Moreau-Yosida regularization of sweeping process with nonregular sets

Emilio Vilches^{1,2}

¹Departamento de Ingeniería Matemática Universidad de Chile
²Institut de Mathématiques de Bourgogne Université de Bourgogne Franche-Comté

> May 20, 2016 Besançon, France.

- Introduction
- 2 Tools from nonsmooth analysis
- The sweeping process
- 4 An existence result via the Moreau-Yosida regularization
- References

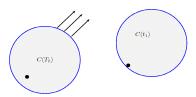
Consider a large ring that contains a smaller ball inside, and the ring will start to move at time $t = T_0$.

Depending on the motion of the ring, the ball will just stay where it is (in case it is not hit by the ring), or otherwise it is swept towards the interior of the ring.



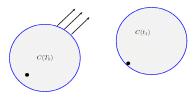
Consider a large ring that contains a smaller ball inside, and the ring will start to move at time $t = T_0$.

Depending on the motion of the ring, the ball will just stay where it is (in case it is not hit by the ring), or otherwise it is swept towards the interior of the ring.



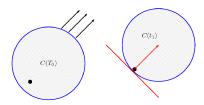
Consider a large ring that contains a smaller ball inside, and the ring will start to move at time $t = T_0$.

Depending on the motion of the ring, the ball will just stay where it is (in case it is not hit by the ring), or otherwise it is swept towards the interior of the ring.



Consider a large ring that contains a smaller ball inside, and the ring will start to move at time $t = T_0$.

Depending on the motion of the ring, the ball will just stay where it is (in case it is not hit by the ring), or otherwise it is swept towards the interior of the ring.



Mathematically,

$$\begin{cases}
-\dot{x}(t) \in N(C(t); x(t)) & \text{a.e. } t \in [T_0, T]; \\
x(T_0) = x_0 \in C(T_0),
\end{cases}$$
(1.1)

where

- x(t) is the position of the ball at time t.
- C(t) is the moving set (the ring and its interior).
- N(C(t); x(t)) is some appropriate outward normal cone of C(t) at $x(t) \in C(t)$.

Mathematically,

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & \text{a.e. } t \in [T_0, T]; \\ x(T_0) = x_0 \in C(T_0), \end{cases}$$
 (1.1)

where

- x(t) is the position of the ball at time t.
- C(t) is the moving set (the ring and its interior).
- N(C(t); x(t)) is some appropriate outward normal cone of C(t) at $x(t) \in C(t)$.

Mathematically,

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & \text{a.e. } t \in [T_0, T]; \\ x(T_0) = x_0 \in C(T_0), \end{cases}$$
 (1.1)

where

- x(t) is the position of the ball at time t.
- C(t) is the moving set (the ring and its interior).
- N(C(t); x(t)) is some appropriate outward normal cone of C(t) at $x(t) \in C(t)$.

Mathematically,

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & \text{a.e. } t \in [T_0, T]; \\ x(T_0) = x_0 \in C(T_0), \end{cases}$$
 (1.1)

where

- x(t) is the position of the ball at time t.
- C(t) is the moving set (the ring and its interior).
- N(C(t); x(t)) is some appropriate outward normal cone of C(t) at $x(t) \in C(t)$.

Mathematically,

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & \text{a.e. } t \in [T_0, T]; \\ x(T_0) = x_0 \in C(T_0), \end{cases}$$
 (1.1)

where

- x(t) is the position of the ball at time t.
- C(t) is the moving set (the ring and its interior).
- N(C(t); x(t)) is some appropriate outward normal cone of C(t) at $x(t) \in C(t)$.

The sweeping process

The differential inclusion:

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & \text{a.e. } t \in [T_0, T]; \\ x(T_0) = x_0 \in C(T_0), \end{cases}$$
 (1.2)

is called *Sweeping process* and it appears naturally in many problems from elastoplasticity, contact dynamics, non-regular electrical circuits, granular media, crowd motion, etc.

- Introduction
- 2 Tools from nonsmooth analysis
- The sweeping process
- 4 An existence result via the Moreau-Yosida regularization
- References

Definition

Let $S \subset H$ be a closed set. For every $x \in S$, we define the Clarke tangent cone of S at x as:

$$T(S;x) = \liminf_{S\ni y\to x, t\downarrow 0} \frac{S-y}{t}.$$

This cone is closed and convex and its negative polar N(S;x) is the Clarke normal cone to S at $x \in S$, that is,

$$N(S;x) = \{ v \in H \colon \langle v, h \rangle \le 0 \, \forall h \in T(S;x) \}.$$

As usual we set $N(S; x) = \emptyset$ if $x \notin S$

Definition

Let $S \subset H$ be a closed set. For every $x \in S$, we define the Clarke tangent cone of S at x as:

$$T(S;x) = \liminf_{S\ni y\to x, t\downarrow 0} \frac{S-y}{t}.$$

This cone is closed and convex and its negative polar N(S; x) is the Clarke normal cone to S at $x \in S$, that is,

$$N(S;x) = \{ v \in H \colon \langle v, h \rangle \le 0 \, \forall h \in T(S;x) \}.$$

As usual we set $N(S; x) = \emptyset$ if $x \notin S$. Also, $N(S; x) = \{0\}$ if $x \in \text{int } S$.

Definition

Let $S \subset H$ be a closed set. For every $x \in S$, we define the Clarke tangent cone of S at x as:

$$T(S;x) = \liminf_{S \ni y \to x, t \downarrow 0} \frac{S - y}{t}.$$

This cone is closed and convex and its negative polar N(S; x) is the Clarke normal cone to S at $x \in S$, that is,

$$N(S;x) = \{ v \in H \colon \langle v, h \rangle \le 0 \, \forall h \in T(S;x) \}.$$

As usual we set $N(S; x) = \emptyset$ if $x \notin S$.

Also,
$$N(S; x) = \{0\}$$
 if $x \in \text{int } S$.

Definition

Let $S \subset H$ be a closed set. For every $x \in S$, we define the Clarke tangent cone of S at x as:

$$T(S;x) = \liminf_{S \ni y \to x, t \downarrow 0} \frac{S - y}{t}.$$

This cone is closed and convex and its negative polar N(S; x) is the Clarke normal cone to S at $x \in S$, that is,

$$N(S;x) = \{ v \in H \colon \langle v, h \rangle \le 0 \, \forall h \in T(S;x) \}.$$

As usual we set $N(S; x) = \emptyset$ if $x \notin S$.

Also,
$$N(S; x) = \{0\}$$
 if $x \in \text{int } S$.

Clarke subdifferential

The Clarke subdifferential of a lower semicontinuous function $f: H \to \mathbb{R} \cup \{+\infty\}$ is defined by

$$\partial f(x) = \{ v \in H \colon (v, -1) \in N \text{ (epi } f, (x, f(x))) \},$$

where epi $f = \{(y, r) \in H \times \mathbb{R} : f(y) \le r\}$ is the epigraph of f.

Some properties of the Clarke subdifferential

Let $f: H \to \mathbb{R}$ be Lipschitz near x.

- If f is L-Lipschitz near x then $\partial f(x) \subset L\mathbb{B}$.
- ② If f admits a Gâteaux derivative $f'_G(x)$ at x, then $f'_G(x) \in \partial f(x)$.
- ① If f is continuously differentiable at x, then $\partial f(x) = \{f'(x)\}.$

Some properties of the Clarke subdifferential

Let $f: H \to \mathbb{R}$ be Lipschitz near x.

- If f is L-Lipschitz near x then $\partial f(x) \subset L\mathbb{B}$.
- ② If f admits a Gâteaux derivative $f'_G(x)$ at x, then $f'_G(x) \in \partial f(x)$.
- ③ If f is continuously differentiable at x, then $\partial f(x) = \{f'(x)\}.$

Some properties of the Clarke subdifferential

Let $f: H \to \mathbb{R}$ be Lipschitz near x.

- If f is L-Lipschitz near x then $\partial f(x) \subset L\mathbb{B}$.
- ② If f admits a Gâteaux derivative $f'_G(x)$ at x, then $f'_G(x) \in \partial f(x)$.
- **③** If f is continuously differentiable at x, then $\partial f(x) = \{f'(x)\}.$

Let $S \subset H$ be a closed set. We define the indicator function of S as:

$$I_S(x) := \begin{cases} 0 & \text{if } x \in S; \\ +\infty & \text{if } x \notin S, \end{cases}$$

and the distance function:

$$d_S(x) := \inf_{y \in S} ||x - y||.$$

We denote $Proj_{S}(x)$ the set (possibly empty):

$$Proj_S(x) = \{ s \in S : ||x - s|| = d_S(x) \}.$$

• If $x \in S$.

$$\partial I_S(x) = N(S; x) \quad \forall x \in S.$$

• If $x \in S$.

$$N(S;x) = \overline{\bigcup_{\lambda > 0} \lambda \partial d_S(x)}.$$

In particular, for every $x \in S \partial d_S(x) \subset N(S; x)$.

• If S is ball-compact.

$$\frac{1}{2}\partial d_S^2(x) = x - \overline{\operatorname{co}}\operatorname{Proj}_S(x) \quad \forall x \in H.$$

• If $x \in S$.

$$\partial I_S(x) = N(S; x) \quad \forall x \in S.$$

• If $x \in S$.

$$N(S;x) = \overline{\bigcup_{\lambda > 0} \lambda \partial d_S(x)}.$$

In particular, for every $x \in S \ \partial d_S(x) \subset N(S;x)$.

• If S is ball-compact

$$\frac{1}{2}\partial d_S^2(x) = x - \overline{\operatorname{co}}\operatorname{Proj}_S(x) \quad \forall x \in H.$$

• If $x \in S$.

$$\partial I_S(x) = N(S; x) \quad \forall x \in S.$$

• If $x \in S$.

$$N(S;x) = \overline{\bigcup_{\lambda > 0} \lambda \partial d_S(x)}.$$

In particular, for every $x \in S \partial d_S(x) \subset N(S; x)$.

• If *S* is ball-compact.

$$\frac{1}{2}\partial d_S^2(x) = x - \overline{\operatorname{co}}\operatorname{Proj}_S(x) \quad \forall x \in H.$$

- Introduction
- 2 Tools from nonsmooth analysis
- 3 The sweeping process
- 4 An existence result via the Moreau-Yosida regularization
- References

The sweeping process

Definition

We say that $x: [T_0, T] \to H$ is a solution of the sweeping process if it absolutely continuous and satisfies:

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & \text{a.e. } t \in [T_0, T]; \\ x(T_0) = x_0 \in C(T_0), \end{cases}$$

where $N\left(C(t);x(t)\right)$ denotes the Clarke normal cone to C(t) at $x(t) \in C(t)$.

The Hausdorff distance

Let $C, D \subset H$ closed sets. The Hausdorff distance between C and D is defined by:

$$\begin{aligned} \operatorname{Haus}(C,D) &= \max\{\sup_{x \in C} d(x,D), \sup_{x \in D} d(x,C)\} \\ &= \sup_{x \in H} |d_C(x) - d_D(x)| \\ &= \inf\{\eta \geq 0 \colon C \subset D + \eta \mathbb{B}, D \subset C + \eta \mathbb{B}\}. \end{aligned}$$

What about the variation of the moving set?

Let $C: [T_0, T] \rightrightarrows H$ be a set-valued map. We say that C is κ -Lipschitz if

$$\operatorname{Haus}(C(t), C(s)) \le \kappa |t - s| \quad \text{for all } t, s \in [T_0, T]. \tag{3.1}$$

In particular, if C(t) = S + v(t), where v is κ -Lipschitz, (3.1) holds.

What about the variation of the moving set?

Let $C \colon [T_0, T] \rightrightarrows H$ be a set-valued map. We say that C is κ -Lipschitz if

$$\operatorname{Haus}(C(t), C(s)) \le \kappa |t - s| \quad \text{for all } t, s \in [T_0, T]. \tag{3.1}$$

In particular, if C(t) = S + v(t), where v is κ -Lipschitz, (3.1) holds.

What about the shape of the moving set?

Definition

Let $\alpha \in]0,1]$. $S \subset H$ is positively α -far if there exists $\rho > 0$ such that if $x \in U_{\rho}(S)$

if
$$\zeta \in \partial d_S(x)$$
 then $\|\zeta\| \ge \alpha$,

where $U_{\rho}(S) := \{x \in H : 0 < d(x, S) < \rho\}$ is the ρ -tube around S.

If S is ball-compact then S is positively α -far if there exists $\rho > 0$ such that

$$0 < \alpha \le \frac{d(x, \overline{\operatorname{co}}\operatorname{Proj}_{S}(x))}{d_{S}(x)} \quad \forall x \in U_{\rho}(S).$$

What about the shape of the moving set?

Definition

Let $\alpha \in]0,1]$. $S \subset H$ is positively α -far if there exists $\rho > 0$ such that if $x \in U_{\rho}(S)$

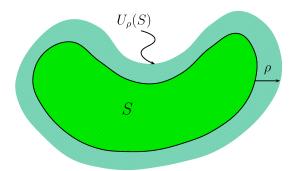
if
$$\zeta \in \partial d_S(x)$$
 then $\|\zeta\| \ge \alpha$,

where $U_{\rho}(S) := \{x \in H : 0 < d(x, S) < \rho\}$ is the ρ -tube around S.

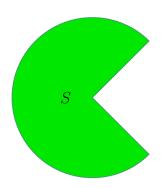
If S is ball-compact then S is positively α -far if there exists $\rho > 0$ such that

$$0 < \alpha \le \frac{d(x, \overline{\operatorname{co}}\operatorname{Proj}_{S}(x))}{d_{S}(x)} \quad \forall x \in U_{\rho}(S).$$

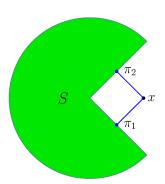
Positively α -far sets.



Positively α -far sets

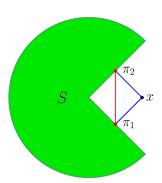


Positively α -far sets



$$\operatorname{Proj}_{S}(x) = \{\pi_{1}, \pi_{2}\}\$$

Positively α -far sets



$$\operatorname{Proj}_{S}(x) = \{\pi_{1}, \pi_{2}\}$$

Positively α -far sets

- If S is convex then S is 1-far (with $\rho = +\infty$).
- If *S* is ρ -uniformly prox-regular then *S* is 1-far (with the same ρ).
- The class of positively α -far set is very general and includes several classes of sets: convex sets, paraconvex sets, uniformly prox-regular sets, uniformly subsmooth sets, etc.

Positively α -far sets

- If S is convex then S is 1-far (with $\rho = +\infty$).
- If S is ρ -uniformly prox-regular then S is 1-far (with the same ρ).
- The class of positively α -far set is very general and includes several classes of sets: convex sets, paraconvex sets, uniformly prox-regular sets, uniformly subsmooth sets, etc.

Positively α -far sets

- If S is convex then S is 1-far (with $\rho = +\infty$).
- If S is ρ -uniformly prox-regular then S is 1-far (with the same ρ).
- The class of positively α -far set is very general and includes several classes of sets: convex sets, paraconvex sets, uniformly prox-regular sets, uniformly subsmooth sets, etc.

Aim

Our aim is to prove the existence of solutions to the sweeping process:

$$\begin{cases} -\dot{x}(t) \in \partial I_{C(t)}(x(t)) & \text{a.e. } t \in [T_0, T]; \\ x(T_0) = x_0 \in C(T_0), \end{cases}$$

when $C \colon [T_0, T] \rightrightarrows H$ is κ -Lipschitz continuous with nonempty, closed and positively α -far values.

Given $f: H \to \mathbb{R} \cup \{+\infty\}$ a lower semicontinuous function bounded from below. For $\lambda > 0$, the Moreau-Yosida envelope of f is defined as:

$$f_{\lambda}(x) = \inf_{y \in H} \left(f(y) + \frac{1}{2\lambda} ||x - y||^2 \right).$$

- f_{λ} is locally-Lipschitz.
- $f_{\lambda}(x) \nearrow f(x)$ as $\lambda \searrow 0$ for all $x \in H$.
- If f is convex then f_{λ} is $C^{1,1}$

Given $f: H \to \mathbb{R} \cup \{+\infty\}$ a lower semicontinuous function bounded from below. For $\lambda > 0$, the Moreau-Yosida envelope of f is defined as:

$$f_{\lambda}(x) = \inf_{y \in H} \left(f(y) + \frac{1}{2\lambda} ||x - y||^2 \right).$$

- f_{λ} is locally-Lipschitz.
- $f_{\lambda}(x) \nearrow f(x)$ as $\lambda \searrow 0$ for all $x \in H$.
- **3** If f is convex then f_{λ} is $C^{1,1}$.

Given $f: H \to \mathbb{R} \cup \{+\infty\}$ a lower semicontinuous function bounded from below. For $\lambda > 0$, the Moreau-Yosida envelope of f is defined as:

$$f_{\lambda}(x) = \inf_{y \in H} \left(f(y) + \frac{1}{2\lambda} ||x - y||^2 \right).$$

- f_{λ} is locally-Lipschitz.
- \bigcirc If f is convex then f_{λ} is $C^{1,1}$.

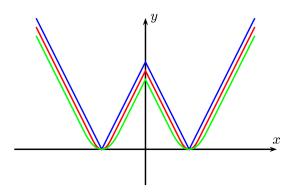
Given $f: H \to \mathbb{R} \cup \{+\infty\}$ a lower semicontinuous function bounded from below. For $\lambda > 0$, the Moreau-Yosida envelope of f is defined as:

$$f_{\lambda}(x) = \inf_{y \in H} \left(f(y) + \frac{1}{2\lambda} ||x - y||^2 \right).$$

- f_{λ} is locally-Lipschitz.
- $f_{\lambda}(x) \nearrow f(x)$ as $\lambda \searrow 0$ for all $x \in H$.
- **3** If f is convex then f_{λ} is $C^{1,1}$.

•
$$h = 0.1$$

• $h = 0.2$



Properties of Moreau-Yosida envelope

Let $S \subset H$ be a closed set. Then,

$$(I_S)_{\lambda}(x) = \frac{1}{2\lambda} d_S^2(x) \quad \forall x \in H.$$

Also, if S is ball-compact

$$\partial (I_S)_{\lambda}(x) = \frac{1}{\lambda}(x - \overline{\operatorname{co}} \operatorname{Proj}_S(x)) \quad \forall x \in H$$

Properties of Moreau-Yosida envelope

Let $S \subset H$ be a closed set. Then,

$$(I_S)_{\lambda}(x) = \frac{1}{2\lambda} d_S^2(x) \quad \forall x \in H.$$

Also, if *S* is ball-compact.

$$\partial (I_S)_{\lambda}(x) = \frac{1}{\lambda}(x - \overline{\operatorname{co}} \operatorname{Proj}_S(x)) \quad \forall x \in H.$$

Therefore, we will approach the sweeping process through the following penalized differential inclusion:

$$\begin{cases} -\dot{x}_{\lambda}(t) \in \frac{1}{2\lambda} \partial d_{C(t)}^{2}(x(t)) & \text{a.e. } t \in [T_{0}, T]; \\ x_{\lambda}(T_{0}) = x_{0} \in C(T_{0}). \end{cases}$$
 (\mathcal{P})

The existence of (\mathcal{P}) can be obtained through a theorem of existence for differential inclusions with compact values due to Bothe [1]. This was never noticed before!

Therefore, we will approach the sweeping process through the following penalized differential inclusion:

$$\begin{cases} -\dot{x}_{\lambda}(t) \in \frac{1}{2\lambda} \partial d_{C(t)}^{2}(x(t)) & \text{a.e. } t \in [T_{0}, T]; \\ x_{\lambda}(T_{0}) = x_{0} \in C(T_{0}). \end{cases}$$
 (\mathcal{P})

The existence of (P) can be obtained through a theorem of existence for differential inclusions with compact values due to Bothe [1].

This was never noticed before!

Therefore, we will approach the sweeping process through the following penalized differential inclusion:

$$\begin{cases} -\dot{x}_{\lambda}(t) \in \frac{1}{2\lambda} \partial d_{C(t)}^{2}(x(t)) & \text{a.e. } t \in [T_{0}, T]; \\ x_{\lambda}(T_{0}) = x_{0} \in C(T_{0}). \end{cases}$$
 (\mathcal{P})

The existence of (\mathcal{P}) can be obtained through a theorem of existence for differential inclusions with compact values due to Bothe [1]. This was never noticed before!

- Introduction
- Tools from nonsmooth analysis
- The sweeping process
- 4 An existence result via the Moreau-Yosida regularization
- References

Theorem (Jourani-Vilches, 2016)

Assume that:

- Haus $(C(t), C(s)) \le \kappa |t s|$ for all $t, s \in [T_0, T]$.
- ② C(t) is positively α -far for all $t \in [T_0, T]$.
- ③ C(t) is ball-compact for all $t ∈ [T_0, T]$.

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & a.e. \ t \in [T_0, T] \\ x(T_0) = x_0 \in C(T_0). \end{cases}$$

Theorem (Jourani-Vilches, 2016)

Assume that:

- Haus $(C(t), C(s)) \le \kappa |t-s|$ for all $t, s \in [T_0, T]$.
- **2** C(t) is positively α -far for all $t \in [T_0, T]$.
- \bigcirc C(t) is ball-compact for all $t \in [T_0, T]$.

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & a.e. \ t \in [T_0, T] \\ x(T_0) = x_0 \in C(T_0). \end{cases}$$

Theorem (Jourani-Vilches, 2016)

Assume that:

- Haus $(C(t), C(s)) \le \kappa |t-s|$ for all $t, s \in [T_0, T]$.
- **2** C(t) is positively α -far for all $t \in [T_0, T]$.
- **3** C(t) is ball-compact for all $t \in [T_0, T]$.

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & a.e. \ t \in [T_0, T] \\ x(T_0) = x_0 \in C(T_0). \end{cases}$$

Theorem (Jourani-Vilches, 2016)

Assume that:

- Haus $(C(t), C(s)) \le \kappa |t-s|$ for all $t, s \in [T_0, T]$.
- **2** C(t) is positively α -far for all $t \in [T_0, T]$.
- **3** C(t) is ball-compact for all $t \in [T_0, T]$.

$$\begin{cases} -\dot{x}(t) \in N(C(t); x(t)) & a.e. \ t \in [T_0, T]; \\ x(T_0) = x_0 \in C(T_0). \end{cases}$$

The proof can be divided in several steps.

(i) Step 1:

$$d_{C(t)}(x_{\lambda}(t)) \le \frac{\kappa}{\alpha^2} \lambda \quad \forall t \in [T_0, T].$$

(ii) Step 2: x_{λ} : $[T_0, T] \to H$ is $\frac{\kappa}{\alpha^2}$ -Lipschitz continuous.

$$\|\dot{x}_{\lambda}(t)\| \leq \frac{\kappa}{\alpha^2}$$
 a.e. $t \in [T_0, T]$.

The proof can be divided in several steps.

(i) Step 1:

$$d_{C(t)}(x_{\lambda}(t)) \leq \frac{\kappa}{\alpha^2} \lambda \quad \forall t \in [T_0, T].$$

(ii) Step 2: x_{λ} : $[T_0, T] \to H$ is $\frac{\kappa}{\alpha^2}$ -Lipschitz continuous.

$$\|\dot{x}_{\lambda}(t)\| \leq \frac{\kappa}{\alpha^2}$$
 a.e. $t \in [T_0, T]$.

The proof can be divided in several steps.

(i) Step 1:

$$d_{C(t)}(x_{\lambda}(t)) \leq \frac{\kappa}{\alpha^2} \lambda \quad \forall t \in [T_0, T].$$

(ii) Step 2: $x_{\lambda} : [T_0, T] \to H$ is $\frac{\kappa}{\alpha^2}$ -Lipschitz continuous.

$$\|\dot{x}_{\lambda}(t)\| \leq \frac{\kappa}{\alpha^2}$$
 a.e. $t \in [T_0, T]$.

(iii) Step 3: There exists a subsequence $(\lambda_k)_k$ of $(\lambda)_{\lambda>0}$ and $x \in AC([T_0, T]; H)$ such that

$$\begin{split} x_{\lambda_k}(t) & \rightharpoonup x(t) & \forall t \in [T_0, T]; \\ x_{\lambda_k} & \rightharpoonup x & \text{in } L^1_w\left([T_0, T]; H\right); \\ \dot{x}_{\lambda_k} & \rightharpoonup \dot{x} & \text{in } L^1_w\left([T_0, T]; H\right). \end{split}$$

(iv) Step 4: $x_{\lambda_k}(t) \to x(t)$ and $x(t) \in C(t)$ for all $t \in [T_0, T]$.

(iii) Step 3: There exists a subsequence $(\lambda_k)_k$ of $(\lambda)_{\lambda>0}$ and $x \in AC([T_0, T]; H)$ such that

$$\begin{aligned} x_{\lambda_k}(t) & \rightharpoonup x(t) & \forall t \in [T_0, T]; \\ x_{\lambda_k} & \rightharpoonup x & \text{in } L^1_w\left([T_0, T]; H\right); \\ \dot{x}_{\lambda_k} & \rightharpoonup \dot{x} & \text{in } L^1_w\left([T_0, T]; H\right). \end{aligned}$$

(iv) Step 4: $x_{\lambda_k}(t) \to x(t)$ and $x(t) \in C(t)$ for all $t \in [T_0, T]$.

(v) Step 5: For a.e. $t \in [T_0, T]$

$$-\dot{x}_{\lambda_k}(t) \subseteq \frac{\kappa}{\alpha^2}\overline{\operatorname{co}}\left\{\partial d_{C(t)}(x_{\lambda_k}(t)) \cup \{0\}\right\}.$$

(vi) Step 6: Pass to the limit:

$$-\dot{x}(t) \in \frac{\kappa}{\alpha^2} \partial d_{C(t)}(x(t))$$
 a.e. $t \in [T_0, T]$.

This completes the proof because $\partial d_{C(t)}(x(t)) \subset N(C(t);x(t))$.

(v) Step 5: For a.e. $t \in [T_0, T]$

$$-\dot{x}_{\lambda_k}(t) \subseteq \frac{\kappa}{\alpha^2}\overline{\operatorname{co}}\left\{\partial d_{C(t)}(x_{\lambda_k}(t)) \cup \{0\}\right\}.$$

(vi) Step 6: Pass to the limit:

$$-\dot{x}(t) \in \frac{\kappa}{\alpha^2} \partial d_{C(t)}(x(t))$$
 a.e. $t \in [T_0, T]$.

This completes the proof because $\partial d_{C(t)}(x(t)) \subset N(C(t);x(t))$.

(v) Step 5: For a.e. $t \in [T_0, T]$

$$-\dot{x}_{\lambda_k}(t) \subseteq \frac{\kappa}{\alpha^2}\overline{\operatorname{co}}\left\{\partial d_{C(t)}(x_{\lambda_k}(t)) \cup \{0\}\right\}.$$

(vi) Step 6: Pass to the limit:

$$-\dot{x}(t) \in \frac{\kappa}{\alpha^2} \partial d_{C(t)}(x(t))$$
 a.e. $t \in [T_0, T]$.

This completes the proof because $\partial d_{C(t)}(x(t)) \subset N(C(t); x(t))$.

Further results

The same proof applies, mutatis mutandis, to the state-depedent sweeping process in the sense of measure differential inclusion.

Theorem (Jourani-Vilches, 2016)

Assume that

(i) There exists $v \in CBV([T_0, T]; \mathbb{R})$ and $L \in [0, 1[$ such that for all $s, t \in [T_0, T]$ and all $x, y \in H$

$$\text{Haus}(C(t,x),C(s,x)) \le |v(t)-v(s)| + L||x-y||.$$

(ii) The family $\{C(t,v): (t,v) \in [T_0,T] \times H\}$ is equi-uniformly subsmooth.

Further results

Theorem (Jourani-Vilches, 2016)

(iii) There exists $k \in L^1(T_0, T)$ such that for every $t \in [T_0, T]$, every r > 0 and every bounded set $A \subset H$

$$\gamma(C(t,A) \cap r\mathbb{B}) \le k(t)\gamma(A),$$

where $\gamma = \alpha$ or $\gamma = \beta$ is either the Kuratowski or the Hausdorff measure of non-compactness and k(t) < 1 for all $t \in [T_0, T]$.

Then, there exists at least one solution $x \in CBV([T_0, T]; H)$ of

$$\begin{cases} -dx \in N(C(t, x(t)); x(t)); \\ x(T_0) = x_0 \in C(T_0, x_0). \end{cases}$$

- Introduction
- 2 Tools from nonsmooth analysis
- The sweeping process
- 4 An existence result via the Moreau-Yosida regularization
- S References

- [1] D. Bothe. Multivalued perturbations of *m*-accretive differential inclusions. *Israel J. Math.*, 108:109-138,1998.
- [2] F.H. Clarke, Y. Ledyaev, R. Stern and P. Wolenski. Nonsmooth Analysis and Control Theory. Springer, 1998.
- [3] T. Haddad, A. Jourani and L. Thibault. Reduction of sweeping process to unconstrained differential inclusion. *Pac. J. Optim.*, 4:493-512, 2008.
- [4] A. Jourani, L. Thibault and D. Zagrodny. Differential properties of the Moreau envelope.
- [5] A. Jourani and E. Vilches. Positively α -far sets and existence results for generalized perturbed sweeping processes. J. Convex Anal. 23(3), 2016.

- [6] A. Jourani and E. Vilches. Moreau-Yosida regularization of state-dependent sweeping processes with nonregular sets. submitted.
- [7] M. Kunze and M.D.P. Monteiro-Marques. An introduction to Moreau's Sweeping Process. In B. Brogliato, editor, *Impacts in Mechanical Systems*, volume 551 of Lecture Notes in Physics, pages 1-60. Springer Berlin Heidelberg, 2000.
- [8] E. Vilches. Regularization of perturbed state-dependent sweeping process with nonregular sets. submitted.

Moreau-Yosida regularization of sweeping process with nonregular sets

Emilio Vilches^{1,2}

¹Departamento de Ingeniería Matemática Universidad de Chile ²Institut de Mathématiques de Bourgogne Université de Bourgogne Franche-Comté

> May 20, 2016 Besançon, France.

Thanks!

