Nonsmooth Lyapunov pairs for differential equations and perturbed sweeping processes

Emilio Vilches^{1,2}

¹Institut de Mathématiques de Bourgogne Université de Bourgogne Franche-Comté Dijon, Francia ²Departamento de Ingeniería Matemática Universidad de Chile Santiago, Chile

> May 19, 2017 Dijon, France.

- Introduction
- Nonsmooth Lyapunov function
- 3 Perturbed Sweeping Processe
- 4 References

Classical setting

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a locally Lipschitz function and consider the differential equation:

$$\dot{x}(t) = f(x(t)) \quad t \ge 0. \tag{1.1}$$

According to the classical Cauchy-Lipschitz theorem, for any initial condition $x(0) = x_0 \in \mathbb{R}^n$, the differential equation (1.1) has a unique solution $x(\cdot; x_0)$ defined on $[0, \tau)$ for some $\tau > 0$. We further assume that all the solutions of (1.1) are defined on $[0, +\infty)$.

Classical setting

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a locally Lipschitz function and consider the differential equation:

$$\dot{x}(t) = f(x(t)) \quad t \ge 0. \tag{1.1}$$

According to the classical Cauchy-Lipschitz theorem, for any initial condition $x(0) = x_0 \in \mathbb{R}^n$, the differential equation (1.1) has a unique solution $x(\cdot; x_0)$ defined on $[0, \tau)$ for some $\tau > 0$.

We further assume that all the solutions of (1.1) are defined on $[0, +\infty)$.

Classical setting

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a locally Lipschitz function and consider the differential equation:

$$\dot{x}(t) = f(x(t)) \quad t \ge 0. \tag{1.1}$$

According to the classical Cauchy-Lipschitz theorem, for any initial condition $x(0) = x_0 \in \mathbb{R}^n$, the differential equation (1.1) has a unique solution $x(\cdot; x_0)$ defined on $[0, \tau)$ for some $\tau > 0$.

We further assume that all the solutions of (1.1) are defined on $[0, +\infty)$.

Some stability notions

Definition (Stability and Attractiveness)

• We say that the origin is stable for (1.1) if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x_0 \in B_{\delta}(0)$,

$$x(t, x_0) \in B_{\varepsilon}(0)$$
 for all $t \ge 0$.

② We say that the origin is attractive for (1.1) if it is stable and there exists $\delta > 0$ such that for any $x_0 \in B_{\delta}(0)$,

$$\lim_{t \to +\infty} x(t, x_0) = 0.$$

Some stability notions

Definition (Stability and Attractiveness)

• We say that the origin is stable for (1.1) if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x_0 \in B_{\delta}(0)$,

$$x(t, x_0) \in B_{\varepsilon}(0)$$
 for all $t \ge 0$.

2 We say that the origin is attractive for (1.1) if it is stable and there exists $\delta > 0$ such that for any $x_0 \in B_{\delta}(0)$,

$$\lim_{t\to+\infty}x(t,x_0)=0.$$

Definition

A continuous function $V \colon \mathbb{R}^n \to \mathbb{R}$ is said a *a*-Lyapunov function, $a \ge 0$, for (1.1) if for every solution of x of (1.1) and for all $t_1, t_2 \ge 0$ the following implication holds:

$$t_1 \leq t_2 \quad \Rightarrow \quad e^{at_2}V(x(t_2)) \leq e^{at_1}V(x(t_1)),$$

that is, the function $t \mapsto e^{at}V(x(t))$ is nonincreasing.

Theorem

Assume that there exists a a-Lyapunov function for (1.1) such that

- (a) $V(x) \ge 0$ for all $x \in \mathbb{R}^n$.
- (b) V(x) = 0 if and only if x = 0.
- (c) The sublevel sets $\{x \in \mathbb{R}^n \colon V(x) \leq \lambda\}$ are bounded for all $\lambda \in \mathbb{R}$.
- ① If a = 0, then the origin is stable.

Proof.

The function $t \mapsto e^{at}V(x(t))$ is nonincreasing, that is, for every $x_0 \in \mathbb{R}^r$

$$e^{at}V(x(t;x_0)) \le V(x_0)$$
 for all $t \ge 0$.

Theorem

Assume that there exists a a-Lyapunov function for (1.1) such that

- (a) $V(x) \geq 0$ for all $x \in \mathbb{R}^n$.
- (b) V(x) = 0 if and only if x = 0.
- (c) The sublevel sets $\{x \in \mathbb{R}^n : V(x) \leq \lambda\}$ are bounded for all $\lambda \in \mathbb{R}$.
- If a = 0, then the origin is stable.
- \bigcirc If a > 0, then the origin is attractive

Proof

The function $t \mapsto e^{at}V(x(t))$ is nonincreasing, that is, for every $x_0 \in \mathbb{R}^n$

$$e^{at}V(x(t;x_0)) \le V(x_0)$$
 for all $t \ge 0$

Theorem

Assume that there exists a a-Lyapunov function for (1.1) such that

- (a) $V(x) \ge 0$ for all $x \in \mathbb{R}^n$.
- (b) V(x) = 0 if and only if x = 0.
- (c) The sublevel sets $\{x \in \mathbb{R}^n \colon V(x) \leq \lambda\}$ are bounded for all $\lambda \in \mathbb{R}$.
- If a = 0, then the origin is stable.
- ② If a > 0, then the origin is attractive.

Proof

The function $t \mapsto e^{at}V(x(t))$ is nonincreasing, that is, for every $x_0 \in \mathbb{R}^n$

$$e^{at}V(x(t;x_0)) \le V(x_0)$$
 for all $t \ge 0$

Theorem

Assume that there exists a a-Lyapunov function for (1.1) such that

- (a) $V(x) \ge 0$ for all $x \in \mathbb{R}^n$.
- (b) V(x) = 0 if and only if x = 0.
- (c) The sublevel sets $\{x \in \mathbb{R}^n \colon V(x) \leq \lambda\}$ are bounded for all $\lambda \in \mathbb{R}$.
- If a = 0, then the origin is stable.
- ② If a > 0, then the origin is attractive.

Proof.

The function $t \mapsto e^{at}V(x(t))$ is nonincreasing, that is, for every $x_0 \in \mathbb{R}^n$

$$e^{at}V(x(t;x_0)) \le V(x_0)$$
 for all $t \ge 0$.

The Lyapunov method: The smooth case

Assume that V is a C^1 and let us consider $\varphi(t) := e^{at}V(x(t))$, where $x(\cdot)$ is a solution of (1.1). Then, for all $t \ge 0$

$$\dot{\varphi}(t) = (\langle \nabla V(x(t)), f(x(t)) \rangle + aV(x(t))) e^{at}.$$

Therefore, if

$$\langle \nabla V(x), f(x) \rangle + aV(x) \le 0$$
 for all $x \in \mathbb{R}^n$,

then V is a a-Lyapunov function for (1.1).

The Lyapunov method: The smooth case

Assume that *V* is a C^1 and let us consider $\varphi(t) := e^{at}V(x(t))$, where $x(\cdot)$ is a solution of (1.1). Then, for all $t \ge 0$

$$\dot{\varphi}(t) = (\langle \nabla V(x(t)), f(x(t)) \rangle + aV(x(t))) e^{at}.$$

Therefore, if

$$\langle \nabla V(x), f(x) \rangle + aV(x) \le 0$$
 for all $x \in \mathbb{R}^n$,

then V is a a-Lyapunov function for (1.1).

The Lyapunov method: smooth case

Proposition

Assume that V is C^1 . Then V is a a-Lyapunov function for (1.1) if and only if

$$\langle \nabla V(x), f(x) \rangle + aV(x) \le 0 \quad \text{for all } x \in \mathbb{R}^n,$$

What about when *V* is nonsmooth?

The Lyapunov method: smooth case

Proposition

Assume that V is C^1 . Then V is a a-Lyapunov function for (1.1) if and only if

$$\langle \nabla V(x), f(x) \rangle + aV(x) \le 0 \quad \text{for all } x \in \mathbb{R}^n,$$

What about when *V* is nonsmooth?

Aim of this talk

The aim of this talk is to give explicit necessary and sufficient conditions for nonsmooth *a*-Lyapunov function for differential equations and sweeping processes.

Nonsmooth setting

From now on we consider extended-valued lower semicontinuous functions $V \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$.

Extended-valued lsc Lyapunov functions provides much flexibility in constructing Lyapunov functions.

Many operations become possible:

- Truncating a function
- Taking maximum or absolute value of functions.
- Using indicator functions.

Nonsmooth setting

From now on we consider extended-valued lower semicontinuous functions $V \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$.

Extended-valued lsc Lyapunov functions provides much flexibility in constructing Lyapunov functions.

Many operations become possible:

- Truncating a function
- Taking maximum or absolute value of functions.
- Using indicator functions.

Nonsmooth setting

From now on we consider extended-valued lower semicontinuous functions $V \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$.

Extended-valued lsc Lyapunov functions provides much flexibility in constructing Lyapunov functions.

Many operations become possible:

- Truncating a function
- Taking maximum or absolute value of functions.
- Using indicator functions.

From smooth to nonsmooth analysis

A function $f: \mathbb{R}^n \to \mathbb{R}$ if Fréchet differentiable at x if there exists a linear operator $x^* \in \mathcal{L}(\mathbb{R}^n)$ such that

$$\lim_{\|h\|\to 0} \frac{f(x+h) - f(x) - \langle x^*, x \rangle}{\|h\|} = 0.$$

In this case, we denote $f'(x) := x^*$ the derivative of f at x.

The Fréchet subdifferential

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper lsc function. We say that f is Fréchet subdifferentiable at x if there exists a linear operator $x^* \in \mathcal{L}(\mathbb{R}^n)$ such that

$$\liminf_{\|h\|\to 0}\frac{f(x+h)-f(x)-\langle x^*,x\rangle}{\|h\|}\geq 0.$$

We denote the set of all Fréchet-subderivatives x^* of f at x by $\partial_F f(x)$ and call this object the Fréchet subdifferential of f at x. For convenience we define $\partial_F f(x) = \emptyset$ if $x \notin \text{dom } f$.

The Fréchet subdifferential

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper lsc function. We say that f is Fréchet subdifferentiable at x if there exists a linear operator $x^* \in \mathcal{L}(\mathbb{R}^n)$ such that

$$\liminf_{\|h\|\to 0} \frac{f(x+h) - f(x) - \langle x^*, x \rangle}{\|h\|} \ge 0.$$

We denote the set of all Fréchet-subderivatives x^* of f at x by $\partial_F f(x)$ and call this object the Fréchet subdifferential of f at x.

For convenience we define $\partial_F f(x) = \emptyset$ if $x \notin \text{dom } f(x)$

The Fréchet subdifferential

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper lsc function. We say that f is Fréchet subdifferentiable at x if there exists a linear operator $x^* \in \mathcal{L}(\mathbb{R}^n)$ such that

$$\liminf_{\|h\|\to 0}\frac{f(x+h)-f(x)-\langle x^*,x\rangle}{\|h\|}\geq 0.$$

We denote the set of all Fréchet-subderivatives x^* of f at x by $\partial_F f(x)$ and call this object the Fréchet subdifferential of f at x. For convenience we define $\partial_F f(x) = \emptyset$ if $x \notin \text{dom } f$.

The Fréchet subdifferential: Examples

•
$$f(x) = |x|$$
, $\partial_F f(0) = [-1, 1]$.

•
$$f(x) = -|x|, \partial_F f(0) = \emptyset.$$

•
$$f(x) = \sqrt{|x|}$$
, $\partial_F f(0) = (-\infty, \infty)$.

•
$$f(x) = \max\{x, 0\}, \partial_F f(0) = [0, 1].$$

•
$$f(x) := I_{[0,1]}(x), \partial_F f(0) = (-\infty, 0].$$

Density theorem

Theorem (Density Theorem)

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a lsc function. Then, the set

$$\{x \in \mathbb{R}^n : \partial_F f(x) \neq \emptyset\}$$

is dense in dom f.

Let $S \subseteq \mathbb{R}^n$ be a closed set.

- The distance function to *S* is defined by $d_S(x) := \inf_{s \in S} ||x s||$.
- The closed ball around *S* is defined by $B_r(S) := \{x \in \mathbb{R}^n : d_S(x) \le r\}.$
- The Fréchet normal cone of S is defined by

$$N^{F}(S;x) = \partial_{F}I_{S}(x) \quad x \in S.$$

$$\partial_F d_S(x) = N^F(S; x) \cap \mathbb{B}.$$

Let $S \subseteq \mathbb{R}^n$ be a closed set.

- The distance function to *S* is defined by $d_S(x) := \inf_{s \in S} ||x s||$.
- The closed ball around *S* is defined by $B_r(S) := \{x \in \mathbb{R}^n : d_S(x) \le r\}.$
 - $B_r(S) := \{x \in \mathbb{R} : a_S(x) \leq r\}.$
- The Fréchet normal cone of S is defined by

$$N^{F}(S;x) = \partial_{F}I_{S}(x) \quad x \in S.$$

$$\partial_F d_S(x) = N^F(S; x) \cap \mathbb{B}.$$

Let $S \subseteq \mathbb{R}^n$ be a closed set.

- The distance function to *S* is defined by $d_S(x) := \inf_{s \in S} ||x s||$.
- The closed ball around *S* is defined by $B_r(S) := \{x \in \mathbb{R}^n \colon d_S(x) \le r\}.$
- The Fréchet normal cone of S is defined by

$$N^F(S;x) = \partial_F I_S(x) \quad x \in S.$$

$$\partial_F d_S(x) = N^F(S; x) \cap \mathbb{B}.$$

Let $S \subseteq \mathbb{R}^n$ be a closed set.

- The distance function to *S* is defined by $d_S(x) := \inf_{s \in S} ||x s||$.
- The closed ball around *S* is defined by $B_r(S) := \{x \in \mathbb{R}^n : d_S(x) \le r\}.$
- The Fréchet normal cone of S is defined by

$$N^F(S;x) = \partial_F I_S(x) \quad x \in S.$$

$$\partial_F d_S(x) = N^F(S; x) \cap \mathbb{B}.$$

- Introduction
- 2 Nonsmooth Lyapunov function
- 3 Perturbed Sweeping Processes
- 4 References

The Lyapunov method: Analogy with the smooth case

Let $\varphi(t) := e^{at}V(x(t))$.

When V is C^1 , to show that φ is nonincreasing, we had used to main ingredients:

- First ingredient: Monotonicity, that is, if $\dot{\varphi} \leq 0$, then φ is nonincreasing.
- Second ingredient: Chain rule.

The Lyapunov method: Analogy with the smooth case

Let $\varphi(t) := e^{at}V(x(t))$.

When V is C^1 , to show that φ is nonincreasing, we had used to main ingredients:

- First ingredient: Monotonicity, that is, if $\dot{\varphi} \leq 0$, then φ is nonincreasing.
- Second ingredient: Chain rule.

First ingredient: Monotonicity

Proposition (Monotonicity lemma)

Let $\varphi \colon \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be a lsc function. Suppose that

$$\partial_F \varphi(x) \subseteq (-\infty, 0]$$
 for all $x \in \mathbb{R}$.

Then φ *is nonincreasing.*

Second ingredient: Approximate Chain Rule

Theorem (Approximate Chain Rule)

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous function and let $F: \mathbb{R}^m \to \mathbb{R}^n$ be a locally Lipschitz mapping.

Suppose that $x^* \in \partial_F(f \circ F)(\bar{x})$.

Then, for any $\varepsilon > 0$, there exist $x \in B_{\varepsilon}(\bar{x})$, $y \in B_{\varepsilon}(F(\bar{x}))$, $y^* \in \partial_F f(y)$, $\|\lambda - y^*\| < \varepsilon$ and $z^* \in \partial_F \langle \lambda, F \rangle$ (x) such that $|f(y) - f(F(\bar{x}))| < \varepsilon$,

$$\max (\|\lambda\|, \|y^*\|, \|z^*\|) \|y - F(x)\| < \varepsilon$$

and $||x^* - z^*|| < \varepsilon$.

The Lyapunov method: Nonsmooth case

Theorem (Zhu, 2003)

Let $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a lsc function. Suppose that

$$\langle x^*, f(x) \rangle + aV(x) \le 0 \quad \text{for all } x^* \in \partial_F V(x)$$

Then V is a a-Lyapunov function for (1.1).

Proof

Apply the Monotonicity lemma and the Approximate Chain Rule to the function $\varphi(t) := f \circ F(t)$, where f(x,y) = yV(x) and $F(t) = (x(t;x_0), e^{at})$, where $x(t;x_0)$ is a solution of (1.1).

The Lyapunov method: Nonsmooth case

Theorem (Zhu, 2003)

Let $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a lsc function. Suppose that

$$\langle x^*, f(x) \rangle + aV(x) \le 0 \quad \text{for all } x^* \in \partial_F V(x)$$

Then V is a a-Lyapunov function for (1.1).

Proof.

Apply the Monotonicity lemma and the Approximate Chain Rule to the function $\varphi(t) := f \circ F(t)$, where f(x, y) = yV(x) and $F(t) = (x(t; x_0), e^{at})$, where $x(t; x_0)$ is a solution of (1.1).

Definition (Stable and Attractive sets)

Let *S* be a closed subset of \mathbb{R}^n .

• We say that *S* is stable for (1.1) if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x_0 \in B_{\delta}(S)$,

$$x(t, x_0) \in B_{\varepsilon}(S)$$
 for all $t \ge 0$.

We say that *S* is attractive for (1.1) if *S* is stable and there exists $\delta > 0$ such that for any $x_0 \in B_{\delta}(S)$,

$$\lim_{t\to+\infty}d(x(t,x_0);S)=0.$$

Definition (Stable and Attractive sets)

Let *S* be a closed subset of \mathbb{R}^n .

• We say that *S* is stable for (1.1) if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x_0 \in B_{\delta}(S)$,

$$x(t, x_0) \in B_{\varepsilon}(S)$$
 for all $t \ge 0$.

We say that *S* is attractive for (1.1) if *S* is stable and there exists $\delta > 0$ such that for any $x_0 \in B_{\delta}(S)$,

$$\lim_{t\to+\infty}d(x(t,x_0);S)=0.$$

Theorem (Zhu, 2003)

Let $S \subseteq \mathbb{R}^n$ be a compact set and let $V \colon \mathbb{R} \to [0, +\infty]$ be a lsc function such that

- **2** for any $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{\delta}(S) \subseteq \{x \in \mathbb{R}^n : V(x) < \varepsilon\}$,
- **(a)** for any $\varepsilon > 0$ there exists $\delta, \eta > 0$ such that

$$\{x \in \mathbb{R}^n \colon V(x) < \delta\} \cap B_{\varepsilon+\eta}(S) \subseteq B_{\varepsilon}(S).$$

(S is said critical set for V)

Suppose that there exists a constant $a \ge 0$, for any $x^* \in \partial_F V(x)$

$$\langle x^*, f(x) \rangle + aV(x) \le 0$$

Then S is a stable set for (1.1). Moreover, S is attractive when a > 0.

Theorem (Zhu, 2003)

Let $S \subseteq \mathbb{R}^n$ be a compact set and let $V \colon \mathbb{R} \to [0, +\infty]$ be a lsc function such that

- **2** for any $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{\delta}(S) \subseteq \{x \in \mathbb{R}^n : V(x) < \varepsilon\}$,
- **(a)** for any $\varepsilon > 0$ there exists $\delta, \eta > 0$ such that

$${x \in \mathbb{R}^n \colon V(x) < \delta} \cap B_{\varepsilon + \eta}(S) \subseteq B_{\varepsilon}(S).$$

(S is said critical set for V)

Suppose that there exists a constant $a \ge 0$, for any $x^* \in \partial_F V(x)$

$$\langle x^*, f(x) \rangle + aV(x) \le 0.$$

Then S is a stable set for (1.1). Moreover, S is attractive when a > 0

Theorem (Zhu, 2003)

Let $S \subseteq \mathbb{R}^n$ be a compact set and let $V \colon \mathbb{R} \to [0, +\infty]$ be a lsc function such that

- **2** for any $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{\delta}(S) \subseteq \{x \in \mathbb{R}^n : V(x) < \varepsilon\}$,
- **(a)** for any $\varepsilon > 0$ there exists $\delta, \eta > 0$ such that

$$\{x \in \mathbb{R}^n \colon V(x) < \delta\} \cap B_{\varepsilon+\eta}(S) \subseteq B_{\varepsilon}(S).$$

(S is said critical set for V)

Suppose that there exists a constant $a \ge 0$, for any $x^* \in \partial_F V(x)$

$$\langle x^*, f(x) \rangle + aV(x) \le 0.$$

Then S is a stable set for (1.1). Moreover, S is attractive when a > 0.

Example

Let us consider

$$\dot{x} = f(x) = -x(x+2)(x-1).$$

Define

$$V(x) := \begin{cases} (x+2)^2 & x \le -1/2, \\ +\infty & x \in (-1/2, 1/2), \\ (x-1)^2 & x \ge 1/2. \end{cases}$$

Then, $S_1 = \{1\}$ and $S_2 = \{-2\}$ are critical sets of V.

Example

Let us consider

$$\dot{x} = f(x) = -x(x+2)(x-1).$$

Define

$$V(x) := \begin{cases} (x+2)^2 & x \le -1/2, \\ +\infty & x \in (-1/2, 1/2), \\ (x-1)^2 & x \ge 1/2. \end{cases}$$

Then, $S_1 = \{1\}$ and $S_2 = \{-2\}$ are critical sets of V.

• If x < -1/2 and x > 1/2, then V is differentiable and

$$V'(x) \cdot f(x) = \begin{cases} -2x(x-1)V(x) & x < -1/2, \\ -2x(x+2)V(x) & x > 1/2 \end{cases} \le -3/2V(x).$$

• If x = -1/2, then $\partial_F V(-1/2) = [2(-1/2 + 2), +\infty)$ and for all $p \in \partial_F V(-1/2)$

$$p \cdot f(-1/2) \le -3/2V(-1/2).$$

• If x = 1/2, then $\partial_F V(1/2) = (-\infty, 2(1/2 - 1)]$ and for all $p \in \partial_F V(1/2)$

$$p \cdot f(1/2) \le -5/2V(1/2).$$

• If x < -1/2 and x > 1/2, then V is differentiable and

$$V'(x) \cdot f(x) = \begin{cases} -2x(x-1)V(x) & x < -1/2, \\ -2x(x+2)V(x) & x > 1/2 \end{cases} \le -3/2V(x).$$

• If x = -1/2, then $\partial_F V(-1/2) = [2(-1/2+2), +\infty)$ and for all $p \in \partial_F V(-1/2)$

$$p \cdot f(-1/2) \le -3/2V(-1/2).$$

• If x = 1/2, then $\partial_F V(1/2) = (-\infty, 2(1/2 - 1)]$ and for all $p \in \partial_F V(1/2)$

$$p \cdot f(1/2) \le -5/2V(1/2).$$

• If x < -1/2 and x > 1/2, then V is differentiable and

$$V'(x) \cdot f(x) = \begin{cases} -2x(x-1)V(x) & x < -1/2, \\ -2x(x+2)V(x) & x > 1/2 \end{cases} \le -3/2V(x).$$

• If x = -1/2, then $\partial_F V(-1/2) = [2(-1/2+2), +\infty)$ and for all $p \in \partial_F V(-1/2)$

$$p \cdot f(-1/2) \le -3/2V(-1/2).$$

• If x = 1/2, then $\partial_F V(1/2) = (-\infty, 2(1/2 - 1)]$ and for all $p \in \partial_F V(1/2)$

$$p \cdot f(1/2) \le -5/2V(1/2).$$

Therefore, for all $x \in \mathbb{R}$ and all $p \in \partial_F V(x)$

$$p \cdot f(x) + \frac{3}{2}V(x) \le 0.$$

Thus both S_1 and S_2 are attractive, i.e., 1 and -2 are asymptotic equilibrium points.

- Introduction
- 2 Nonsmooth Lyapunov function
- 3 Perturbed Sweeping Processes
- 4 References

Perturbed sweeping processes

The sweeping process is the following differential inclusion:

$$\begin{cases} \dot{x}(t) \in -N^F(C(t); x(t)) + f(x(t)) & \text{a.e. } t \ge 0, \\ x(t) \in C(t) & t \ge 0, \\ x(T_0) = x_0 \in C(0), \end{cases}$$
 (3.1)

where $C(t) \subseteq \mathbb{R}^n$ are closed set for all $t \ge 0$.

Remark

If $C(t) \equiv \mathbb{R}^n$, then the sweeping process becomes (1.1)

Perturbed sweeping processes

The sweeping process is the following differential inclusion:

$$\begin{cases} \dot{x}(t) \in -N^F(C(t); x(t)) + f(x(t)) & \text{a.e. } t \ge 0, \\ x(t) \in C(t) & t \ge 0, \\ x(T_0) = x_0 \in C(0), \end{cases}$$
 (3.1)

where $C(t) \subseteq \mathbb{R}^n$ are closed set for all $t \ge 0$.

Remark

If $C(t) \equiv \mathbb{R}^n$, then the sweeping process becomes (1.1).

Perturbed sweeping processes governed by a fixed set

In this talk, for simplicity, we consider the case $C(t) \equiv S$ for $S \subseteq \mathbb{R}^n$ is a closed and convex set, that is,

$$\begin{cases} \dot{x}(t) \in -N^F(S; x(t)) + f(x(t)) & \text{a.e. } t \ge 0, \\ x(t) \in S & t \ge 0, \\ x(T_0) = x_0 \in S. \end{cases}$$
 (SP)

Perturbed sweeping processes governed by a fixed set

Theorem

For all $x_0 \in S$ there exists a unique solution $x(\cdot; x_0)$ of (SP) defined over $[0, +\infty)$.

Lyapunov pairs

Let $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper lsc function and $W: \mathbb{R}^n \to \mathbb{R}$ be Lipschitz continuous. We say that (V, W) forms a Lyapunov pair for the sweeping process (SP) if for every $x_0 \in S$

$$V(x(t;x_0)) + \int_0^t W(x(s;x_0))ds \le V(x_0)$$
 for all $t \ge 0$.

Characterization of Lyapunov pairs

Theorem (V., 2017)

Assume that dom $V \subseteq S$ and $W \ge 0$. Then, the following conditions are equivalent:

- \bullet (V, W) forms a Lyapunov pair for (SP).
- ② For all $x \in \mathbb{R}^n$ and all $x^* \in \partial_F V(x)$

$$\inf\{\langle x^*, v \rangle : v \in -\|f(x)\|\partial_F d_S(x) + f(x)\} \le -W(x).$$

Characterization of Lyapunov pairs

Corollary (V., 2017)

Assume that $W \ge 0$. Then, the following conditions are equivalent:

- **1** (V, W) forms a Lyapunov pair for $\dot{x} = f(x)$.
- **2** For all $x \in \mathbb{R}^n$ and all $x^* \in \partial_F V(x)$

$$\langle x^*, f(x) \rangle \le -W(x).$$

- Introduction
- Nonsmooth Lyapunov function
- Perturbed Sweeping Processes
- 4 References

- [1] Q. ZHU. *Lower semicontinuous Lyapunov functions and stability*, J. Nonlinear Convex Anal., 4(3): 325-332, 2003.
- [2] A. HANTOUTE, E. VILCHES. *Lyapunov pairs for the perturbed sweeping process*. Preprint, 2017.
- [3] E. VILCHES. Existence and Lyapunov pairs for the perturbed sweeping process governed by a fixed set. Submitted, 2017.

Nonsmooth Lyapunov pairs for differential equations and perturbed sweeping processes

Emilio Vilches^{1,2}

¹Institut de Mathématiques de Bourgogne Université de Bourgogne Franche-Comté Dijon, Francia ²Departamento de Ingeniería Matemática Universidad de Chile Santiago, Chile

> May 19, 2017 Dijon, France.

