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Introduction and motivation

Consider a large ring that contains a smaller ball inside, and the ring
will start to move at time t = T0.
Depending on the motion of the ring, the ball will just stay where it is
(in case it is not hit by the ring), or otherwise it is swept towards the
interior of the ring.
In this latter case the velocity of the ball has to point inwards to the
ring in order not to leave.
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Introduction and motivation

Mathematically,{
−v̇(t) ∈ N (C(t); v(t)) a.e. t ∈ [T0,T];

v(T0) = v0 ∈ C(T0),
(1.1)

where

v(t) is the position of the ball at time t.

C(t) is the moving set (the ring and its interior).

N (C(t); v(t)) is some appropriate outward normal cone of C(t)
at v(t) ∈ C(t).

In the general setting, the set C(t) is allowed to change its shape while
moving.
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Introduction and motivation

Here we consider the Clarke normal cone: For x ∈ S

N (S; x) = {ζ ∈ H : 〈ζ, v〉 ≤ 0∀v ∈ TS(x)},

where TS(x) is the Clarke tangent cone:

v ∈ TS(x)⇔ ∀xi → x, ∀ti → 0, ∃vi → v such that xi + tivi ∈ S ∀i.

Also, we set N(S, x) = ∅ if x /∈ S.
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Moreau’s perturbed sweeping process

{
−v̇(t) ∈ N (C(t); v(t)) + F(t, v(t)) a.e. t ∈ [T0,T];

v(T0) = v0 ∈ C(T0),

where

C : [T0,T] ⇒ H is a set-valued map with nonempty closed
values.

N(S, ·) is the Clarke normal cone to S.

F : [T0,T]× H ⇒ H is a set-valued map with nonempty closed
convex values satisfying some standard conditions.
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Moreau’s perturbed sweeping process

{
−v̇(t) ∈ N (C(t); v(t)) + F(t, v(t)) a.e. t ∈ [T0,T];

v(T0) = v0 ∈ C(T0),

It appears, for example, in:

Granular materials (J.J. Moreau)

Electrical circuits (V. Acary - B. Brogliato)

Crowd motion (F. Bernicot - J. Venel)

Hysteresis in elasto-plastic models (P. Krejc̆i)
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Moreau’s perturbed sweeping process: Existence theory

Main contributions:

J.J. Moreau (1971 [28], 1972 [29], 1977 [30], 1999 [31])
. C(t) convex and F ≡ 0.

C. Castaing - T.D. Ha - M. Valadier (1993 [14])
. C(t) convex and complement of a convex and F usc.

M. Kunze - Monteiro-Marques (1996 [25], 2000 [27])
. C(t) convex and F ≡ 0.

G. Colombo - V. Goncharov (1999 [16])
. C(t) closed and F ≡ 0.

H. Benabdellah (2000 [6])
.C(t) closed and F ≡ 0.
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Moreau’s perturbed sweeping process: Existence theory

Main contributions:

M. Bounkhel - L. Thibault (2005 [12])
. C(t) prox-regular and F usc.

J. Edmond - L. Thibault (2005 [17], 2006 [18])
. C(t) prox-regular and F usc.

T. Haddad - A. Jourani - L. Thibault (2008 [20])
. C(t) α-far and F mixed usc.

Thibault (2003 [33], 2008 [34], 2016 [35])
. C(t) convex and prox-regular.

A. Jourani - E. Vilches (2016 [24])
. C(t) α-far and F usc.
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State-dependent perturbed sweeping process

{
−v̇(t) ∈ N (C(t, v(t)); v(t)) + F(t, v(t)) a.e. t ∈ [T0,T];

v(T0) = v0 ∈ C(T0, v0),

where
1 C : [T0,T]× H ⇒ H is a set-valued map with nonempty closed

values.
2 N(S, ·) is the Clarke normal cone to S.
3 F : [T0,T]× H ⇒ H is a set-valued map with nonempty closed

convex values satisfying some standard conditions.
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State-dependent perturbed sweeping process: Existence
theory

Main contributions:

M. Kunze - M. Monteiro-Marques (1998 [26])
. C(t, x) convex and F ≡ 0.

N. Chemetov - M. Monteiro-Marques (2007 [15])
. C(t, x) prox-regular and F continuous.

M. Bounkhel - C. Castaing (2012 [11])
. C(t, x) convex and F ≡ 0.

T. Haddad (2013 [19])
. C(t, x) convex and F usc.
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State-dependent perturbed sweeping process: Existence
theory

Main contributions:

D. Azzam-Laouir - S. Izza - L. Thibault (2014 [5])
. C(t, x) convex and F mixed usc.

J. Noel - L. Thibault (2014 [32])
. C(t, x) subsmooth and F usc.

T. Haddad - I. Kecis - L. Thibault (2015 [21])
. C(t, x) prox-regular and F mixed usc.

A. Jourani - E. Vilches (2016 [22])
. C(t, x) subsmooth and F ≡ 0.
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Second-order perturbed sweeping process

{
−ü(t) ∈ N (C(t, u(t), u̇(t)); u̇(t)) + F(t, u(t), u̇(t)) a.e. t ∈ [T0,T];

u(T0) = u0, u̇(T0) = v0 ∈ C(T0, u0, v0),

where,
1 C : [T0,T]× H × H ⇒ H is a set-valued map with nonempty

closed values.
2 N(S, ·) is the Clarke normal cone to S.
3 F : [T0,T]× H × H ⇒ H is a set-valued map with nonempty

closed convex values satisfying some standard conditions.
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Second-order perturbed sweeping process: Existence theory

Main contributions:
C. Castaing (1988 [13])
. C(t, u, v) = C(u) convex and F ≡ 0.
M. Bounkhel et al (2003 [8] , 2004 [10], 2010 [9])
. C(t, u, v) = C(u) prox-regular and F(t, u, v) = F(t, v) usc.
D. Azzam-Laouir et al (2008 [3], 2011 [4], 2014 [2])
. C(t, u, v) = C(t) or C(u) prox-regular and F usc.
F. Bernicot - J. Venel (2012 [7])
. C(t, u, v) = C(t) prox-regular and F(t, u, v) = F(t, u)
Lipschitz.
S. Adly - B. Le (2016 [1])
. C(t, u, v) = C(t, u) prox-regular and F usc.
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Generalized perturbed sweeping process (GPSP)

The generalized perturbed sweeping process (GPSP):
−u̇(t) = Bv(t) a.e. t ∈ [T0,T];

−v̇(t) ∈ N (C(t, u(t), v(t)); v(t)) + F(t, u(t), v(t)) + Au(t) a.e. t ∈ [T0,T];

u(T0) = u0, v(T0) = v0 ∈ C(T0, u0, v0),

where,

H is a separable Hilbert space.
A : H → H and B : H → H are two bounded linear operators.
C : [T0, T]× H × H ⇒ H is a set-valued map with nonempty and closed
values.
N(S, ·) is the Clarke normal cone to S.
F : [T0, T]× H × H ⇒ H is a set-valued map with nonempty closed convex
values satisfying some standard conditions.
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why consider the GPSP?

If C(t, u, v) = C(t), F(t, u, v) = F(t, v), A = 0 and B = 0 we
recover the Moreau’s perturbed sweeping process.

If C(t, u, v) = C(t, v), F(t, u, v) = F(t, v), A = 0 and B = 0 we
recover the state-dependent perturbed sweeping process.

If A = 0 and B = −I we recover the second-order perturbed
sweeping process.
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Generalized perturbed sweeping process (GPSP)

The generalized perturbed sweeping process (GPSP):


−u̇(t) = Bv(t) a.e. t ∈ [T0,T];

−v̇(t) ∈ N (C(t, u(t), v(t)); v(t)) + F(t, u(t), v(t)) + Au(t) a.e. t ∈ [T0,T];

v(t) ∈ C(t, u(t), v(t)) ∀t ∈ [T0,T];

u(T0) = u0, v(T0) = v0 ∈ C(T0, u0, v0),
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Basic assumptions

(HF): F : [T0,T]× H × H ⇒ H has nonempty closed and convex
values.

For each (u, v) ∈ H × H, F(·, u, v) is measurable.

For a.e. t ∈ [T0,T], F(t, ·, ·) is upper semicontinuous from
H × H into Hw,
There exist c, d ∈ L1(T0,T) such that

d(0,F(t, u, v)) := inf{‖w‖ : w ∈ F(t, u, v)} ≤ c(t)‖(u, v)‖+ d(t),

for a.e. t ∈ [T0,T] and all (u, v) ∈ H × H.
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Basic assumptions (continued)

(HC) C : [T0,T]× H × H ⇒ H has nonempty closed values.
There exist ζ ∈ AC([T0,T];R), L1 ≥ 0 and L2 ∈ [0, 1[ such that
for all s, t ∈ [T0,T] and all x, y, u, v ∈ H

Hauss(C(t, x, u),C(s, y, v)) ≤ |ζ(t)− ζ(s)|+ L1‖x− y‖+ L2‖u− v‖.

For every t ∈ [T0,T], every r > 0 and every pair of bounded sets
A,B ⊂ H, the set C(t,A,B) ∩ rB is relatively compact.
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Uniformly subsmooth sets

Definition
S is uniformly subsmooth, if for every ε > 0 there exists δ > 0, such
that

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖,

holds for all x1, x2 ∈ S satisfying ‖x1 − x2‖ < δ and all
x∗i ∈ N (S; xi) ∩ B for i = 1, 2.
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equi-uniformly subsmooth sets

Definition
If E 6= ∅ the family (S(t))t∈E is equi-uniformly subsmooth, if for every
ε > 0 there exists δ > 0, such that for all t ∈ E

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖,

holds for all x1, x2 ∈ S(t) satisfying ‖x1 − x2‖ < δ and all
x∗i ∈ N (S(t); xi) ∩ B for i = 1, 2.
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Positively α-far sets

Definition
Let α ∈]0, 1]. A set S ⊂ H is positively α-far if there exists ρ > 0
such that if x ∈ Uρ(S) then the following implication holds:

ζ ∈ ∂dS(x) then ‖ζ‖ ≥ α, (3.1)

where Uρ(S) := {x ∈ H : 0 < d(x, S) < ρ} is the ρ-tube around S.

Moreover, if E 6= ∅, we say that the family (S(t))t∈E is positively
α-far if every S(t) satisfies (3.1) with the same α and the same ρ > 0.
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Relation between some classes

If S is convex then S is 1-far (with ρ = +∞).

If S is ρ-uniformly prox-regular then S is 1-far (with the same ρ).

If S is uniformly subsmooth then S is
√

1− ε-far for all ε ∈]0, 1[.
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Positively α-far sets: An example

S is
√

2
2 -far but not subsmooth.

Figure: S = {(x, y) ∈ R2 : |y| ≥ x} ∩ B
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Subsmooth sets and sweeping process

Proposition
Assume that the following assumptions holds true:

HC holds.

The family {C(t, u, v)}{(t,u,v)∈[T0,T]×H×H} is equi-uniformly
subsmooth.

Then, for all t ∈ [T0,T] the set-valued map
(u, v) ⇒ ∂d(·,C(t, u, v))(v) is upper semicontinuous from H × H into
Hw.
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Reduction of sweeping process

To prove existence of the GPSP, we use the reduction technique, i.e.,
−u̇(t) = Bv(t) a.e. t ∈ [T0,T];

−v̇(t) ∈ N (C(t, u(t), v(t)); v(t))

+ F(t, u(t), v(t)) + Au(t) a.e. t ∈ [T0,T];

u(T0) = u0, v(T0) = v0 ∈ C(T0, u0, v0).
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Reduction of sweeping process

To prove existence of the GPSP, we use the reduction technique, i.e.,


−u̇(t) = Bv(t) a.e. t ∈ [T0,T];

−v̇(t) ∈ m(t, u(t), v(t))∂dC(t,u(t),v(t))(v(t))

+ F̃(t, u(t), v(t)) + Au(t) a.e. t ∈ [T0,T];

u(T0) = u0, v(T0) = v0 ∈ C(T0, u0, v0),
(PRed)

where m(t, u, v) is a positive function and
F̃(t, u, v) = F(t, u, v) ∩ (c(t)‖(u, v)‖+ d(t))B.
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Reduction of sweeping process

By using the inclusion:

∂dS(x) ⊆ N(S; x) ∩ B x ∈ S.

If we can prove that

v(t) ∈ C(t, u(t), v(t)) for all t ∈ [T0,T].

Then, any solution of PRed is a solution of GPSP.
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First main result

Theorem (Jourani-Vilches, 2016 [23])
Assume that the following assumptions hold true:

1 (HF) and (HC) hold.
2 the family (C(t, u, v)){(t,u,v)∈[T0,T]×H×H} is equi-uniformly

subsmooth.
Then, there exists at least one solution of the GPSP:
−u̇(t) = Bv(t) a.e. t ∈ [T0,T];

−v̇(t) ∈ N (C(t, u(t), v(t)); v(t)) + F(t, u(t), v(t)) + Au(t) a.e. t ∈ [T0,T];

u(T0) = u0, v(T0) = v0 ∈ C(T0, u0, v0),
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Second main result

Theorem (Jourani-Vilches, 2016 [23])
Assume that the following assumptions hold true:

1 (HF) and (HC) hold.
2 The family (C(t)){t∈[T0,T]} is positively α-far.

Then, there exists at least one solution of the GPSP:
−u̇(t) = Bv(t) a.e. t ∈ [T0,T];

−v̇(t) ∈ N (C(t); v(t)) + F(t, u(t), v(t)) + Au(t) a.e. t ∈ [T0,T];

u(T0) = u0, v(T0) = v0 ∈ C(T0),
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Moreau’s perturbed sweeping process

Corollary
Assume that the following assumptions hold true:

(HF) and (HC) hold.

The family (C(t))t∈[T0,T] is uniformly positively α-far.

Then, there exists at least one solution of{
−v̇(t) ∈ N (C(t); v(t)) + F(t, v(t)) a.e. t ∈ [T0,T];

v(T0) = v0 ∈ C(T0).
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State-dependent sweeping process

Corollary
Assume that the following assumptions hold true:

(HF) and (HC) hold.

The family {C(t, v) : (t, v) ∈ [T0,T]× H} is equi-uniformly
subsmooth.

Then, there exists at least one solution of{
−v̇(t) ∈ N (C(t, v(t)); v(t)) + F(t, v(t)) a.e. t ∈ [T0,T];

v(T0) = v0 ∈ C(T0, v0).
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Second-order sweeping process

Corollary
Assume that the following assumptions hold true:

(HF) and (HC) hold.

The family {C(t, u, v) : (t, u, v) ∈ [T0,T]× H × H} is
equi-uniformly subsmooth.

Then, there exists at least one solution of{
−ü(t) ∈ N (C(t, u(t), u̇(t)); u̇(t)) + F(t, u(t), u̇(t)) a.e. t ∈ [T0,T];

u(T0) = u0, u̇(T0) = v0 ∈ C(T0, u0, v0).
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Uniqueness of Moreau’s sweeping process

Let us consider the Moreau’s sweeping process:{
−v̇(t) ∈ N (C(t); v(t)) a.e. t ∈ [T0,T];

v(T0) = v0 ∈ C(T0),

It is known that if C(t) is convex for all t ∈ [T0,T] then uniqueness hold.
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Uniqueness of Moreau’s sweeping process

Consider v1(t) = (−t/2, t/2) and v2(t) = (−t/2,−t/2) defined over
[0, 1]. Then v1 and v2 are solutions of{

−v̇(t) ∈ N (C(t); v(t)) a.e. t ∈ [0, 1];
v(0) = (0, 0) ∈ C(0),

where C(t) = S− (t, 0) for t ∈ [0, 1].

Figure: S = {(x, y) ∈ R2 : |y| ≥ x} ∩ B
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Sém. Anal. Convexe Montpellier, 1988.

[14] C. Castaing, T.X.D. Ha, and M. Valadier.
Evolution equations governed by sweeping process.
Set-Valued Anal., 1:109–139, 1993.

[15] N. Chemetov and M.D.P. Monteiro-Marques.
Nonconvex quasi-variational differential inclusions.
Set-Valued Anal., 15(3):209–221, 2007.

[16] G. Colombo and V.V. Goncharov.
The sweeping process without convexity.
Set-Valued Anal., 7:357–374, 1999.

A. Jourani and E. Vilches On a generalized perturbed sweeping process 44 / 45



Introduction and motivation
Position of the problem

Basic assumptions
An existence result for the GPSP

Some consequences
Uniqueness
References

[17] J.F. Edmond and L. Thibault.
Relaxation of an optimal control problem involving a perturbed sweeping process.
Math. Program., Ser. B, 104:347–373, 2005.

[18] J.F. Edmond and L. Thibault.
Bv solutions of nonconvex sweeping process differential inclusion with perturbation.
J. Differential Equations, 226(1):135 – 179, 2006.

[19] T. Haddad and T. Haddad.
State-dependent sweeping process with perturbation.
In George A. Anastassiou and Oktay Duman, editors, Advances in Applied Mathematics and Approximation Theory,
volume 41 of Springer Proceedings in Mathematics & Statistics, pages 273–281. Springer New York, 2013.

[20] T. Haddad, A. Jourani, and L. Thibault.
Reduction of sweeping process to unconstrained differential inclusion.
Pac. J. Optim., 4:493–512, 2008.

[21] T. Haddad, I. Kecis, and L. Thibault.
Reduction of state dependent sweeping process to unconstrained differential inclusion.
J. Global Optim., 62(1):167–182, 2015.

[22] A. Jourani and E. Vilches.
Moreau-Yosida regularization of state-dependent sweeping processes with nonregular sets.
Submitted, 2016.

[23] A. Jourani and E. Vilches.
Partial galerkin method and generalized perturbed sweeping process with nonregular sets.
Submitted, 2016.

[24] A. Jourani and E. Vilches.
Positively α-far sets and existence results for generalized perturbed sweeping processes.
J. Convex Anal., 23(3), 2016.

A. Jourani and E. Vilches On a generalized perturbed sweeping process 44 / 45



Introduction and motivation
Position of the problem

Basic assumptions
An existence result for the GPSP

Some consequences
Uniqueness
References

[25] M. Kunze and M.D.P. Monteiro-Marques.
Yosida-Moreau regularization of sweeping processes with unbounded variation.
J. Differential Equations, 130(2):292–306, 1996.

[26] M. Kunze and M.D.P. Monteiro-Marques.
On parabolic quasi-variational inequalities and state-dependent sweeping processes.
Topol. Methods Nonlinear Anal., 12:179–191, 1998.

[27] M. Kunze and M.D.P Monteiro-Marques.
An introduction to Moreau’s sweeping process.
In B. Brogliato, editor, Impacts in Mechanical Systems, volume 551 of Lecture Notes in Physics, pages 1–60. Springer
Berlin Heidelberg, 2000.

[28] J.J. Moreau.
Rafle par un convexe variable I. Exposé 15.
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