A level set approach for computing solutions to incompressible two-phase flow

Patricio Cumsille Atala

Centro de Modelamiento Matemático - Universidad de Chile

Equations of the model Boundary and initial condition

The physical problem

Summary

 Ω : bounded domain in \mathbb{R}^2 , $\partial\Omega = \Gamma$. For $t \in [0, T]$, set

$$\overline{\Omega} = \overline{\Omega_1(t)} \cup \overline{\Omega_2(t)}, \quad \Omega_1(t) \cap \Omega_2(t) = \emptyset.$$

Projection method Smoothing by means of the level set function Reinitialization of the level set function Numerical approximation Discretization Summary

Equations of the model

Boundary and initial conditions

Equations of the model (1/2)

$$\begin{cases} \rho_{i} \left(\frac{\partial \mathbf{u}^{(i)}}{\partial t} + (\mathbf{u}^{(i)} \cdot \nabla) \mathbf{u}^{(i)} \right) = \operatorname{div} \sigma^{(i)} + \rho_{i} \mathbf{g}, & \mathbf{x} \in \Omega_{i}(t), \\ \operatorname{div} \mathbf{u}^{(i)} = 0, & \mathbf{x} \in \Omega_{i}(t), \end{cases}$$
(1)

$$\sigma^{(i)} = -p^{(i)}\mathbf{I} + 2\mu_i \mathbf{D}(\mathbf{u}^{(i)}),$$

Equations of the model Boundary and initial conditions

Equations of the model (1/2)

$$\begin{cases} \rho_{i} \left(\frac{\partial \mathbf{u}^{(i)}}{\partial t} + (\mathbf{u}^{(i)} \cdot \nabla) \mathbf{u}^{(i)} \right) = \operatorname{div} \sigma^{(i)} + \rho_{i} \mathbf{g}, & \mathbf{x} \in \Omega_{i}(t), \\ \operatorname{div} \mathbf{u}^{(i)} = 0, & \mathbf{x} \in \Omega_{i}(t), \end{cases}$$
(1)

 $\mathbf{u}^{(i)} = (u^{(i)}, v^{(i)})^t$: velocity, **g**: gravitational acceleration. The stress tensor is defined by

$$\sigma^{(i)} = -p^{(i)}\mathbf{I} + 2\mu_i \mathbf{D}(\mathbf{u}^{(i)}),$$

where $p^{(i)}$: pressure, μ_i : viscosity and

Discretization Summary

Equations of the model (2/2)

$$D_{\alpha,\beta}(\mathbf{u}^{(i)}) = \frac{1}{2} \left(\frac{\partial u_{\alpha}^{(i)}}{\partial x_{\beta}} + \frac{\partial u_{\beta}^{(i)}}{\partial x_{\alpha}} \right)$$

is the deformation tensor.

$$\frac{\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + \mathbf{u} \cdot \nabla\rho = 0,}{\frac{D\mu}{Dt} = \frac{\partial\mu}{\partial t} + \mathbf{u} \cdot \nabla\mu = 0.}$$
 \lim \Omega \times (0, T).

Boundary and initial conditions

We assume the free-slip condition on solid walls:

$$\mathbf{u} \cdot \mathbf{n} = \mathbf{0}$$
 on $\Gamma \times (0, T)$.

The effect of surface tension is to balance the jump of the normal stress along the fluid interface:

$$(\sigma^{(1)} - \sigma^{(2)})\mathbf{n} = \tau \kappa \mathbf{n} \quad \text{on } I(t), \tag{2}$$

 τ : surface tension coefficient (constant) κ : mean curvature of the interface I(t). Continuity condition for the velocity:

$$\mathbf{u}^{(1)} = \mathbf{u}^{(2)} \quad \text{on } I(t).$$

$$\mathbf{u}(x,0) = \mathbf{u}_0(x) \quad \text{in } \Omega.$$

Boundary and initial conditions

We assume the free-slip condition on solid walls:

$$\mathbf{u} \cdot \mathbf{n} = \mathbf{0}$$
 on $\Gamma \times (0, T)$.

The effect of surface tension is to balance the jump of the normal stress along the fluid interface:

$$(\sigma^{(1)} - \sigma^{(2)})\mathbf{n} = \tau \kappa \mathbf{n} \quad \text{on } I(t), \tag{2}$$

τ: surface tension coefficient (constant),

 κ : mean curvature of the interface I(t).

Continuity condition for the velocity:

$$\mathbf{u}^{(1)} = \mathbf{u}^{(2)} \quad \text{on } I(t).$$

$$\mathbf{u}(x,0) = \mathbf{u}_0(x) \quad \text{in } \Omega$$

Boundary and initial conditions

We assume the free-slip condition on solid walls:

$$\mathbf{u} \cdot \mathbf{n} = \mathbf{0} \quad \text{on } \Gamma \times (0, T).$$

The effect of surface tension is to balance the jump of the normal stress along the fluid interface:

$$(\sigma^{(1)} - \sigma^{(2)})\mathbf{n} = \tau \kappa \mathbf{n} \quad \text{on } I(t), \tag{2}$$

τ: surface tension coefficient (constant),

 κ : mean curvature of the interface I(t).

Continuity condition for the velocity:

$$\mathbf{u}^{(1)} = \mathbf{u}^{(2)}$$
 on $I(t)$.

$$\mathbf{u}(x,0) = \mathbf{u}_0(x)$$
 in Ω .

Let $\phi = \phi(\mathbf{x}, t)$ be a smooth function s.t.

$$\phi(\cdot,t) < 0 \text{ in } \Omega_1(t) \quad \text{and } \phi(\cdot,t) > 0 \text{ in } \Omega_2(t).$$

Thus

$$I(t) = \{ \mathbf{x} = (x, y) \in \Omega / \phi(\mathbf{x}, t) = 0 \}, \text{ for } t \in [0, T].$$

Therefore, ϕ satisfies

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0, \quad \text{en } \Omega \times (0, T).$$
 (3)

$$\phi_0 = \begin{cases} -d & \text{in } \Omega_1(0), \\ 0 & \text{on } I(t), \\ +d & \text{in } \Omega_2(0), \text{on any left in } \mathbb{R} \end{cases}$$

Let $\phi = \phi(\mathbf{x}, t)$ be a smooth function s.t.

$$\phi(\cdot,t) < 0 \text{ in } \Omega_1(t) \quad \text{and } \phi(\cdot,t) > 0 \text{ in } \Omega_2(t).$$

Thus

$$I(t) = \{ \mathbf{x} = (x, y) \in \Omega / \phi(\mathbf{x}, t) = 0 \}, \text{ for } t \in [0, T].$$

Therefore, ϕ satisfies

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0, \quad \text{en } \Omega \times (0, T).$$
 (3)

$$\phi_0 = \begin{cases} -d & \text{in } \Omega_1(0), \\ 0 & \text{on } I(t), \\ +d & \text{in } \Omega_2(0), \text{on the series of the series} \end{cases}$$

Let $\phi = \phi(\mathbf{x}, t)$ be a smooth function s.t.

$$\phi(\cdot,t) < 0 \text{ in } \Omega_1(t) \quad \text{and } \phi(\cdot,t) > 0 \text{ in } \Omega_2(t).$$

Thus

$$I(t) = \{ \mathbf{x} = (x, y) \in \Omega / \phi(\mathbf{x}, t) = 0 \}, \text{ for } t \in [0, T].$$

Therefore, ϕ satisfies

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0, \quad \text{en } \Omega \times (0, T).$$
 (3)

$$\phi_0 = \begin{cases} -d & \text{in } \Omega_1(0), \\ 0 & \text{on } I(t), \\ +d & \text{in } \Omega_2(0), \text{on a constant } \mathbb{R} \end{cases}$$

Let $\phi = \phi(\mathbf{x}, t)$ be a smooth function s.t.

$$\phi(\cdot,t) < 0 \text{ in } \Omega_1(t) \quad \text{and } \phi(\cdot,t) > 0 \text{ in } \Omega_2(t).$$

Thus

$$I(t) = \{ \mathbf{x} = (x, y) \in \Omega / \phi(\mathbf{x}, t) = 0 \}, \text{ for } t \in [0, T].$$

Therefore, ϕ satisfies

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0, \quad \text{en } \Omega \times (0, T). \tag{3}$$

$$\phi_0 = \left\{ egin{array}{ll} -d & ext{in } \Omega_1(0), \ 0 & ext{on } I(t), \ +d & ext{in } \Omega_2(0), \end{array}
ight.$$

Reformulation of the physical problem (1/3)

We shall consider the fluid motion for rising air bubbles in water. Denote the density and viscosity inside the bubble by ρ_b and μ_b , resp., and for the continuous phase by ρ_c and μ_c .

With this, it can be proven that eqs. (1), plus the boundary and initial conditions, can be reformulated as follow:

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} &= L(\mathbf{u}, \phi) - \frac{\nabla p}{\rho}, & \text{in } \Omega \times (0, T), \\ \operatorname{div} \mathbf{u} &= 0, & \text{in } \Omega \times (0, T), \\ \mathbf{u} \cdot \mathbf{n} &= 0, & \text{on } \Gamma \times (0, T), \\ \mathbf{u}(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), & \text{in } \Omega. \end{cases}$$

Reformulation of the physical problem (1/3)

We shall consider the fluid motion for rising air bubbles in water. Denote the density and viscosity inside the bubble by ρ_b and μ_b , resp., and for the continuous phase by ρ_c and μ_c . With this, it can be proven that eqs. (1), plus the boundary and initial conditions, can be reformulated as follow:

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} &= L(\mathbf{u}, \phi) - \frac{\nabla \rho}{\rho}, & \text{in } \Omega \times (0, T), \\ \operatorname{div} \mathbf{u} &= 0, & \text{in } \Omega \times (0, T), \\ \mathbf{u} \cdot \mathbf{n} &= 0, & \text{on } \Gamma \times (0, T), \\ \mathbf{u}(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), & \text{in } \Omega. \end{cases}$$

Reformulation of the physical problem (2/3)

where

$$L(\mathbf{u}, \phi) = -(\mathbf{u} \cdot \nabla)\mathbf{u} + \mathbf{g}_{u} + \frac{1}{\rho} \left(\frac{1}{\operatorname{Re}} \operatorname{div}(2\mu \mathbf{D}(\mathbf{u})) + \frac{1}{B} \kappa(\phi) \nabla \phi \delta(\phi) \right).$$

The curvature $\kappa(\phi)$ is computed as follow

$$\kappa(\phi) = -\operatorname{div}\left(\frac{\nabla\phi}{|\nabla\phi|}\right) = -\frac{\phi_y^2\phi_{xx} - 2\phi_x\phi_y\phi_{xy} + \phi_x^2\phi_{yy}}{(\phi_x^2 + \phi_y^2)^{3/2}}.$$

Reformulation of the physical problem (2/3)

where

$$L(\mathbf{u}, \phi) = -(\mathbf{u} \cdot \nabla)\mathbf{u} + \mathbf{g}_{u}$$
$$+ \frac{1}{\rho} \left(\frac{1}{\operatorname{Re}} \operatorname{div}(2\mu \mathbf{D}(\mathbf{u})) + \frac{1}{B} \kappa(\phi) \nabla \phi \delta(\phi) \right).$$

The curvature $\kappa(\phi)$ is computed as follow:

$$\kappa(\phi) = -\operatorname{div}\left(\frac{\nabla\phi}{|\nabla\phi|}\right) = -\frac{\phi_y^2\phi_{xx} - 2\phi_x\phi_y\phi_{xy} + \phi_x^2\phi_{yy}}{(\phi_x^2 + \phi_y^2)^{3/2}}.$$

Reformulation of the physical problem (3/3)

Moreover, assuming that ρ_1 and ρ_2 (resp. μ_1 and μ_2) are constants in Ω_1 and Ω_2 resp., then

$$\rho = \rho_1 + (\rho_2 - \rho_1)H(\phi),$$

$$\mu = \mu_1 + (\mu_2 - \mu_1)H(\phi),$$

where H(x) is the Heaviside 1-D function:

$$H(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$$

Reformulation of the physical problem (3/3)

Moreover, assuming that ρ_1 and ρ_2 (resp. μ_1 and μ_2) are constants in Ω_1 and Ω_2 resp., then

$$\rho = \rho_1 + (\rho_2 - \rho_1)H(\phi),$$

$$\mu = \mu_1 + (\mu_2 - \mu_1)H(\phi),$$

where H(x) is the Heaviside 1-D function:

$$H(x) = \begin{cases} 1 & \text{for } x > 0, \\ 0 & \text{for } x \le 0. \end{cases}$$

Parameters of the model

The key parameters are

 ρ_b/ρ_c : dimensionless density inside the bub.,

 μ_b/μ_c : dimensionless viscosity inside the bub.,

 $\mathrm{Re} = (2R)^{3/2} \sqrt{g} \rho_c / \mu_c$: Reynolds number,

 $B = 4\rho_c g R^2/\tau$: Bond number,

R: the initial radius of the bubble,

 \mathbf{g}_{u} : a unit gravitational force.

The dimensionless density and viscosity outside the bubble are equal to 1.

Let $V = L(\mathbf{u}, \phi)$. It is known that $\exists !$ decomposition of the form:

$$\mathbf{V} = \mathbf{V}_d + \nabla p,$$

where V_d is div. free. We define a density weighted inner prod., such that

$$\mathbf{V} = \mathbf{V}_d + \nabla p/\rho.$$

Thus, given V, we define the projection as

$$P_{\rho}(\mathbf{V}) = \mathbf{V}_d$$
.

Thus, since this decomposition is unique and \mathbf{u}_t is div. free, we have that $\mathbf{u}_t = P_{\rho}(L(\mathbf{u}, \phi))$.

Let $V = L(\mathbf{u}, \phi)$. It is known that $\exists !$ decomposition of the form:

$$\mathbf{V} = \mathbf{V}_d + \nabla p,$$

where V_d is div. free. We define a density weighted inner prod., such that

$$\mathbf{V} = \mathbf{V}_d + \nabla p / \rho.$$

Thus, given V, we define the projection as

$$P_{\rho}(\mathbf{V}) = \mathbf{V}_d.$$

Thus, since this decomposition is unique and \mathbf{u}_t is div. free, we have that $\mathbf{u}_t = P_{\rho}(L(\mathbf{u}, \phi))$.

Let $V = L(\mathbf{u}, \phi)$. It is known that $\exists !$ decomposition of the form:

$$\mathbf{V} = \mathbf{V}_d + \nabla p$$
,

where V_d is div. free. We define a density weighted inner prod., such that

$$\mathbf{V} = \mathbf{V}_d + \nabla p / \rho.$$

Thus, given V, we define the projection as

$$P_{\rho}(\mathbf{V}) = \mathbf{V}_d$$
.

Thus, since this decomposition is unique and \mathbf{u}_t is div. free, we have that $\mathbf{u}_t = P_{\rho}(L(\mathbf{u}, \phi))$.

For $\mathbf{u} = (u, v)^t$, we define $\operatorname{curl}(\mathbf{u}) = -v_x + u_y$. Thus, in order to compute the proj., we take the curl of both sides of the eq.

$$\rho \mathbf{V} = \rho \mathbf{V}_d + \nabla p$$

to obtain

$$\operatorname{curl}(\rho \mathbf{V}) = \operatorname{curl}(\rho \mathbf{V}_d).$$

Given any div. free vector \mathbf{V}_d , \exists a stream function Ψ s.t. $\mathbf{V}_d = \nabla^{\perp}\Psi$. Thus, the above eq. can be written as

$$-\operatorname{div}(\rho\nabla\Psi) = \operatorname{curl}(\rho L(\mathbf{u}, \phi)). \tag{4}$$

For $\mathbf{u} = (u, v)^t$, we define $\operatorname{curl}(\mathbf{u}) = -v_x + u_y$. Thus, in order to compute the proj., we take the curl of both sides of the eq.

$$\rho \mathbf{V} = \rho \mathbf{V}_d + \nabla p$$

to obtain

$$\operatorname{curl}(\rho \mathbf{V}) = \operatorname{curl}(\rho \mathbf{V}_d).$$

Given any div. free vector \mathbf{V}_d , \exists a stream function Ψ s.t. $\mathbf{V}_d = \nabla^{\perp} \Psi$. Thus, the above eq. can be written as

$$-\operatorname{div}(\rho\nabla\Psi) = \operatorname{curl}(\rho L(\mathbf{u}, \phi)). \tag{4}$$

For $\mathbf{u} = (u, v)^t$, we define $\operatorname{curl}(\mathbf{u}) = -v_x + u_y$. Thus, in order to compute the proj., we take the curl of both sides of the eq.

$$\rho \mathbf{V} = \rho \mathbf{V}_d + \nabla p$$

to obtain

$$\operatorname{curl}(\rho \mathbf{V}) = \operatorname{curl}(\rho \mathbf{V}_d).$$

Given any div. free vector \mathbf{V}_d , \exists a stream function Ψ s.t. $\mathbf{V}_d = \nabla^{\perp} \Psi$. Thus, the above eq. can be written as

$$-\operatorname{div}(\rho\nabla\Psi) = \operatorname{curl}(\rho L(\mathbf{u}, \phi)). \tag{4}$$

For $\mathbf{u} = (u, v)^t$, we define $\operatorname{curl}(\mathbf{u}) = -v_x + u_y$. Thus, in order to compute the proj., we take the curl of both sides of the eq.

$$\rho \mathbf{V} = \rho \mathbf{V}_d + \nabla p$$

to obtain

$$\operatorname{curl}(\rho \mathbf{V}) = \operatorname{curl}(\rho \mathbf{V}_d).$$

Given any div. free vector \mathbf{V}_d , \exists a stream function Ψ s.t.

 $V_d = \nabla^{\perp} \Psi$. Thus, the above eq. can be written as

$$-\operatorname{div}(\rho\nabla\Psi)=\operatorname{curl}(\rho L(\mathbf{u},\phi)). \tag{4}$$

Smoothing (1/3)

Since ρ is discontinuous, then the solution of eq. (4) will yield instabilities at the interface. In order to prevent this, we smooth $\rho(\phi)$ at the interface as follow:

$$\bar{\rho} = (\rho_b + \rho_c)/(2\rho_c),$$

$$\Delta \rho = (\rho_c - \rho_b)/(2\rho_c),$$

$$\rho_{\alpha}(\phi) = \begin{cases}
1, & \text{if } \phi > \alpha, \\
\rho_b/\rho_c, & \text{if } \phi < -\alpha, \\
\bar{\rho} + \Delta \rho \sin(\pi \phi/(2\alpha)), & \text{otherwise,}
\end{cases} (5)$$

where, α is the thickness of the interface, with $\alpha = O(h)$. Implicit in the above eq. is that ϕ is a distance function. If we maintain ϕ as a distance function, then we approximate $\delta(\phi)$ by:

Smoothing (1/3)

Since ρ is discontinuous, then the solution of eq. (4) will yield instabilities at the interface. In order to prevent this, we smooth $\rho(\phi)$ at the interface as follow:

$$\bar{\rho} = (\rho_b + \rho_c)/(2\rho_c),$$

$$\Delta \rho = (\rho_c - \rho_b)/(2\rho_c),$$

$$\rho_{\alpha}(\phi) = \begin{cases}
1, & \text{if } \phi > \alpha, \\
\rho_b/\rho_c, & \text{if } \phi < -\alpha, \\
\bar{\rho} + \Delta \rho \sin(\pi \phi/(2\alpha)), & \text{otherwise,}
\end{cases} (5)$$

where, α is the thickness of the interface, with $\alpha = O(h)$. Implicit in the above eq. is that ϕ is a distance function. If we maintain ϕ as a distance function, then we approximate $\delta(\phi)$ by:

Smoothing (2/3)

$$\delta_{\alpha}(\phi) = \begin{cases} \frac{1}{2\alpha} (1 + \cos(\pi\phi/\alpha)) & \text{if } |\phi| < \alpha, \\ 0 & \text{otherwise.} \end{cases}$$

The contribution of the surface tension to $\operatorname{curl}(\rho L(\mathbf{u}, \phi))$ is

$$-\frac{1}{B}[(\kappa\delta_{\alpha}(\phi)\phi_{y})_{\mathsf{X}}-(\kappa\delta_{\alpha}(\phi)\phi_{\mathsf{X}})_{\mathsf{y}}].$$

Thus, if we write $\delta_lpha(\phi)$ as $rac{\mathrm{d} H_lpha(\phi)}{\mathrm{d} \phi}$, the above eq. reduces to

$$-\frac{1}{R}[\kappa_{x}(H_{\alpha})_{y} - \kappa_{y}(H_{\alpha})_{x}]. \tag{6}$$

Smoothing (2/3)

$$\delta_{\alpha}(\phi) = \begin{cases} \frac{1}{2\alpha} (1 + \cos(\pi\phi/\alpha)) & \text{if } |\phi| < \alpha, \\ 0 & \text{otherwise.} \end{cases}$$

The contribution of the surface tension to $\operatorname{curl}(\rho L(\mathbf{u}, \phi))$ is

$$-\frac{1}{B}[(\kappa\delta_{\alpha}(\phi)\phi_{y})_{x}-(\kappa\delta_{\alpha}(\phi)\phi_{x})_{y}].$$

Thus, if we write $\delta_lpha(\phi)$ as $rac{\mathrm{d} H_lpha(\phi)}{\mathrm{d}\phi}$, the above eq. reduces to

$$-\frac{1}{R}[\kappa_{x}(H_{\alpha})_{y} - \kappa_{y}(H_{\alpha})_{x}]. \tag{6}$$

Smoothing (2/3)

$$\delta_{\alpha}(\phi) = \begin{cases} \frac{1}{2\alpha} (1 + \cos(\pi\phi/\alpha)) & \text{if } |\phi| < \alpha, \\ 0 & \text{otherwise.} \end{cases}$$

The contribution of the surface tension to $\operatorname{curl}(\rho L(\mathbf{u}, \phi))$ is

$$-\frac{1}{B}[(\kappa\delta_{\alpha}(\phi)\phi_{y})_{x}-(\kappa\delta_{\alpha}(\phi)\phi_{x})_{y}].$$

Thus, if we write $\delta_{\alpha}(\phi)$ as $\frac{\mathrm{d}H_{\alpha}(\phi)}{\mathrm{d}\phi}$, the above eq. reduces to

$$-\frac{1}{B}[\kappa_x(H_\alpha)_y - \kappa_y(H_\alpha)_x]. \tag{6}$$

Smoothing (3/3)

The eq. for H is

$$\mathcal{H}_{\alpha}(\phi) = \left\{ egin{array}{ll} rac{1}{2} & ext{if } \phi > lpha, \ -rac{1}{2} & ext{if } \phi < -lpha, \ rac{1}{2} \left(rac{\phi}{lpha} + rac{1}{\pi}\sin(\pi\phi/lpha)
ight) & ext{otherwise.} \end{array}
ight.$$

Even if eq. (3) will move the level set $\phi=0$ at the correct velocity, ϕ will no longer be a distance function (ie. $|\nabla \phi| \not\equiv 1$). Consider ϕ_0 whose zero level set is the air-liquid interface (ϕ_0 need not be a distance function). We shall construct ϕ , with the properties that

$$\{\phi = 0\} = \{\phi_0 = 0\},\$$

 ϕ is the signed normal distance to the interface.

This is achieved by solving the following problem to steady state:

$$\frac{\partial \phi}{\partial t} = S(\phi_0)(1 - |\nabla \phi|), \quad \text{in } \Omega \times (0, T),$$

$$\phi(\mathbf{x}, 0) = \phi_0(\mathbf{x}), \quad \text{in } \Omega,$$
(7)

where S is the sign function, which is smoothed as

$$S_{\varepsilon}(\phi_0) = \frac{\phi_0}{\sqrt{2+2}}.\tag{8}$$

Even if eq. (3) will move the level set $\phi=0$ at the correct velocity, ϕ will no longer be a distance function (ie. $|\nabla \phi| \not\equiv 1$). Consider ϕ_0 whose zero level set is the air-liquid interface (ϕ_0 need not be a distance function). We shall construct ϕ , with the properties that

$$\{\phi = 0\} = \{\phi_0 = 0\},\$$

 ϕ is the signed normal distance to the interface.

This is achieved by solving the following problem to steady state:

$$\frac{\partial \phi}{\partial t} = S(\phi_0)(1 - |\nabla \phi|), \quad \text{in } \Omega \times (0, T),$$

$$\phi(\mathbf{x}, 0) = \phi_0(\mathbf{x}), \quad \text{in } \Omega,$$
(7)

where S is the sign function, which is smoothed as

$$S_{\varepsilon}(\phi_0) = \frac{\phi_0}{\sqrt{2+2}}. \tag{8}$$

Even if eq. (3) will move the level set $\phi=0$ at the correct velocity, ϕ will no longer be a distance function (ie. $|\nabla \phi| \not\equiv 1$). Consider ϕ_0 whose zero level set is the air-liquid interface (ϕ_0 need not be a distance function). We shall construct ϕ , with the properties that

$$\{\phi = 0\} = \{\phi_0 = 0\},\$$

 ϕ is the signed normal distance to the interface.

This is achieved by solving the following problem to steady state:

$$\frac{\partial \phi}{\partial t} = S(\phi_0)(1 - |\nabla \phi|), \quad \text{in } \Omega \times (0, T),$$

$$\phi(\mathbf{x}, 0) = \phi_0(\mathbf{x}), \quad \text{in } \Omega,$$
(7)

where **S** is the sign function, which is smoothed as:

$$S_{\varepsilon}(\phi_0) = \frac{\phi_0}{\sqrt{\phi_0^2 + \varepsilon^2}}. \tag{8}$$

We solve the problem in $\Omega = (0,7R) \times (0,7R)$, with R the initial radius of the bubble. The discretization is based on a staggered mesh.

 $\mathbf{u}, \ \rho, \ \phi$ are computed at the black points of the mesh, while $\operatorname{div} \mathbf{u}, \ \Psi$ at the green points.

For the discretization in time, we use a second-order A-B method. For the discretization in space we use the following methods:

- We use a second-order upwinded finite difference scheme for the convection terms.
- In order to define the discrete approx. of the projection, we define discrete divergence and gradient operators and a discrete ρ-weighted inner product.
- Finally, for the reinitialization procedure, we use a characteristic type method.

For the discretization in time, we use a second-order A-B method. For the discretization in space we use the following methods:

- We use a second-order upwinded finite difference scheme for the convection terms.
- In order to define the discrete approx. of the projection, we define discrete divergence and gradient operators and a discrete ρ-weighted inner product.
- Finally, for the reinitialization procedure, we use a characteristic type method.

For the discretization in time, we use a second-order A-B method. For the discretization in space we use the following methods:

- We use a second-order upwinded finite difference scheme for the convection terms.
- In order to define the discrete approx. of the projection, we define discrete divergence and gradient operators and a discrete ρ-weighted inner product.
- Finally, for the reinitialization procedure, we use a characteristic type method.

Discretization in time

We use a second-order Adams-Bashforth method to evolve the equations in time:

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \frac{\Delta t}{2} \left(3P_{\rho^n}(L\mathbf{u}^n) - P_{\rho^{n-1}}(L\mathbf{u}^{n-1}) \right)$$

$$\phi^{n+1} = \phi^n - \frac{\Delta t}{2} \left(3\mathbf{u}^n \cdot \nabla \phi^n - \mathbf{u}^{n-1} \cdot \nabla \phi^{n-1} \right)$$

Discretization of convective terms (1/5)

We use a second-order ENO (Essentially Non-Oscilatory) method to approximate the convectives terms. Since ${\bf u}$ is div. free, we have that

$$\mathbf{u} \cdot \nabla \phi = (u\phi)_x + (v\phi)_y$$
$$(\mathbf{u} \cdot \nabla)\mathbf{u} = \mathbf{f}_x + \mathbf{g}_y,$$

where $\mathbf{f} = (u^2, uv)^T$, $\mathbf{g} = (uv, v^2)^T$. For the eq. of ϕ , we have

$$(u\phi)_{x} + (v\phi)_{y} \approx ((u\phi)_{i+1/2,j} - (u\phi)_{i-1/2,j} + (v\phi)_{i,j+1/2} - (v\phi)_{i,j-1/2})/(2h)$$

$$= (u_{i+1/2,j} + u_{i-1/2,j})(\phi_{i+1/2,j} - \phi_{i-1/2,j})/(2h) + (v_{i,j+1/2} + v_{i,j-1/2})(\phi_{i,j+1/2} - \phi_{i,j-1/2})/(2h) + (\phi_{i+1/2,j} + \phi_{i-1/2,j})(u_{1} + v_{2} + \phi_{i+1/2,j}) + (\psi_{2} + v_{2} + \phi_{2} + v_{2} + \phi_{2})/(2h)$$

Level set method - March 2007

Discretization of convective terms (1/5)

We use a second-order ENO (Essentially Non-Oscilatory) method to approximate the convectives terms. Since ${\bf u}$ is div. free, we have that

$$\mathbf{u} \cdot \nabla \phi = (u\phi)_x + (v\phi)_y$$
$$(\mathbf{u} \cdot \nabla)\mathbf{u} = \mathbf{f}_x + \mathbf{g}_y,$$

where $\mathbf{f} = (u^2, uv)^T$, $\mathbf{g} = (uv, v^2)^T$. For the eq. of ϕ , we have

$$(u\phi)_{x} + (v\phi)_{y} \approx ((u\phi)_{i+1/2,j} - (u\phi)_{i-1/2,j} + (v\phi)_{i,j+1/2} - (v\phi)_{i,j-1/2})/(2h)$$

$$= (u_{i+1/2,j} + u_{i-1/2,j})(\phi_{i+1/2,j} - \phi_{i-1/2,j})/(2h) + (v_{i,j+1/2} + v_{i,j-1/2})(\phi_{i,j+1/2} - \phi_{i,j-1/2})/(2h) + (\phi_{i+1/2,j} + \phi_{i-1/2,j})(u_{i+1/2,j} - u_{i-1/2,j})/(2h)$$

Level set method - March 2007

Discretization of the projection
Discretization of the reinitialization of the level set function

Discretization of convective terms (2/5)

For smooth data, we have

$$\phi_{i+1/2,j} + \phi_{i-1/2,j} \approx \phi_{i,j+1/2} + \phi_{i,j-1/2}.$$

Since u is div. free, we have that

$$u_{i+1/2,j} - u_{i-1/2,j} \approx -(v_{i,j+1/2} - v_{i,j-1/2}).$$

Thus, we find the following appr

$$(u\phi)_{\times} + (v\phi)_{y} \approx (u_{i+1/2,j} + u_{i-1/2,j})(\phi_{i+1/2,j} - \phi_{i-1/2,j})/(2h) + (v_{i,j+1/2} + v_{i,j-1/2})(\phi_{i,j+1/2} - \phi_{i,j-1/2})/(2h).$$

Discretization of the projection

Discretization of the reinitialization of the level set function

Discretization of convective terms (2/5)

For smooth data, we have

$$\phi_{i+1/2,j} + \phi_{i-1/2,j} \approx \phi_{i,j+1/2} + \phi_{i,j-1/2}.$$

Since **u** is div. free, we have that

$$u_{i+1/2,j} - u_{i-1/2,j} \approx -(v_{i,j+1/2} - v_{i,j-1/2}).$$

Thus, we find the following appr

$$(u\phi)_{\times} + (v\phi)_{y} \approx (u_{i+1/2,j} + u_{i-1/2,j})(\phi_{i+1/2,j} - \phi_{i-1/2,j})/(2h) + (v_{i,j+1/2} + v_{i,j-1/2})(\phi_{i,j+1/2} - \phi_{i,j-1/2})/(2h).$$

Discretization of the projection

Discretization of the reinitialization of the level set function

Discretization of convective terms (2/5)

For smooth data, we have

$$\phi_{i+1/2,j} + \phi_{i-1/2,j} \approx \phi_{i,j+1/2} + \phi_{i,j-1/2}.$$

Since u is div. free, we have that

$$u_{i+1/2,j} - u_{i-1/2,j} \approx -(v_{i,j+1/2} - v_{i,j-1/2}).$$

Thus, we find the following appr.

$$(u\phi)_{x} + (v\phi)_{y} \approx (u_{i+1/2,j} + u_{i-1/2,j})(\phi_{i+1/2,j} - \phi_{i-1/2,j})/(2h) + (v_{i,j+1/2} + v_{i,j-1/2})(\phi_{i,j+1/2} - \phi_{i,j-1/2})/(2h).$$

Discretization of the projection
Discretization of the reinitialization of the level set function

Discretization of convective terms (3/5)

Similarly, we have

$$(f_{1})_{x} + (g_{1})_{y} \approx (u_{i+1/2,j} + u_{i-1/2,j})(u_{i+1/2,j} - u_{i-1/2,j})/(2h) + (v_{i,j+1/2} + v_{i,j-1/2})(u_{i,j+1/2} - u_{i,j-1/2})/(2h).$$

$$(f_{2})_{x} + (g_{2})_{y} \approx (u_{i+1/2,j} + u_{i-1/2,j})(v_{i+1/2,j} - v_{i-1/2,j})/(2h) + (v_{i,j+1/2} + v_{i,j-1/2})(v_{i,j+1/2} - v_{i,j-1/2})/(2h).$$

Discretization of the projection

Discretization of the reinitialization of the level set function

Discretization of convective terms (4/5)

To compute $u_{i+1/2,j}$ (similarly for $u_{i,j+1/2}$, $\phi_{i+1/2,j}$, etc.), we use a second-order ENO scheme.

Define

$$\operatorname{minmod}(a,b) = \left\{ egin{array}{ll} a & ext{if } |a| \leq |b|, \ b & ext{in another case} \end{array}
ight.$$

Let

$$u_{L} = u_{i,j} + \frac{1}{2} \operatorname{minmod}(u_{i+1,j} - u_{i,j}, u_{i,j} - u_{i-1,j})$$

$$u_{R} = u_{i,j} - \frac{1}{2} \operatorname{minmod}(u_{i+1,j} - u_{i,j}, u_{i,j} - u_{i-1,j})$$

$$u_{L} = [(u_{1,j} + u_{2,j})/2; u_{L}]$$

$$u_{R} = [u_{R}; (u_{N-1,i} + u_{N,i})/2]$$

Discretization of the projection

Discretization of the reinitialization of the level set function

Discretization of convective terms (4/5)

To compute $u_{i+1/2,j}$ (similarly for $u_{i,j+1/2}$, $\phi_{i+1/2,j}$, etc.), we use a second-order ENO scheme.

Define

$$\operatorname{minmod}(a,b) = \left\{ \begin{array}{ll} a & \text{if } |a| \leq |b|, \\ b & \text{in another case} \end{array} \right.$$

Let

$$u_{L} = u_{i,j} + \frac{1}{2} \operatorname{minmod}(u_{i+1,j} - u_{i,j}, u_{i,j} - u_{i-1,j})$$

$$u_{R} = u_{i,j} - \frac{1}{2} \operatorname{minmod}(u_{i+1,j} - u_{i,j}, u_{i,j} - u_{i-1,j})$$

$$u_{L} = [(u_{1,j} + u_{2,j})/2; u_{L}]$$

$$u_{R} = [u_{R}; (u_{N-1,i} + u_{N,i})/2]$$

Discretization of the projection

Discretization of the reinitialization of the level set function

Discretization of convective terms (4/5)

To compute $u_{i+1/2,j}$ (similarly for $u_{i,j+1/2}$, $\phi_{i+1/2,j}$, etc.), we use a second-order ENO scheme.

Define

$$\operatorname{minmod}(a,b) = \left\{ \begin{array}{ll} a & \text{if } |a| \leq |b|, \\ b & \text{in another case} \end{array} \right.$$

Let

$$u_{L} = u_{i,j} + \frac{1}{2} \operatorname{minmod}(u_{i+1,j} - u_{i,j}, u_{i,j} - u_{i-1,j})$$

$$u_{R} = u_{i,j} - \frac{1}{2} \operatorname{minmod}(u_{i+1,j} - u_{i,j}, u_{i,j} - u_{i-1,j})$$

$$u_{L} = [(u_{1,j} + u_{2,j})/2; u_{L}]$$

$$u_{R} = [u_{R}; (u_{N-1,j} + u_{N,j})/2]$$

Discretization of the projection

Discretization of the reinitialization of the level set function

Discretization of convective terms (5/5)

Summary

$$u_M = \frac{1}{2}(u_L + u_R)$$

With this, we can define

$$u_{i+1/2,j} = \begin{cases} u_M & \text{if} \quad u_L \le 0 \text{ and } u_R \ge 0 \\ u_R & \text{if} \quad u_M \le 0 \text{ and } u_R \le 0 \\ u_L & \text{if} \quad u_M \ge 0 \text{ and } u_L \ge 0 \end{cases}$$

Viscous and curvature terms

We approximate the components of the viscous stress tensor *D* using centered differentiating formulae:

$$(u_x)_{i+1/2,j+1/2} \approx (u_{i+1,j} - u_{i,j} + u_{i+1,j+1} - u_{i,j+1})/(2h) (u_y)_{i+1/2,j+1/2} \approx (u_{i+1,j+1} - u_{i+1,j} + u_{i,j+1} - u_{i,j})/(2h)$$

Similarly for v_x , v_y .

The divergence of D is computed as follow:

$$((\mu D^{m,n})_{x})_{i,j} \approx ((\mu D^{m,n})_{i+1/2,j+1/2} - (\mu D^{m,n})_{i-1/2,j+1/2} + (\mu D^{m,n})_{i+1/2,j-1/2} - (\mu D^{m,n})_{i-1/2,j-1/2})/(2h)$$

$$((\mu D^{m,n})_{y})_{i,j} \approx ((\mu D^{m,n})_{i+1/2,j+1/2} - (\mu D^{m,n})_{i+1/2,j-1/2} + (\mu D^{m,n})_{i-1/2,j+1/2} - (\mu D^{m,n})_{i-1/2,j-1/2})/(2h)$$

where

$$\mu_{i+1/2,j+1/2} = (\mu_{i,j} + \mu_{i+1,j} + \mu_{i,j+1} + \mu_{i+1,j+1})/4.$$

The curvature is discretized in the same fashion as before.

Given $V = Lu^n$, we decompose V into the form

$$\mathbf{V} = \mathbf{V}_d + \nabla p / \rho,$$

where V_d is div. free and define $P_{\rho^n}(L\mathbf{u}^n) = V_d$ and $\nabla p^n = \nabla p$. In order to define an appr. of the proj., we first define discrete divergnce and gradient operators and a discrete ρ -weighted inner product.

Given $V = Lu^n$, we decompose V into the form

$$\mathbf{V} = \mathbf{V}_d + \nabla p / \rho,$$

where \mathbf{V}_d is div. free and define $P_{\rho^n}(L\mathbf{u}^n) = \mathbf{V}_d$ and $\nabla p^n = \nabla p$. In order to define an appr. of the proj., we first define discrete divergnce and gradient operators and a discrete ρ -weighted inner product.

For the divergence, we have

$$(\nabla \cdot \mathbf{U})_{i+1/2,j+1/2} \approx (D\mathbf{U})_{i+1/2,j+1/2}$$

$$\equiv (u_{i+1,j+1} - u_{i,j+1} + u_{i+1,j} - u_{i,j})/(2h)$$

$$+(v_{i+1,j+1} - v_{i+1,j} + v_{i,j+1} - v_{i,j})/(2h)$$

Summary

For the gradient, we have

$$(\nabla \Phi)_{i,j} \approx (\mathbf{G}\Phi)_{i,j} \equiv ((G_{x}\Phi)_{i,j}, (G_{y}\Phi)_{i,j})$$

$$(G_{x}\Phi)_{i,j} \equiv (\Phi_{i+1/2,j+1/2} - \Phi_{i-1/2,j+1/2} + \Phi_{i+1/2,j-1/2} - \Phi_{i-1/2,j-1/2})/(2h)$$

$$(G_{y}\Phi)_{i,j} \equiv (\Phi_{i+1/2,j+1/2} - \Phi_{i+1/2,j-1/2} + \Phi_{i-1/2,j+1/2} - \Phi_{i-1/2,j-1/2})/(2h)$$

For the divergence, we have

$$(\nabla \cdot \mathbf{U})_{i+1/2,j+1/2} \approx (D\mathbf{U})_{i+1/2,j+1/2}$$

$$\equiv (u_{i+1,j+1} - u_{i,j+1} + u_{i+1,j} - u_{i,j})/(2h)$$

$$+(v_{i+1,j+1} - v_{i+1,j} + v_{i,j+1} - v_{i,j})/(2h)$$

Summary

For the gradient, we have

$$(\nabla \Phi)_{i,j} \approx (\mathbf{G}\Phi)_{i,j} \equiv ((G_{x}\Phi)_{i,j}, (G_{y}\Phi)_{i,j})$$

$$(G_{x}\Phi)_{i,j} \equiv (\Phi_{i+1/2,j+1/2} - \Phi_{i-1/2,j+1/2} + \Phi_{i+1/2,j-1/2} - \Phi_{i-1/2,j-1/2})/(2h)$$

$$(G_{y}\Phi)_{i,j} \equiv (\Phi_{i+1/2,j+1/2} - \Phi_{i+1/2,j-1/2} + \Phi_{i-1/2,j+1/2} - \Phi_{i-1/2,j-1/2})/(2h)$$

$$(\mathbf{V}_1,\mathbf{V}_2)_
ho \equiv \sum_{i,j=1}^N (\mathbf{V}_{1,ij}\cdot\mathbf{V}_{2,ij})
ho_{i,j}$$

We note that the div. oper. and Φ are defined at the points (i+1/2,j+1/2) in terms of the velocities at the neighboring points.

With the above definitions for D and G, the discrete operators are skew-adjoints, i.e. $G = -D^T$.

$$(\mathbf{V}_1,\mathbf{V}_2)_
ho \equiv \sum_{i,j=1}^N (\mathbf{V}_{1,ij}\cdot\mathbf{V}_{2,ij})
ho_{i,j}$$

We note that the div. oper. and Φ are defined at the points (i+1/2,j+1/2) in terms of the velocities at the neighboring points.

With the above definitions for D and G, the discrete operators are skew-adjoints, i.e. $G = -D^T$.

$$(\mathbf{V}_1,\mathbf{V}_2)_{
ho} \equiv \sum_{i,j=1}^N (\mathbf{V}_{1,ij}\cdot\mathbf{V}_{2,ij})
ho_{i,j}$$

We note that the div. oper. and Φ are defined at the points (i+1/2,j+1/2) in terms of the velocities at the neighboring points.

With the above definitions for D and G, the discrete operators are skew-adjoints, i.e. $G = -D^T$.

$$(\mathbf{V}_1,\mathbf{V}_2)_
ho \equiv \sum_{i,j=1}^N (\mathbf{V}_{1,ij}\cdot\mathbf{V}_{2,ij})
ho_{i,j}$$

We note that the div. oper. and Φ are defined at the points (i+1/2,j+1/2) in terms of the velocities at the neighboring points.

With the above definitions for D and G, the discrete operators are skew-adjoints, i.e. $G = -D^T$.

In 2-D, a div. free vector can be written as the orthogonal gradient of a scalar field Ψ . Define a discrete function Ψ at the points (i+1/2,j+1/2). Moreover, define $\mathbf{G}^{\perp}\Phi$ as the discrete orthogonal gradient operator, e.g. $\mathbf{G}^{\perp}\Phi=(-G_y\Phi,G_x\Phi)$ and curl (\mathbf{U}) as the discrete curl, i.e. $\mathrm{curl}(\mathbf{U})=-G_x(U_2)+G_y(U_1)$.

$$\mathbf{G}^{\perp} \Psi + \mathbf{G} \rho / \rho = \mathbf{V}$$

$$\operatorname{curl} (\rho \mathbf{G}^{\perp} \Psi) = \operatorname{curl} (\rho \mathbf{V})$$

$$-G_{x}(\rho G_{x} \Psi) - G_{y}(\rho G_{y} \Psi) = G_{y}(\rho V_{1}) - G_{x}(\rho V_{2})$$

In 2-D, a div. free vector can be written as the orthogonal gradient of a scalar field Ψ . Define a discrete function Ψ at the points (i+1/2,j+1/2). Moreover, define $\mathbf{G}^{\perp}\Phi$ as the discrete orthogonal gradient operator, e.g. $\mathbf{G}^{\perp}\Phi=(-G_y\Phi,G_x\Phi)$ and curl (\mathbf{U}) as the discrete curl, i.e. $\operatorname{curl}(\mathbf{U})=-G_x(U_2)+G_y(U_1)$. Then we have

$$\mathbf{G}^{\perp}\Psi + \mathbf{G}\rho/\rho = \mathbf{V}$$

$$\operatorname{curl}(\rho\mathbf{G}^{\perp}\Psi) = \operatorname{curl}(\rho\mathbf{V})$$

$$-G_{x}(\rho G_{x}\Psi) - G_{y}(\rho G_{y}\Psi) = G_{y}(\rho V_{1}) - G_{x}(\rho V_{2}).$$

A centered five-points formula for the above eq. is

$$-\left[\rho_{i,j}\Psi_{i-1/2,j-1/2} + \rho_{i,j+1}\Psi_{i-1/2,j+3/2} + \rho_{i+1,j}\Psi_{i+3/2,j-1/2} + \rho_{i+1,j+1}\Psi_{i+3/2,j+3/2} - (\rho_{i,j} + \rho_{i+1,j} + \rho_{i,j+1} + \rho_{i+1,j+1})\Psi_{i+1/2,j+1/2}\right]$$

$$= G_{y}(\rho V_{1}) - G_{x}(\rho V_{2}).$$

We note that the matrix of the above system is positive defined. Once Ψ is known, we can set $\mathbf{U} \equiv \mathbf{G}^{\perp} \Psi$.

Given $\phi_0(x)$, we want to construct ϕ s.t. its zero-levet set coincides with the zero-level set of $\phi_0(x)$ and s.t. ϕ be the normal distance to the interface.

This is achieved by solving the following problem to steady state:

$$\frac{\partial \phi}{\partial t} = S(\phi_0)(1 - |\nabla \phi|), \tag{9}$$

where S is the sign function.

Discretization of the projection Discretization of the reinitialization of the level set function

Given $\phi_0(x)$, we want to construct ϕ s.t. its zero-levet set coincides with the zero-level set of $\phi_0(x)$ and s.t. ϕ be the normal distance to the interface.

This is achieved by solving the following problem to steady state:

$$\frac{\partial \phi}{\partial t} = S(\phi_0)(1 - |\nabla \phi|), \qquad (9)$$

$$\phi(\mathbf{x}, 0) = \phi_0(\mathbf{x}), \qquad (10)$$

$$\phi(\mathbf{x},0) = \phi_0(\mathbf{x}), \tag{10}$$

where S is the sign function.

We can rewrite eq. (9) as follow:

$$\frac{\partial \phi}{\partial t} + \mathbf{w} \cdot \nabla \phi = S(\phi_0),$$

where $\mathbf{w} = S(\phi_0)(\nabla \phi/|\nabla \phi|)$. The characteristics curves of the above eq. are given by \mathbf{w} , which is a unit vector pointing outward from the zero-level set $\{\phi = 0\}$.

A possible discretization is as follow. Define

$$a = D_{-}^{\times} \phi_{i,j}, \quad b = D_{+}^{\times} \phi_{i,j},$$

$$c = D_{-}^{Y} \phi_{i,j}, \quad d = D_{+}^{Y} \phi_{i,j},$$

$$S_{\varepsilon}(\phi)_{i,j} = \phi_{i,j} / \sqrt{\phi_{i,j}^{2} + \varepsilon^{2}}$$

We can rewrite eq. (9) as follow:

$$\frac{\partial \phi}{\partial t} + \mathbf{w} \cdot \nabla \phi = S(\phi_0),$$

where $\mathbf{w} = S(\phi_0)(\nabla \phi/|\nabla \phi|)$. The characteristics curves of the above eq. are given by \mathbf{w} , which is a unit vector pointing outward from the zero-level set $\{\phi=0\}$.

A possible discretization is as follow. Define

$$a = D_{-}^{\times} \phi_{i,j}, \quad b = D_{+}^{\times} \phi_{i,j},$$

 $c = D_{-}^{y} \phi_{i,j}, \quad d = D_{+}^{y} \phi_{i,j},$

$$S_{\varepsilon}(\phi)_{i,j} = \phi_{i,j}/\sqrt{\phi_{i,j}^2 + \varepsilon^2}$$

We can rewrite eq. (9) as follow:

$$\frac{\partial \phi}{\partial t} + \mathbf{w} \cdot \nabla \phi = S(\phi_0),$$

Summary

where $\mathbf{w} = S(\phi_0)(\nabla \phi/|\nabla \phi|)$. The characteristics curves of the above eq. are given by \mathbf{w} , which is a unit vector pointing outward from the zero-level set $\{\phi=0\}$.

A possible discretization is as follow. Define

$$a = D_{-}^{x}\phi_{i,j}, \quad b = D_{+}^{x}\phi_{i,j},$$

$$c = D_{-}^{y}\phi_{i,j}, \quad d = D_{+}^{y}\phi_{i,j},$$

$$S_{\varepsilon}(\phi)_{i,j} = \phi_{i,j}/\sqrt{\phi_{i,j}^{2} + \varepsilon^{2}}.$$

$$G(\phi)_{i,j} = \begin{cases} \sqrt{\max((a^+)^2,(b^-)^2) + \max((c^+)^2,(d^-)^2)} - 1, & \text{if } \phi_{i,j}^0 > 0 \\ \sqrt{\max((a^-)^2,(b^+)^2) + \max((c^-)^2,(d^+)^2)} - 1, & \text{if } \phi_{i,j}^0 < 0 \\ 0, & \text{i.a.c.} \end{cases}$$

where the superscript + denotes the positive part and - the negative part.

Eq. (9) is then discretizeded using

$$\phi_{i,j}^{n+1} = \phi_{i,j}^{n} - \Delta t S_{\varepsilon}(\phi_{i,j}^{0}) G(\phi_{i,j}^{n})$$

$$G(\phi)_{i,j} = \begin{cases} \sqrt{\max((a^+)^2,(b^-)^2) + \max((c^+)^2,(d^-)^2)} - 1, & \text{if } \phi_{i,j}^0 > 0 \\ \sqrt{\max((a^-)^2,(b^+)^2) + \max((c^-)^2,(d^+)^2)} - 1, & \text{if } \phi_{i,j}^0 < 0 \\ 0, & \text{i.a.c.} \end{cases}$$

where the superscript + denotes the positive part and - the negative part.

Summary

Eq. (9) is then discretizaded using

$$\phi_{i,j}^{n+1} = \phi_{i,j}^n - \Delta t S_{\varepsilon}(\phi_{i,j}^0) G(\phi_{i,j}^n)$$

Summary

Step 1. Initialize $\phi(\mathbf{x}, 0)$ to be signed normal distance to the front.

Step 2. Solve

$$\mathbf{u}_t = P_{\rho}(L\mathbf{u}), \quad \phi_t + \mathbf{u} \cdot \nabla \phi = 0.$$

for one time step with $\rho(\phi)$ given by (5). Denote the updated ϕ by $\phi^{(n+1/2)}$, and the updated \mathbf{u} by $\mathbf{u}^{(n+1)}$.

Step 3. Construct a new distance function by solvin

$$\phi_t = S(\phi^{(n+1/2)})(1 - |\nabla \phi|), \quad \phi(\mathbf{x}, 0) = \phi^{(n+1/2)}(\mathbf{x}).$$

to steady state. We denote the steady state solution by b(n+1)

Step 4. We have now advanced one time step. The zero level set of $\phi^{(n+1)}$ gives the new interface position and $\phi^{(n+1)}$ is a distance function. Repeat Steps 2 and $3 \leftarrow 0 \leftarrow 0 \leftarrow 0 \leftarrow 0$

Summary

Step 1. Initialize $\phi(\mathbf{x},0)$ to be signed normal distance to the front.

Step 2. Solve

$$\mathbf{u}_t = P_{\rho}(L\mathbf{u}), \quad \phi_t + \mathbf{u} \cdot \nabla \phi = 0.$$

for one time step with $\rho(\phi)$ given by (5). Denote the updated ϕ by $\phi^{(n+1/2)}$, and the updated \mathbf{u} by $\mathbf{u}^{(n+1)}$.

Step 3. Construct a new distance function by solving

$$\phi_t = S(\phi^{(n+1/2)})(1 - |\nabla \phi|), \quad \phi(\mathbf{x}, 0) = \phi^{(n+1/2)}(\mathbf{x})$$

to steady state. We denote the steady state solution by $\phi^{(n+1)}$.

Summary

Step 1. Initialize $\phi(\mathbf{x}, 0)$ to be signed normal distance to the front.

Step 2. Solve

$$\mathbf{u}_t = P_{\rho}(L\mathbf{u}), \quad \phi_t + \mathbf{u} \cdot \nabla \phi = 0.$$

for one time step with $\rho(\phi)$ given by (5). Denote the updated ϕ by $\phi^{(n+1/2)}$, and the updated \mathbf{u} by $\mathbf{u}^{(n+1)}$.

Step 3. Construct a new distance function by solving

$$\phi_t = S(\phi^{(n+1/2)})(1 - |\nabla \phi|), \quad \phi(\mathbf{x}, 0) = \phi^{(n+1/2)}(\mathbf{x}),$$

to steady state. We denote the steady state solution by $\phi^{(n+1)}$.

Step 4. We have now advanced one time step. The zero level set of $\phi^{(n+1)}$ gives the new interface position and $\phi^{(n+1)}$ is a distance function. Repeat Steps 2 and $3: \square \to 4\square \to 4$ $\longrightarrow 4$

Summary

Step 1. Initialize $\phi(\mathbf{x}, 0)$ to be signed normal distance to the front.

Step 2. Solve

$$\mathbf{u}_t = P_{\rho}(L\mathbf{u}), \quad \phi_t + \mathbf{u} \cdot \nabla \phi = 0.$$

for one time step with $\rho(\phi)$ given by (5). Denote the updated ϕ by $\phi^{(n+1/2)}$, and the updated \mathbf{u} by $\mathbf{u}^{(n+1)}$.

Step 3. Construct a new distance function by solving

$$\phi_t = S(\phi^{(n+1/2)})(1 - |\nabla \phi|), \quad \phi(\mathbf{x}, 0) = \phi^{(n+1/2)}(\mathbf{x}),$$

to steady state. We denote the steady state solution by $\phi^{(n+1)}$

Step 4. We have now advanced one time step. The zero level set of $\phi^{(n+1)}$ gives the new interface position and $\phi^{(n+1)}$ is a distance function. Repeat Steps 2 and 3.