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Consider a large ring that contains a smaller ball inside, and the ring
will start to move at time t = T.

Depending on the motion of the ring, the ball will just stay where it is
(in case it is not hit by the ring), or otherwise it is swept towards the
interior of the ring.

In this latter case the velocity of the ball has to point inwards to the
ring in order not to leave.
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interior of the ring.

In this latter case the velocity of the ball has to point inwards to the
ring in order not to leave.
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Mathematically,

{—x(;) €N (C(t);x(1)) ae.t € [To,T); .

x(To) =X € C(TQ),
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Mathematically,

{—x(;) €N (C(t);x(1)) ae.t € [To,T); .

x(To) =X € C(TQ),

where

@ x(7) is the position of the ball at time 7.
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Introduction

Mathematically,

{—x(;) €N (C(t);x(1)) ae.t € [To,T); .

x(To) =X € C(TQ),

where
@ x(7) is the position of the ball at time 7.

e C(1) is the moving set (the ring and its interior).
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Introduction

Mathematically,

{—x(;) €N (C(t);x(1)) ae.t € [To,T); .

x(To) =X € C(TQ),

where
@ x(7) is the position of the ball at time 7.
@ C(r) is the moving set (the ring and its interior).

@ N (C(t);x(t)) is some appropriate outward normal cone of C(r)
atx(r) € C(1).
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Introduction

Introduction

Mathematically,

{—x(;) €N (C(t);x(1)) ae.t € [To,T); .

x(T()) =X € C(TQ),

where
@ x(7) is the position of the ball at time 7.
@ C(r) is the moving set (the ring and its interior).
@ N (C(t);x(t)) is some appropriate outward normal cone of C(r)
atx(r) € C(1).
In the general setting, the set C(¢) is allowed to change its shape while
moving.
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Introduction

The sweeping process

The differential inclusion:

{ —x(t) € N (C(1);x(t)) ae.te€ [Ty, Tl;

(1.2)
X(T()) =X0 € C(To),

is called Sweeping process and it appears naturally in many problems
from elastoplasticity, contact dynamics, non-regular electrical circuits,
granular media, crowd motion, etc.
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Tools from nonsmooth analysis

Tangent and Normal cones

Let S C H be a closed set. For every x € S, we define the Clarke
tangent cone of S at x as:

T(S;x) = liminf ——.
Soy—x,tl0 T
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Tangent and Normal cones

Let S C H be a closed set. For every x € S, we define the Clarke
tangent cone of S at x as:

T(S;x) = liminf ——.
Soy—x,tl0 T

This cone is closed and convex and its negative polar N(S;x) is the
Clarke normal cone to S at x € S, that is,

N(S;x)={veH: (v,h) <OVh e T(S;x)}.
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Let S C H be a closed set. For every x € S, we define the Clarke
tangent cone of S at x as:

T(S;x) = liminf ——.
Soy—x,tl0 T

This cone is closed and convex and its negative polar N(S;x) is the
Clarke normal cone to S at x € S, that is,

N(S;x)={veH: (v,h) <OVh e T(S;x)}.

As usual we set N(S;x) = 0 if x ¢ S.
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Tools from nonsmooth analysis

Tangent and Normal cones

Let S C H be a closed set. For every x € S, we define the Clarke
tangent cone of S at x as:

T(S;x) = liminf L
Soy—x,tl0 T

This cone is closed and convex and its negative polar N(S;x) is the
Clarke normal cone to S at x € S, that is,

N(S;x)={veH: (v,h) <OVh e T(S;x)}.

As usual we set N(S;x) = 0 if x ¢ S.
Also, N (S;x) = {0} if x € int S.
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Tools from nonsmooth analysis

Clarke subdifferential

The Clarke subdifferential of a lower semicontinuous function
[+ H— RU{+o0} is defined by

Of (x) = {ve H: (v,—1) € N(epi f, (x.f(x)))},

where epi f = {(y,r) € H x R: f(y) < r} is the epigraph of f.
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Tools from nonsmooth analysis

Some properties of the Clarke subdifferential

Letf: H — R be Lipschitz near x.
Q@ Iff is L-Lipschitz near x then Jf (x) C LB.
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Some properties of the Clarke subdifferential

Letf: H — R be Lipschitz near x.
Q@ Iff is L-Lipschitz near x then Jf (x) C LB.
Q If f admits a Gateaux derivative f/;(x) at x, then f;(x) € Of (x).
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Tools from nonsmooth analysis

Some properties of the Clarke subdifferential

Letf: H — R be Lipschitz near x.
Q@ Iff is L-Lipschitz near x then Jf (x) C LB.
Q If f admits a Gateaux derivative f/;(x) at x, then f;(x) € Of (x).
@ Iff is continuously differentiable at x, then 9f (x) = {f’(x)}.
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Tools from nonsmooth analysis

Normal cone and distance function

Let S C H be a closed set. We define the indicator function of S as:

0 if x € S;
Is(x) := .
+oo  ifx ¢S,

and the distance function:
d = inf ||x — y||.
s(x) := inf [lx — |
We denote Projg(x) the set (possibly empty):

Projg(x) = {s € S: ||x — s|| = ds(x)}.
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Tools from nonsmooth analysis

Normal cone and distance function

o IfxesS.
Ols(x) = N(S;x) Vxe€S.
o IfxeS.
N ($;x) = | Aods(x).

A>0
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Normal cone and distance function

o IfxesS.
Ols(x) = N(S;x) Vxe€S.

o IfxeS.
N ($;x) = | Aods(x).

A>0

In particular, for every x € S dds(x) C N (S;x).
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Tools from nonsmooth analysis

Normal cone and distance function

o IfxesS.
Ols(x) = N(S;x) Vxe€S.

o IfxeS.
N ($;x) = | Aods(x).

A>0
In particular, for every x € S dds(x) C N (S;x).
o If S is ball-compact.

1
E@dé(x) =x —coProjy(x) VxeH.

Emilio Vilches Moreau-Yosida regularization of sweeping process



The sweeping process

© The sweeping process

Emilio



The sweeping process

The sweeping process

We say that x: [To, T] — H is a solution of the sweeping process if it
absolutely continuous and satisfies:

—x(t) € N(C(z‘);x(l)) ae. re [T07 T];
x(To) = xo € C(To),

where N (C(t); x(¢)) denotes the Clarke normal cone to C(¢) at
x(1) € C(2).
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The sweeping process

The Hausdorff distance

Let C,D C H closed sets. The Hausdorff distance between C and D is
defined by:

Haus(C, D) = max{supd(x,D),supd(x,C)}
xeC x€D

= sup |dc(x) — dp(x)|
xXEH

=inf{n >0: CC D+ nB,D C C+ nB}.
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The sweeping process

What about the variation of the moving set?

Let C: [Ty, T] == H be a set-valued map. We say that C is x-Lipschitz
if
Haus(C(1), C(s)) < k|t —s| forallz,s € [Ty, T]. (3.1)
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The sweeping process

What about the variation of the moving set?

Let C: [Ty, T] == H be a set-valued map. We say that C is x-Lipschitz
if
Haus(C(1), C(s)) < k|t —s| forallz,s € [Ty, T]. (3.1)

In particular, if C(¢) = S + v(t), where v is k-Lipschitz, (3.1) holds.
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The sweeping process

What about the shape of the moving set?

Definition
Let o €]0, 1]. S C H is positively a-far if there exists p > 0 such that
if x € U,(S)

if ¢ € ddg(x) then ||C]| > «a,

where U,(S) := {x € H: 0 < d(x,S) < p} is the p-tube around S.
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The sweeping process

What about the shape of the moving set?

Definition
Let o €]0, 1]. S C H is positively a-far if there exists p > 0 such that
if x € U,(S)

if ¢ € ddg(x) then ||C]| > «a,

where U,(S) := {x € H: 0 < d(x,S) < p} is the p-tube around S.

If S is ball-compact then S is positively a-far if there exists p > 0
such that
d(x, % Projs(x))

O<a<
- ds(x)

Vx € Uy(S).
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o If Sis convex then § is 1-far (with p = +00).
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The sweeping process

Positively a-far sets

o If Sis convex then § is 1-far (with p = +00).

o If §is p-uniformly prox-regular then S is 1-far (with the same p).
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The sweeping process

Positively a-far sets

o If Sis convex then § is 1-far (with p = +00).
o If §is p-uniformly prox-regular then S is 1-far (with the same p).

@ The class of positively a-far set is very general and includes
several classes of sets: convex sets, paraconvex sets, uniformly
prox-regular sets, uniformly subsmooth sets, etc.
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The sweeping process

Our aim is to prove the existence of solutions to the sweeping process:

—i(t) € Ol (x(t))  ae. t € [To, T);
x(To) = x0 € C(T),

when C: [Ty, T| = H is k-Lipschitz continuous with nonempty,
closed and positively a-far values.
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The sweeping process

Moreau-Yosida envelope

Givenf: H — R U {+o0} a lower semicontinuous function bounded
from below. For A > 0, the Moreau- Yosida envelope of f is defined
as:

1
7o) = inf (700 + 55 I =1P).
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Moreau-Yosida envelope

Given f: H — RU {+00} a lower semicontinuous function bounded
from below. For A > 0, the Moreau- Yosida envelope of f is defined
as:

. 1 5
7o) = inf (700 + 55 I =1P).
The main property of the Moreau-Yosida envelope is that:
@ /) is locally-Lipschitz.
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The sweeping process

Moreau-Yosida envelope

Given f: H — RU {+00} a lower semicontinuous function bounded
from below. For A > 0, the Moreau- Yosida envelope of f is defined
as:

1
= inf —lx=y|?).
filx) = inf (f(y) + 55l =l )
The main property of the Moreau-Yosida envelope is that:

@ /) is locally-Lipschitz.
Q@ A(x) /f(x)as A\ Oforallx € H.
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The sweeping process

Moreau-Yosida envelope

Given f: H — RU {+00} a lower semicontinuous function bounded
from below. For A > 0, the Moreau- Yosida envelope of f is defined
as:

1
= inf —lx=y|?).
filx) = inf (f(y) + 55l =l )
The main property of the Moreau-Yosida envelope is that:

@ /) is locally-Lipschitz.

Q@ A(x) /f(x)as A\ Oforallx € H.
@ Iff is convex then fy is C1L.
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The sweeping process

Moreau-Yosida regularization

°h
°h
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The sweeping process

Properties of Moreau-Yosida envelope

Let S C H be a closed set. Then,

(I92(0) = 35 &) Ve
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The sweeping process

Properties of Moreau-Yosida envelope

Let S C H be a closed set. Then,
1
(Is)a(x) = —~d3(x) Vx € H.
2A
Also, if § is ball-compact.

I(Is)a(x) = %(x — ¢o Projg(x)) Vx € H.
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The sweeping process

Moreau-Yosida regularization

Therefore, we will approach the sweeping process through the
following penalized differential inclusion:

. 1
—x/\(f) € ﬁad%(t) (X(t)) a.e. t c [Yw()7 T], (P)

x\(To) = xo € C(Tp).
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The sweeping process

Moreau-Yosida regularization

Therefore, we will approach the sweeping process through the
following penalized differential inclusion:

. 1

x\(To) = xo € C(Tp).

The existence of (P) can be obtained through a theorem of existence
for differential inclusions with compact values due to Bothe [1].
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The sweeping process

Moreau-Yosida regularization

Therefore, we will approach the sweeping process through the
following penalized differential inclusion:

. 1

x\(To) = xo € C(Tp).

The existence of (P) can be obtained through a theorem of existence
for differential inclusions with compact values due to Bothe [1].
This was never noticed before!
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Q@ Haus(C(r),C(s)) < k|t — s| forall t,s € [Ty, T].
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Existence result

Theorem (Jourani-Vilches, 2016)

Assume that:
Q@ Haus(C(r),C(s)) < k|t — s| forall t,s € [Ty, T].
@ C(1) is positively a-far for all t € [Ty, T).
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Existence result

Theorem (Jourani-Vilches, 2016)

Assume that:
Q@ Haus(C(r),C(s)) < k|t — s| forall t,s € [Ty, T].
@ C(1) is positively a-far for all t € [Ty, T).
@ C(1) is ball-compact for all t € [Ty, T).
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An existence result via the Moreau-Yosida regularization

Existence result

Theorem (Jourani-Vilches, 2016)

Assume that:
Q@ Haus(C(r),C(s)) < k|t — s| forall t,s € [Ty, T].
@ C(1) is positively a-far for all t € [Ty, T).
@ C(1) is ball-compact for all t € [Ty, T).

Then, there exists at least one solution of

—i(t) € N(C(t); x(t)) a.e. t € [To, T);
x(To) = xo € C(Ty).
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The proof can be divided in several steps.
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The proof can be divided in several steps.

(i) Step 1:
K
degy(xa(1)) < J)‘ Vi € [Ty, T).
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An existence result via the Moreau-Yosida regularization

Sketch of proof

The proof can be divided in several steps.

(i) Step 1:
K
degy(xa(1)) < J)‘ Vi € [Ty, T).

(i) Step 2: xy: [To, T] — H is %5-Lipschitz continuous.

o

. K
[l ()] < 2 e tl€ [Ty, T].

Emilio Vilches Moreau-Yosida regularization of sweeping process



An existence result via the Moreau-Yosida regularization

Sketch of proof

(iii) Step 3: There exists a subsequence (Ag)x of (A)x>0 and
x € AC ([T, T]; H) such that
x, (1) — x(2) vt € [Ty, T);
Xy, = X inL! ([T, T];H) ;
i =i inLy (7o, T]:H).
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An existence result via the Moreau-Yosida regularization

Sketch of proof

(iii) Step 3: There exists a subsequence (Ag)x of (A)x>0 and
x € AC ([T, T]; H) such that

x, (1) — x(2) vt € [Ty, T);
Xy, = X inL! ([T, T];H) ;
i =i inLy (7o, T]:H).

(iv) Step 4: x) (1) = x(t) and x(r) € C(¢t) for all r € [Ty, T].
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An existence result via the Moreau-Yosida regularization

Sketch of proof

(v) Step 5: Fora.e. t € [Ty, T]
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An existence result via the Moreau-Yosida regularization

Sketch of proof

(v) Step 5: Fora.e. t € [Ty, T]

(vi) Step 6: Pass to the limit:

(1) € &adc(,) (x(t)) ae. 1€ [To,T).
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An existence result via the Moreau-Yosida regularization

Sketch of proof

(v) Step 5: Fora.e. t € [Ty, T]

(vi) Step 6: Pass to the limit:
. K
—x(1) € Eadc(,) (x(r)) ae.te [Ty, T).

This completes the proof because ddc () (x(t)) C N (C(2); x(t)).
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An existence result via the Moreau-Yosida regularization

Further results

The same proof applies, mutatis mutandis, to the state-depedent
sweeping process in the sense of measure differential inclusion.

Theorem (Jourani-Vilches, 2016)

Assume that

(i) There exists v € CBV([Ty, T|;R) and L € [0, 1] such that for all
s,t € [Ty, T] and all x,y € H

Haus(C(t,x), C(s,x)) < |[v(t) — v(s)| + L|jx — y||-

(ii) The family {C(t,v): (t,v) € [To, T| x H} is equi-uniformly
subsmooth.
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An existence result via the Moreau-Yosida regularization

Further results

Theorem (Jourani-Vilches, 2016)

(iii) There exists k € L'(Ty, T) such that for every t € [Ty, T), every
r > 0 and every bounded set A C H

V(C(t,A) N rB) < k(1)v(A),

where v = « or vy = [ is either the Kuratowski or the Hausdorff
measure of non-compactness and k(t) < 1 for all t € [Ty, T).

Then, there exists at least one solution x € CBV ([Ty, T]; H) of

—dx € N (C(t,x(1));x(2)) ;
X(TQ) =Xp € C(To,x()).
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