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Classical setting

Letf: R" — R" be a locally Lipschitz function and consider the
differential equation:

(1) =f(x(r)) 1=0. (1.1
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Introduction

Classical setting

Letf: R" — R" be a locally Lipschitz function and consider the
differential equation:

(1) =f(x(r)) 1=0. (1.1

According to the classical Cauchy-Lipschitz theorem, for any initial
condition x(0) = xo € R”, the differential equation (1.1) has a unique
solution x(-; xo) defined on [0, 7) for some 7 > 0.
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Introduction

Classical setting

Letf: R" — R" be a locally Lipschitz function and consider the
differential equation:

(1) =f(x(r)) 1=0. (1.1

According to the classical Cauchy-Lipschitz theorem, for any initial
condition x(0) = xo € R”, the differential equation (1.1) has a unique
solution x(-; xo) defined on [0, 7) for some 7 > 0.

‘We further assume that all the solutions of (1.1) are defined on

[0, +00).
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Some stability notions

Definition (Stability and Attractiveness)

@ We say that the origin is stable for (1.1) if for any € > 0, there
exists 0 > 0 such that for any xy € Bs(0),

x(t,x0) € B:(0) forallt> 0.
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Some stability notions

Definition (Stability and Attractiveness)

@ We say that the origin is stable for (1.1) if for any € > 0, there
exists 0 > 0 such that for any xy € Bs(0),

x(t,x0) € B:(0) forallt> 0.

© We say that the origin is attractive for (1.1) if it is stable and
there exists 0 > 0 such that for any xo € Bs(0),

tllinoox(t,xo) =0.
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The Lyapunov method

Definition

A continuous function V: R” — R is said a a-Lyapunov function,
a > 0, for (1.1) if for every solution of x of (1.1) and for all #;,#, > 0
the following implication holds:

HnH<th = e‘”ZV(x(tz)) < e V(X(ll)),

that is, the function 7 — e*V(x(t)) is nonincreasing.
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The Lyapunov method

Theorem

Assume that there exists a a-Lyapunov function for (1.1) such that
(a) V(x) > 0forall x € R".
(b) V(x) =0 ifand only if x = 0.
(c) The sublevel sets {x € R": V(x) < \} are bounded for all X € R.
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The Lyapunov method

Theorem

Assume that there exists a a-Lyapunov function for (1.1) such that

(a) V(x) > 0forall x € R".
(b) V(x) =0 ifand only if x = 0.
(c) The sublevel sets {x € R": V(x) < \} are bounded for all X € R.

Q Ifa = 0, then the origin is stable.
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The Lyapunov method

Theorem

Assume that there exists a a-Lyapunov function for (1.1) such that
(a) V(x) > 0forall x € R".
(b) V(x) =0 ifand only if x = 0.
(c) The sublevel sets {x € R": V(x) < \} are bounded for all X € R.

Q Ifa = 0, then the origin is stable.
Q Ifa > 0, then the origin is attractive.
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The Lyapunov method

Theorem

Assume that there exists a a-Lyapunov function for (1.1) such that

(a) V(x) > 0forall x € R".
(b) V(x) =0 ifand only if x = 0.
(c) The sublevel sets {x € R": V(x) < \} are bounded for all X € R.

Q Ifa = 0, then the origin is stable.
Q Ifa > 0, then the origin is attractive.

The function ¢ — e¢*V(x(¢)) is nonincreasing, that is, for every xo € R"

eV (x(t;x0)) < V(xg) forallt> 0.
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The Lyapunov method: The smooth case

Assume that V is a C! and let us consider () := e“V(x(t)), where
x(+) is a solution of (1.1). Then, for all t > 0

p(1) = ((VV(x(0).f (x(1))) + aV (x(1))) €.
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The Lyapunov method: The smooth case

Assume that V is a C! and let us consider () := e“V(x(t)), where
x(+) is a solution of (1.1). Then, for all t > 0

o(1) = ((VV(x(1)),f (x(t))) + aV (x(1))) e
Therefore, if
(VV(x),f(x)) +aV(x) <0 forallx € R",

then V is a a-Lyapunov function for (1.1).
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The Lyapunov method: smooth case

Assume that V is C'. Then V is a a-Lyapunov function for (1.1) if and

only if
(VV(x),f(x)) +aV(x) <0 forallx e R",
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The Lyapunov method: smooth case

Proposition
Assume that V is C'. Then V is a a-Lyapunov function for (1.1) if and

only if
(VV(x),f(x)) +aV(x) <0 forallx e R",

‘What about when V is nonsmooth?

Emilio Vilches Nonsmooth Lyapunov functions for differential equations



Introduction

Aim of this talk

The aim of this talk is to give explicit necessary and sufficient
conditions for nonsmooth a-Lyapunov function for differential
equations and sweeping processes.
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Nonsmooth setting

From now on we consider extended-valued lower semicontinuous
functions V: R" — R U {+00}.
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Nonsmooth setting

From now on we consider extended-valued lower semicontinuous
functions V: R" — R U {+00}.

Extended-valued Isc Lyapunov functions provides much flexibility in
constructing Lyapunov functions.
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Nonsmooth setting

From now on we consider extended-valued lower semicontinuous
functions V: R" — R U {+00}.
Extended-valued Isc Lyapunov functions provides much flexibility in
constructing Lyapunov functions.
Many operations become possible:

@ Truncating a function

o Taking maximum or absolute value of functions.

o Using indicator functions.
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From smooth to nonsmooth analysis

A function f: R” — R if Fréchet differentiable at x if there exists a
linear operator x* € £ (R") such that

o JE ) () = )
12| 0 ([l

=0.

In this case, we denote f/(x) := x* the derivative of f at x.
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The Fréchet subdifferential

Letf: R" — R U {400} be a proper Isc function. We say that f is
Fréchet subdifferentiable at x if there exists a linear operator
x* € L (R") such that
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The Fréchet subdifferential

Letf: R" — R U {400} be a proper Isc function. We say that f is
Fréchet subdifferentiable at x if there exists a linear operator
x* € L (R") such that

liminpd &) —F(x) = (&%) > 0.
1A]|—0 Il

We denote the set of all Fréchet-subderivatives x* of f at x by Opf (x)
and call this object the Fréchet subdifferential of f at x.
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The Fréchet subdifferential

Letf: R" — R U {400} be a proper Isc function. We say that f is
Fréchet subdifferentiable at x if there exists a linear operator
x* € L (R") such that

liminpd &) —F(x) = (&%) > 0.
1A]|—0 Il

We denote the set of all Fréchet-subderivatives x* of f at x by Opf (x)
and call this object the Fréchet subdifferential of f at x.
For convenience we define Ogf(x) = 0 if x ¢ domf.
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The Fréchet subdifferential: Examples

° f(x) = |x], 9pf(0) = [~ 1, 1].
o f(x) = —Ixl, D (0) = 0.

= /Ix], 9 (0) = (—00,00).
o f(x) = max{x, 0}, 9f(0) = [0, 1].

° f(x) := Ijp,11(x), Orf(0) = (—o0,0].
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Density theorem

Theorem (Density Theorem)

Letf: R" — RU {400} be a Isc function. Then, the set
{x e R": Opf(x) # 0}

is dense in domf.
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Distance function and normal cone

Let S C R" be a closed set.

@ The distance function to S is defined by ds(x) := infyeg ||x — 5|
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Distance function and normal cone

Let S C R" be a closed set.

@ The distance function to S is defined by ds(x) := infyeg ||x — 5|

@ The closed ball around S is defined by
B,(S) :={x e R": ds(x) < r}.
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Distance function and normal cone

Let S C R" be a closed set.

@ The distance function to S is defined by ds(x) := infyeg ||x — 5|

@ The closed ball around S is defined by
B,(S) :={x e R": ds(x) < r}.

@ The Fréchet normal cone of S is defined by

N (8;x) = Opls(x) x€S.
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Distance function and normal cone

Let S C R" be a closed set.

@ The distance function to S is defined by ds(x) := infyeg ||x — 5|
@ The closed ball around S is defined by

B,(S) :={x e R": ds(x) < r}.
@ The Fréchet normal cone of S is defined by

N (8;x) = Opls(x) x€S.

o If x € §, then
Ords(x) = NF (S;x) N B.
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Nonsmooth Lyapunov function

The Lyapunov method: Analogy with the smooth case

Let ¢(t) := e“V(x(1)).
When V is C!, to show that ¢ is nonincreasing, we had used to main
ingredients:
o First ingredient: Monotonicity, that is, if ¢ < 0, then ¢ is
nonincreasing.
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Nonsmooth Lyapunov function

The Lyapunov method: Analogy with the smooth case

Let ¢(t) := e“V(x(1)).
When V is C!, to show that ¢ is nonincreasing, we had used to main
ingredients:
o First ingredient: Monotonicity, that is, if ¢ < 0, then ¢ is
nonincreasing.

@ Second ingredient: Chain rule.
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First ingredient: Monotonicity

Proposition (Monotonicity lemma)

Let o: R — R U {400} be a lsc function. Suppose that
Orp(x) C (—00,0] forallx € R.

Then @ is nonincreasing.
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Second ingredient: Approximate Chain Rule

Theorem (Approximate Chain Rule)

Letf: R" — RU {400} be a lower semicontinuous function and let
F: R™ — R" be a locally Lipschitz mapping.

Suppose that x* € Op(f o F)(%).

Then, for any € > 0, there exist x € B.(X), y € B:(F(X)), y* € Oef(y),
IAN—y*|| < eandz* € O (A, F) (x) such that |f(y ) —f(F(x)| <e

max ([[A[], [ly*[l; 12" [ly = FC)ll < e

and ||x* — z*|| < e.
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The Lyapunov method: Nonsmooth case

Theorem (Zhu, 2003)

Let V: R" — RU {400} be a Isc function. Suppose that
(x*.f(x)) +aV(x) <0 forallx* € OV (x)

Then V is a a-Lyapunov function for (1.1).
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The Lyapunov method: Nonsmooth case

Theorem (Zhu, 2003)

Let V: R" — RU {400} be a Isc function. Suppose that

(x*,f(x))y +aV(x) <0 forallx* € OpV(x)

Then V is a a-Lyapunov function for (1.1).

Proof.

Apply the Monotonicity lemma and the Approximate Chain Rule to
the function ¢(7) := f o F(t), where f(x,y) = yV(x) and

F(1) = (x(t;x0), e*"), where x(t; xo) is a solution of (1.1). O
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Application to stability

Definition (Stable and Attractive sets)

Let S be a closed subset of R”.

@ We say that S is stable for (1.1) if for any € > 0, there exists
d > 0 such that for any xo € Bs(S),

x(t,xp) € B(S) forallz > 0.
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Application to stability

Definition (Stable and Attractive sets)

Let S be a closed subset of R”.

@ We say that S is stable for (1.1) if for any € > 0, there exists
d > 0 such that for any xo € Bs(S),

x(t,xp) € B(S) forallz > 0.

© We say that § is attractive for (1.1) if S is stable and there exists
d > 0 such that for any xo € Bs(S),

lim d(x(t,x0);S) = 0.

t——+00
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Application to stability

Theorem (Zhu, 2003)

Let S C R" be a compact set and let V: R — [0, +00] be a Isc function such
that

Q SC{xeR":V(x) =0},
@ forany e > 0, there exists a § > 0 such that B5(S) C {x € R": V(x) < €},
@ for any £ > 0 there exists §,n > 0 such that

{x eR": V(x) < 8} N Beyy(S) C B:(S).

(S is said critical set for V)
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Application to stability

Theorem (Zhu, 2003)

Let S C R" be a compact set and let V: R — [0, +00] be a Isc function such
that

Q SC{xeR":V(x) =0},
@ forany e > 0, there exists a § > 0 such that B5(S) C {x € R": V(x) < €},
@ for any £ > 0 there exists §,n > 0 such that

{x eR": V(x) < 8} N Beyy(S) C B:(S).

(S is said critical set for V)
Suppose that there exists a constant a > 0, for any x* € 9pV/(x)

(x*, f(x)) +aV(x) <O0.
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Application to stability

Theorem (Zhu, 2003)

Let S C R" be a compact set and let V: R — [0, +00] be a Isc function such
that

Q SC{xeR":V(x) =0},
@ forany e > 0, there exists a § > 0 such that B5(S) C {x € R": V(x) < €},
@ for any £ > 0 there exists §,n > 0 such that

{x eR": V(x) < 8} N Beyy(S) C B:(S).

(S is said critical set for V)
Suppose that there exists a constant a > 0, for any x* € 9pV/(x)

(x*, f(x)) +aV(x) <O0.

Then S is a stable set for (1.1). Moreover; S is attractive when a > 0.
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Example

Let us consider

x=f(x) = —=x(x+2)(x—1).
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Example

Let us consider
x=f(x) = —=x(x+2)(x—1).

Define
(x+2)? x<-1/2,
V(x) :== { 400 xe(—1/2,1/2),
(x—1)?% x>1/2.

Then, S; = {1} and S, = {—2} are critical sets of V.
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Example (continuation)

e If x < —1/2 and x > 1/2, then V is differentiable and

—2x(x = V(x) x<-1/2, < —3/2V(x)
~2(x+2)V(x) x>1/2 |

V(x) () =
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Example (continuation)

e If x < —1/2 and x > 1/2, then V is differentiable and

—2x(x—1)V(x) x<—1/2,

T Y S

V/(x) fx) = {

o If x =—1/2,then OpV(—1/2) = [2(—1/2 + 2), +00) and for all
p € OpV(—1/2)

p-f(=1/2) < =3/2V(-1/2).
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Example (continuation)

e If x < —1/2 and x > 1/2, then V is differentiable and

—2x(x—1)V(x) x<—1/2,

T Y S

V/(x) fx) = {
o If x =—1/2,then OpV(—1/2) = [2(—1/2 + 2), +00) and for all
p € OpV(—1/2)
p-f(=1/2) < =3/2V(-1/2).
o If x =1/2, then OpV(1/2) = (—00,2(1/2 — 1)] and for all
p € 0rV(1/2)
p-f(1/2) < =5/2v(1/2).
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Example (continuation)

Therefore, for all x € R and all p € 9pV/(x)

3
p-fx)+ EV(X) <O0.
Thus both §; and §; are attractive, i.e., 1 and —2 are asymptotic

equilibrium points.
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Perturbed Sweeping Processes

Perturbed sweeping processes

The sweeping process is the following differential inclusion:

i(t) € =NF (C(t);x(1)) + f(x(r)) ae.t>0,
x(t) € C(1) t>0, (3.1)
X(Tp) = x0 € C(0),

where C(t) C R” are closed set for all ¢ > 0.

Emilio Vilches Nonsmooth Lyapunov functions for differential equations



Perturbed Sweeping Processes

Perturbed sweeping processes

The sweeping process is the following differential inclusion:

i(t) € =NF (C(t);x(1)) + f(x(r)) ae.t>0,
x(t) € C(1) t>0, (3.1)
X(Tp) = x0 € C(0),

where C(t) C R” are closed set for all ¢ > 0.

If C(t) = R", then the sweeping process becomes (1.1).
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Perturbed sweeping processes governed by a fixed set

In this talk, for simplicity, we consider the case C(7) = S for § C R”
is a closed and convex set, that is,

i(1) € =NF (S;x(1)) +f(x(r)) ae.t>0,
x(t) €S t>0, (SP)
X(T()) =Xx9 € S.
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Perturbed sweeping processes governed by a fixed set

Theorem

For all xy € S there exists a unique solution x(-; xo) of (SP) defined
over [0, 400).
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Lyapunov pairs

Let V: R" — RU {400} be a proper Isc function and W: R” — R be
Lipschitz continuous. We say that (V, W) forms a Lyapunov pair for
the sweeping process (SP) if for every xg € S

V(x(t;x0)) + /ot W (x(s;x0))ds < V(xp) forallz> 0.
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Characterization of Lyapunov pairs

Theorem (V., 2017)

Assume that dom'V C S and W > 0. Then, the following conditions
are equivalent:

Q (V. W) forms a Lyapunov pair for (SP).
@ Forallx € R" and all x* € OpV(x)

inf{(x",v) : v € =[[f(x)[|OFds(x) +f(x)} < =W (x).
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Perturbed Sweeping Processes

Characterization of Lyapunov pairs

Corollary (V., 2017)

Assume that W > 0. Then, the following conditions are equivalent:
Q (V, W) forms a Lyapunov pair for x = f(x).
@ Forall x € R" and all x* € OpV(x)

(@, f () < =W(x).
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