uniformly prox-regular then S is positively 1-far (with
the same p).
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Basic assumptions

Relation between some classes

o If Sis convex then S is positively 1-far (with p = 4-00).
o If S is p-uniformly prox-regular then S is positively 1-far (with
the same p).

@ If S is uniformly subsmooth then S is positively v/1 — e-far for
all € €]0, 1].
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Basic assumptions

Positively a-far sets: An example

S is positively %—far but not subsmooth.

Figure: S = {(x,y) € R%: |[y| >x} NB
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Basic assumptions

Subsmooth sets and sweeping process

Assume that the following assumptions holds true:
o HC holds.
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Basic assumptions

Subsmooth sets and sweeping process

Assume that the following assumptions holds true:

o HC holds.
o The family {C(t,u, V) }{(1uv)e[T,,T|x HxH} IS equi-uniformly
subsmooth.
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Basic assumptions

Subsmooth sets and sweeping process

Assume that the following assumptions holds true:
o HC holds.

o The family {C(t,u, V) }{(1uv)e[T,,T|x HxH} IS equi-uniformly
subsmooth.
Then, for all t € [Ty, T| the set-valued map
(u,v) = 9d(-,C(t,u,v))(v) is upper semicontinuous from H x H into
H,.
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Basic assumptions

Reduction of sweeping process

To prove existence of the GPSP, we use the reduction technique, i.e.,

—u(t) = Bv(t) ae. t € [Ty, T
—v(t) € N (C(t,u(r), v(1)); v(1))

+ F(t,u(t),v(t)) + Au(t) ae.t€ [Ty, T);
u(Ty) = uo,v(To) = vy € C(To, ug, vo)-
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Basic assumptions

Reduction of sweeping process

To prove existence of the GPSP, we use the reduction technique, i.e.,

—i(t) = Bv(r) ae. t € [Ty, TJ;
' de(uu(n) vy V(1))

4 p( ( ),v(1) +Au(t)  ae. € [Ty, T);
0) = vo € C(To,uo,vo),

(PRed)
where m(t, u, v) is a positive function and

I:"(t, u,v) = F(t,u,v) N (c(t)]|(u,v)| +d(2)) B
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Basic assumptions

Reduction of sweeping process

By using the inclusion:
ddg(x) CN(S;x)NB x€S.
If we can prove that

v(t) € C(t,u(t),v(r)) forall t € [To, T].

Then, any solution of (Preq) is a solution of GPSP.
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@ An existence result for the GPSP
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An existence result for the GPSP

First main result

Theorem (Jourani-Vilches, 2016 [23])

Assume that the following assumptions hold true:
Q@ (HF) and (HE) hold.
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An existence result for the GPSP

First main result

Theorem (Jourani-Vilches, 2016 [23])

Assume that the following assumptions hold true:
Q@ (HF) and (HE) hold.

Q the family (C(t,u,V)){(1uv)e[To, T|x HxH} 1S equi-uniformly
subsmooth.
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An existence result for the GPSP

First main result

Theorem (Jourani-Vilches, 2016 [23])

Assume that the following assumptions hold true:
Q@ (HF) and (HE) hold.
Q the family (C(t,u,V)){(1uv)e[To, T|x HxH} 1S equi-uniformly
subsmooth.
Then, there exists at least one solution of the GPSP:

—iu(t) = Bv(r) a.e. t € [Ty, T);
—v(t) € N (C(t,u(t),v(r));v(t)) + F(t,u(t),v(t)) + Au(t) a.e. t € [Ty, T];
uo, v(To) = vo € C(To, uo, vo),
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An existence result for the GPSP

Second main result

Theorem (Jourani-Vilches, 2016 [23])

Assume that the following assumptions hold true:
Q@ (#HF) and (HE) hold.
Q The family (C(t))ie(r, 11} is positively a-far.
Then, there exists at least one solution of the GPSP:

—i(t) = By(t a.e. t € [Ty, Tl;

—v(t) € N (C(2);v(t)) + F(t,u(t),v(t)) + Au(t) a.e. t € [Ty, T);
M(T()) = MQ,V(T()) =1V € C(To),

~—
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Some consequences

Moreau’s perturbed sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.

A. Jourani and E. Vilches On a generalized perturbed sweeping process



Some consequences

Moreau’s perturbed sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.
® The family (C(t))cir,,1 is uniformly positively a-far.
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Some consequences

Moreau’s perturbed sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.
® The family (C(t))cir,,1 is uniformly positively a-far.

Then, there exists at least one solution of

—v(t) € N(C(2);v(t)) + F(t,v(t)) a.e t € [Ty, TJ;
v(To) = vy € C(Tp).
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Some consequences

State-dependent sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.
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Some consequences

State-dependent sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.
@ The family {C(t,v): (t,v) € [To, T]| x H} is equi-uniformly
subsmooth.
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Some consequences

State-dependent sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.
@ The family {C(t,v): (t,v) € [To, T]| x H} is equi-uniformly
subsmooth.

Then, there exists at least one solution of

—v(t) € N(C(t,v(1));v(t)) + F(t,v(t)) a.e t € [Ty, T);
v(To) = vy € C(Top, ).
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Some consequences

Second-order sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.

A. Jourani and E. 1 generalized perturbed sweeping process



Some consequences

Second-order sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.
@ The family {C(t,u,v): (t,u,v) € [To,T] Xx H x H} is
equi-uniformly subsmooth.
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Some consequences

Second-order sweeping process

Corollary

Assume that the following assumptions hold true:
o (HF) and (HC) hold.
@ The family {C(t,u,v): (t,u,v) € [To,T] Xx H x H} is
equi-uniformly subsmooth.
Then, there exists at least one solution of

—ii(t) € N(C(t,u(t), i(t));u(t)) + F(t,u(t),u(t)) ae. t€ [T, T);
M(To) = U, I:t(To) =1V € C(T(), Uuo, Vo).
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@ Uniqueness




Uniqueness

Uniqueness of Moreau’s sweeping process

Let us consider the Moreau’s sweeping process:

—v(t) e N(C(t);v(t)) ae.t € [Ty, T
v(Ty) = vo € C(Tp),

It is known that if C(¢) is convex for all ¢ € [Ty, T] then uniqueness hold.
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Uniqueness

Uniqueness of Moreau’s sweeping process

Consider vy (1) = (—1/2,t/2) and vo(t) = (—1/2,—1/2) defined over
[0, 1]. Then v; and v, are solutions of

—v(r) e N(C(1);v(r)) ae.re[0,1];
v(0) = (0,0) € C(0),

where C(1) = S — (£,0) for ¢ € [0, 1].

Figure: S = {(x,y) € R%: |[y| >x} NB
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