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Université de Bourgogne Franche-Comté
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Classical setting

Let f : Rn → Rn be a locally Lipschitz function and consider the
differential equation:

ẋ(t) = f (x(t)) t ≥ 0. (1.1)

According to the classical Cauchy-Lipschitz theorem, for any initial
condition x(0) = x0 ∈ Rn, the differential equation (1.1) has a unique
solution x(·; x0) defined on [0, τ) for some τ > 0.
We further assume that all the solutions of (1.1) are defined on
[0,+∞).

Emilio Vilches Nonsmooth Lyapunov functions for differential equations



Introduction
Nonsmooth Lyapunov function
Perturbed Sweeping Processes

References

Classical setting

Let f : Rn → Rn be a locally Lipschitz function and consider the
differential equation:
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Some stability notions

Definition (Stability and Attractiveness)
1 We say that the origin is stable for (1.1) if for any ε > 0, there

exists δ > 0 such that for any x0 ∈ Bδ(0),

x(t, x0) ∈ Bε(0) for all t ≥ 0.

2 We say that the origin is attractive for (1.1) if it is stable and
there exists δ > 0 such that for any x0 ∈ Bδ(0),

lim
t→+∞

x(t, x0) = 0.
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The Lyapunov method

Definition
A continuous function V : Rn → R is said a a-Lyapunov function,
a ≥ 0, for (1.1) if for every solution of x of (1.1) and for all t1, t2 ≥ 0
the following implication holds:

t1 ≤ t2 ⇒ eat2V(x(t2)) ≤ eat1V(x(t1)),

that is, the function t 7→ eatV(x(t)) is nonincreasing.
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The Lyapunov method

Theorem
Assume that there exists a a-Lyapunov function for (1.1) such that

(a) V(x) ≥ 0 for all x ∈ Rn.
(b) V(x) = 0 if and only if x = 0.
(c) The sublevel sets {x ∈ Rn : V(x) ≤ λ} are bounded for all λ ∈ R.

1 If a = 0, then the origin is stable.
2 If a > 0, then the origin is attractive.

Proof.
The function t 7→ eatV(x(t)) is nonincreasing, that is, for every x0 ∈ Rn

eatV(x(t; x0)) ≤ V(x0) for all t ≥ 0.
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The Lyapunov method: The smooth case

Assume that V is a C1 and let us consider ϕ(t) := eatV(x(t)), where
x(·) is a solution of (1.1). Then, for all t ≥ 0

ϕ̇(t) = (〈∇V(x(t)), f (x(t))〉+ aV(x(t))) eat.

Therefore, if

〈∇V(x), f (x)〉+ aV(x) ≤ 0 for all x ∈ Rn,

then V is a a-Lyapunov function for (1.1).
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The Lyapunov method: smooth case

Proposition

Assume that V is C1. Then V is a a-Lyapunov function for (1.1) if and
only if

〈∇V(x), f (x)〉+ aV(x) ≤ 0 for all x ∈ Rn,

What about when V is nonsmooth?
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Aim of this talk

The aim of this talk is to give explicit necessary and sufficient
conditions for nonsmooth a-Lyapunov function for differential
equations and sweeping processes.
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Nonsmooth setting

From now on we consider extended-valued lower semicontinuous
functions V : Rn → R ∪ {+∞}.
Extended-valued lsc Lyapunov functions provides much flexibility in
constructing Lyapunov functions.
Many operations become possible:

Truncating a function

Taking maximum or absolute value of functions.

Using indicator functions.
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From smooth to nonsmooth analysis

A function f : Rn → R if Fréchet differentiable at x if there exists a
linear operator x∗ ∈ L (Rn) such that

lim
‖h‖→0

f (x + h)− f (x)− 〈x∗, x〉
‖h‖

= 0.

In this case, we denote f ′(x) := x∗ the derivative of f at x.
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The Fréchet subdifferential

Let f : Rn → R ∪ {+∞} be a proper lsc function. We say that f is
Fréchet subdifferentiable at x if there exists a linear operator
x∗ ∈ L (Rn) such that

lim inf
‖h‖→0

f (x + h)− f (x)− 〈x∗, x〉
‖h‖

≥ 0.

We denote the set of all Fréchet-subderivatives x∗ of f at x by ∂Ff (x)
and call this object the Fréchet subdifferential of f at x.
For convenience we define ∂Ff (x) = ∅ if x /∈ dom f .
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The Fréchet subdifferential

Let f : Rn → R ∪ {+∞} be a proper lsc function. We say that f is
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and call this object the Fréchet subdifferential of f at x.
For convenience we define ∂Ff (x) = ∅ if x /∈ dom f .

Emilio Vilches Nonsmooth Lyapunov functions for differential equations



Introduction
Nonsmooth Lyapunov function
Perturbed Sweeping Processes

References
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The Fréchet subdifferential: Examples

f (x) = |x|, ∂Ff (0) = [−1, 1].

f (x) = −|x|, ∂Ff (0) = ∅.

f (x) =
√
|x|, ∂Ff (0) = (−∞,∞).

f (x) = max{x, 0}, ∂Ff (0) = [0, 1].

f (x) := I[0,1](x), ∂Ff (0) = (−∞, 0].
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Density theorem

Theorem (Density Theorem)

Let f : Rn → R ∪ {+∞} be a lsc function. Then, the set

{x ∈ Rn : ∂Ff (x) 6= ∅}

is dense in dom f .
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Distance function and normal cone

Let S ⊆ Rn be a closed set.

The distance function to S is defined by dS(x) := infs∈S ‖x− s‖.
The closed ball around S is defined by
Br(S) := {x ∈ Rn : dS(x) ≤ r}.
The Fréchet normal cone of S is defined by

NF (S; x) = ∂FIS(x) x ∈ S.

If x ∈ S, then
∂FdS(x) = NF (S; x) ∩ B.
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The Lyapunov method: Analogy with the smooth case

Let ϕ(t) := eatV(x(t)).
When V is C1, to show that ϕ is nonincreasing, we had used to main
ingredients:

First ingredient: Monotonicity, that is, if ϕ̇ ≤ 0, then ϕ is
nonincreasing.

Second ingredient: Chain rule.
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First ingredient: Monotonicity

Proposition (Monotonicity lemma)

Let ϕ : R→ R ∪ {+∞} be a lsc function. Suppose that

∂Fϕ(x) ⊆ (−∞, 0] for all x ∈ R.

Then ϕ is nonincreasing.
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Second ingredient: Approximate Chain Rule

Theorem (Approximate Chain Rule)

Let f : Rn → R ∪ {+∞} be a lower semicontinuous function and let
F : Rm → Rn be a locally Lipschitz mapping.
Suppose that x∗ ∈ ∂F(f ◦ F)(x̄).
Then, for any ε > 0, there exist x ∈ Bε(x̄), y ∈ Bε(F(x̄)), y∗ ∈ ∂Ff (y),
‖λ− y∗‖ < ε and z∗ ∈ ∂F 〈λ,F〉 (x) such that |f (y)− f (F(x̄))| < ε,

max (‖λ‖, ‖y∗‖, ‖z∗‖) ‖y− F(x)‖ < ε

and ‖x∗ − z∗‖ < ε.
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The Lyapunov method: Nonsmooth case

Theorem (Zhu, 2003)

Let V : Rn → R ∪ {+∞} be a lsc function. Suppose that

〈x∗, f (x)〉+ aV(x) ≤ 0 for all x∗ ∈ ∂FV(x)

Then V is a a-Lyapunov function for (1.1).

Proof.
Apply the Monotonicity lemma and the Approximate Chain Rule to
the function ϕ(t) := f ◦ F(t), where f (x, y) = yV(x) and
F(t) = (x(t; x0), eat), where x(t; x0) is a solution of (1.1).
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Application to stability

Definition (Stable and Attractive sets)
Let S be a closed subset of Rn.

1 We say that S is stable for (1.1) if for any ε > 0, there exists
δ > 0 such that for any x0 ∈ Bδ(S),

x(t, x0) ∈ Bε(S) for all t ≥ 0.

2 We say that S is attractive for (1.1) if S is stable and there exists
δ > 0 such that for any x0 ∈ Bδ(S),

lim
t→+∞

d(x(t, x0); S) = 0.
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Application to stability

Theorem (Zhu, 2003)

Let S ⊆ Rn be a compact set and let V : R→ [0,+∞] be a lsc function such
that

1 S ⊆ {x ∈ Rn : V(x) = 0},
2 for any ε > 0, there exists a δ > 0 such that Bδ(S) ⊆ {x ∈ Rn : V(x) < ε},
3 for any ε > 0 there exists δ, η > 0 such that

{x ∈ Rn : V(x) < δ} ∩ Bε+η(S) ⊆ Bε(S).

( S is said critical set for V)
Suppose that there exists a constant a ≥ 0, for any x∗ ∈ ∂FV(x)

〈x∗, f (x)〉+ aV(x) ≤ 0.

Then S is a stable set for (1.1). Moreover, S is attractive when a > 0.
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Example

Let us consider

ẋ = f (x) = −x(x + 2)(x− 1).

Define

V(x) :=


(x + 2)2 x ≤ −1/2,
+∞ x ∈ (−1/2, 1/2),

(x− 1)2 x ≥ 1/2.

Then, S1 = {1} and S2 = {−2} are critical sets of V .
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Example (continuation)

If x < −1/2 and x > 1/2, then V is differentiable and

V ′(x) · f (x) =

{
−2x(x− 1)V(x) x < −1/2,
−2x(x + 2)V(x) x > 1/2

≤ −3/2V(x).

If x = −1/2, then ∂FV(−1/2) = [2(−1/2 + 2),+∞) and for all
p ∈ ∂FV(−1/2)

p · f (−1/2) ≤ −3/2V(−1/2).

If x = 1/2, then ∂FV(1/2) = (−∞, 2(1/2− 1)] and for all
p ∈ ∂FV(1/2)

p · f (1/2) ≤ −5/2V(1/2).

Emilio Vilches Nonsmooth Lyapunov functions for differential equations



Introduction
Nonsmooth Lyapunov function
Perturbed Sweeping Processes

References

Example (continuation)

If x < −1/2 and x > 1/2, then V is differentiable and

V ′(x) · f (x) =

{
−2x(x− 1)V(x) x < −1/2,
−2x(x + 2)V(x) x > 1/2

≤ −3/2V(x).

If x = −1/2, then ∂FV(−1/2) = [2(−1/2 + 2),+∞) and for all
p ∈ ∂FV(−1/2)

p · f (−1/2) ≤ −3/2V(−1/2).

If x = 1/2, then ∂FV(1/2) = (−∞, 2(1/2− 1)] and for all
p ∈ ∂FV(1/2)

p · f (1/2) ≤ −5/2V(1/2).
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Example (continuation)

Therefore, for all x ∈ R and all p ∈ ∂FV(x)

p · f (x) +
3
2

V(x) ≤ 0.

Thus both S1 and S2 are attractive, i.e., 1 and −2 are asymptotic
equilibrium points.
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Perturbed sweeping processes

The sweeping process is the following differential inclusion:
ẋ(t) ∈ −NF (C(t); x(t)) + f (x(t)) a.e. t ≥ 0,

x(t) ∈ C(t) t ≥ 0,

x(T0) = x0 ∈ C(0),

(3.1)

where C(t) ⊆ Rn are closed set for all t ≥ 0.

Remark
If C(t) ≡ Rn, then the sweeping process becomes (1.1).
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Perturbed sweeping processes governed by a fixed set

In this talk, for simplicity, we consider the case C(t) ≡ S for S ⊆ Rn

is a closed and convex set, that is,
ẋ(t) ∈ −NF (S; x(t)) + f (x(t)) a.e. t ≥ 0,

x(t) ∈ S t ≥ 0,

x(T0) = x0 ∈ S.

(SP)
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Perturbed sweeping processes governed by a fixed set

Theorem
For all x0 ∈ S there exists a unique solution x(·; x0) of (SP) defined
over [0,+∞).
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Lyapunov pairs

Let V : Rn → R∪ {+∞} be a proper lsc function and W : Rn → R be
Lipschitz continuous. We say that (V,W) forms a Lyapunov pair for
the sweeping process (SP) if for every x0 ∈ S

V(x(t; x0)) +

∫ t

0
W(x(s; x0))ds ≤ V(x0) for all t ≥ 0.
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Characterization of Lyapunov pairs

Theorem (V., 2017)
Assume that dom V ⊆ S and W ≥ 0. Then, the following conditions
are equivalent:

1 (V,W) forms a Lyapunov pair for (SP).
2 For all x ∈ Rn and all x∗ ∈ ∂FV(x)

inf{〈x∗, v〉 : v ∈ −‖f (x)‖∂FdS(x) + f (x)} ≤ −W(x).
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Characterization of Lyapunov pairs

Corollary (V., 2017)
Assume that W ≥ 0. Then, the following conditions are equivalent:

1 (V,W) forms a Lyapunov pair for ẋ = f (x).
2 For all x ∈ Rn and all x∗ ∈ ∂FV(x)

〈x∗, f (x)〉 ≤ −W(x).
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