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Abstract. Langton’s ant is a simple discrete dynamical system, with
a surprisingly complex behavior. We study its extension to general pla-
nar graphs. First we give some relations between characteristics of finite
graphs and the dynamics of the ant on them. Then we consider the infi-
nite bi-regular graphs of degrees 3 and 4, where we prove the universality
of the system, and in the particular cases of the square and the hexag-
onal grids, we associate a P -hard problem to the dynamics. Finally, we
show strong spatial restrictions on the trajectory of the ant in infinite
bi-regular graphs with degrees strictly greater than 4, which contrasts
with the high unpredictability on the graphs of lower degrees.

1 Introduction

The virtual ant defined by Chris Langton ([1], [2]) is a simple system where an
agent, the “ant”, moves on the square grid. Each cell is in one of two states,
to-left or to-right , and the ant is represented as an arrow between two adjacent
cells. It moves one cell forward at each time step, turning according to the state
of the cells, and switching these states thereafter. Interesting behavior follows: a
single ant, starting with all cells in the to-left state, has a more or less symmetric
trajectory in the first 500 steps; then it goes seemingly randomly for about 10,000
steps, until it suddenly starts building an infinite diagonal “highway” (a periodic
motion with drift).

As [3] points out, the ant is so “natural” that it has been independently in-
vented at least three times. Langton proposed it as a simple model of artificial
life [1], and it appeared again as one of the “turmites”, the two-dimensional
Turing machines studied by G. Turk [4]. It has also been studied as a paradigm
for signal propagation in random media, in particular as a model of a parti-
cle in two-dimensional Lorentz Lattice Gases [5]. Another source of interest is
the relation with the agent-based systems (also called “ant systems”) that have
been intensively studied and applied for several optimization problems in the last
years, with good performance but few exact mathematical results. Langton’s ant
shares with them the so called “stigmergy”: the movement of the agent is de-
termined by some properties of the environment next to it, and these properties
are in turn modified by that movement.
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The ant has motivated several studies, both experimental and analytical. It
has been analyzed in the other regular grids, like the triangular ([6], [5], [7]) and
the hexagonal grids [7]. The case of bi-regular graphs of degree 3 was studied in
[8], and some possible definitions for the ant on the line where examined in [9]
and [10]. There have been some generalizations of the ant, to allow more than
two states of the cell and to consider several ants.

The dynamics of the ant is strongly related to the topology of the underlying
graph. On the triangular grid, the trajectory is always restricted to two rows, and
is easily predicted [6]. The hexagonal grid is again different: when starting with
all cells in the same state, the ant follows paths that are bilaterally symmetric
with respect to the starting position, and no highway appears [8].

The most important result concerning the dynamics of the ant on the square
grid, due to [3], states that the set of the cells that are visited infinitely often by
the ant (for a given initial configuration) has no corners. A corner of a set is a cell
where at least two neighbors are not in the set, and these are not opposite to each
other. The main consequence of this is the following fact (already demonstrated
in [11]): For any initial configuration, the trajectory of the ant is unbounded.
These unboundness is also true on the triangular grid [5]. On the other hand,
bounded trajectories are known to exist on the hexagonal grid [7].

Unfortunately, this result does not tell us anything else about the behavior of
the ant in the long term. The experiments, however, suggest that the long-term
behavior of the ant, although unbounded, is unbounded in a highly repetitive
way. Specifically, the following conjecture has been open for at least ten years:
“For any initial configuration with finite support, the ant eventually starts build-
ing the periodic highway, in some unobstructed direction”. If this conjecture is
true, then any problem associated with the ant, whose input is an initial con-
figuration with finite support, turns out to be decidable, since in that case it
suffices to iterate on the configuration until the highway appears; the question
may be answered at that point, since the future dynamics is easily predicted.

The Present Work

We consider the natural extension of the ant to general planar graphs, where
the nodes in the graph take the place of the cells in the square grid, and the
neighbors of a node are the nodes to which it is connected. We generalize the
rule in the most obvious way: the states at the nodes are still to-left and to-right,
and the ant changes these states each time it goes through a node. Furthermore,
the ant turns to the indicated direction at each time step; for this purpose,
“turning to the left” is defined as leaving the node through the edge which is
found moving clockwise, starting from the edge which was used by the ant to
arrive. The square grid becomes a particular case of regular planar graph.

In Section 2 we study the ant on finite graphs. In a restricted family (graphs
where no edge belongs to more than one simple cycle) the period of the system
is linearly bounded in the number of nodes, but in the general case, we show a
family where the periods grow exponentially with the number of nodes.
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We consider next the case of the infinite bi-regular graphs Γ (k, d): these
are graphs where all the nodes have d neighbors, and all the faces (the smallest
cycles) have k neighboring faces. They generalize the original system (the square
grid corresponds to Γ (4, 4)), and were chosen as an intermediate point between
it and general infinite graphs. They allow us to study the dependence of the
dynamics of the ant on the degree of the graph and the length of the faces.

In Section 3, we show how to calculate boolean circuits with the trajectory
of the ant. 1 The construction is embedded in any infinite bi-regular graph of
degree 3 or 4, and since it is finite, it can be also embedded in finite graphs. In
the particular cases of the square grid, the hexagonal grid and finite graphs, the
construction uses an appropriately bounded amount of space in the configura-
tion, and the following questions are thus found to be P -hard problems: Given a
finite initial configuration2 of Γ (4, 4) (Γ (6, 3)) and two nodes α, β, does the ant
visit α before β? Given a finite graph, an initial configuration, and two nodes α
and β, does the ant visit α before β?

The construction of circuits has further and important consequences, which
are presented in Section 3.3. First, the ant can draw the space-time diagram
of any one-dimensional cellular automata (for finite configurations). It follows
that the system is universal, since it may simulate a universal Turing machine.
Finally, there are undecidable problems related to the dynamics of the ant.

In Section 4 we consider the case of infinite bi-regular graphs which have de-
gree strictly greater than 4. In spite of the higher connectivity of these graphs,
the system seems to be less complex on them. The trajectory of the ant is re-
stricted to a low connected sub graph, a fractal tree of faces, and the construction
of circuits of Section 3 cannot be carried over. The restrictions do not depend
on the exact degree, but only on the lower bound (5), provided that the lengths
of the faces are constant. The conjecture stated in the previous section is proved
to be true on these graphs: for any finite initial configuration, the ant falls in a
periodic motion with drift.

1.1 Definitions

A non-directed simple graph (the only kind we will use) is a pair G=(U ,E), where
U is the set of nodes, and E is a set of edges of the form {u, v}, u 6= v ∈ U . A path
D is a list of nodes of the form (u0, u1, . . . , uk), such that ∀i {ui, ui+1} ∈ E. The
length of D is the integer k. A cycle is a path whose extreme nodes coincide. A
path (a cycle) is simple if it does not repeat nodes (other than the extreme nodes,
in the case of cycles). Two cycles are tangent if they have a unique common node.
The distance between two nodes is the length of the shortest path connecting
them (if there is no such path, it is infinite). The diameter of the graph is the
1 As far as we know, the method used to calculate boolean circuits presented here

is original, and differs completely from the classical methods introduced by [12] and
[13] for two-dimensional systems.

2 In infinite graphs we say that a configuration of the system is finite if all but a finite
number of nodes are in the same state.
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maximum distance between its nodes. A graph is connected if there are paths
connecting any two nodes. A tree is a connected graph which has no cycles. An
isthmus is an edge whose removal disconnects the graph. The neighbors of a node
u are the nodes N(u) = {v ∈ U : {u, v} ∈ E}. The degree of u is |N(u)|. A graph
is k-regular if all the nodes have degree k. A leaf is a node with degree 1.

A graph is planar if it may be injected in IR2, the nodes being represented
by points and the edges by simple curves, so that the curves do not intersect. A
graph is locally finite if any sphere in IR2 contains a finite number of nodes. In a
planar graph, a face is one of the regions of the partition induced by the graph.
The dual graph of G, G′, is defined as the graph G′ = (U ′, E′), where U ′ is the
set of faces of G, and {i′, j′} ∈ E′ iff i′ and j′ have a common edge.

We will be interested both in general finite graphs, and in some regular
infinite graphs. The bi-regular graph Γ (k, d) is the locally finite planar d-regular
graph whose dual is k-regular. Γ (k, d) is finite for k = 3 and d < 6, for k ∈ 4, 5
and d < 4, and for k = 6 and d < 3. Γ (6, 3), Γ (4, 4) and Γ (3, 6) can be embedded
in IR2 with edges of constant lengths, and correspond to the hexagonal, square
and triangular grids, respectively. The rest of the cases corresponds to the so
called “hyperbolic graphs”, that can be embedded in the hyperbolic plane.

A decision problem is one where the solution, for a given instance, is yes or
no. It is said to be decidable if there is an algorithm which answers the question
in a finite time. Decidable problems are classified in complexity classes, which
describe the amount of work needed to solve them. An important class is P :
problems where the answer can be found in polynomial time. A problem to which
any problem in P may be reduced (with the reduction satisfying logarithmic
conditions: see [14], p.160), is called P -hard; if it also belongs to P , is called
P -complete. Thus, to show that a problem is P -hard, it is enough to reduce a
P -complete problem to it.

We say that a system is universal if it may simulate a universal Turing
machine. This notion of universality implies, in particular, the existence of un-
decidable problems. The complexity and undecidability of problems associated
to a dynamical system, as well as the existence of some kind of universality in
it, are ways to measure its complexity. For Complexity Theory, see [14].

1.2 Some Basic Facts About the Ant

We consider a connected, simple, planar, non-directed graph G = (U, E). Pla-
narity provides an order of the edges inciding a node u, and the rule of Langton’s
ant is naturally extended in the way already explained in the introduction. A
configuration of the system is defined as the assignation of states to the nodes
at a given time, together with the position of the ant.

The first thing to notice is that the rule is invertible (in the finite case, this
implies that any configuration belongs to a periodic trajectory of the system).
Moreover, the ant is its own inverse: if the ant turns back at some moment (for
instance, when it comes to a leaf), the path to be followed afterwards will be
exactly the reverse of the path it had followed before.
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We note also that at nodes with degree 1, the ant reflects (the only edge it
may use to leave is the same it used to arrive). At nodes with degree 2, it will
go on, since the next-to-the-right and the next-to-the-left edges are the same.

2 The Ant on Finite Graphs

First we consider the case of trees. The idea is the following: the ant goes on,
until it finds a leaf. At that moment, it will turn and undo its path, until it finds
another leaf. It will oscillate between these two leaves, forever.

Theorem 1. On a tree with diameter D, periods are bounded by 4D, and the
set of edges visited by the ant forms a simple path.

We consider next a graph with no string in its cycles, i.e., such that each
edge belongs to at most one simple cycle. Such a graph consists of a collection
of simple cycles, which may be tangent to each other, or may be connected by
paths. Two cases are to be considered: if there are no isthmuses, then the ants
goes exactly twice through all the edges, in each period. If there are isthmuses,
the graph is analyzed as a tree, where each node represents a component without
isthmuses, and the result is a combination of the first case and Theorem 1.

Theorem 2. On a graph without strings, periods are bounded by 20|U |.

Theorem 3. There is a family of planar graphs Gn = (Un, En), with |Un| = 2n,
such that for each Gn there is a configuration with period greater than 2n.

uuu uu
012n-1 n-2

vvv vv
12n-1 n-2 0

(a) (b)

ant

ant

Fig. 1. The Period Grows Exponentially in the Size of these Graphs

Gn is shown in Figure 1a; the arrow shows the initial position of the ant, and all
the nodes start in the to-left state. Each visit of the ant to the pair {ui, vi} takes
two visits to the pair {ui−1, vi−1}; this makes the period exponential in n, and
thus we see that we can have exponential periods once we drop the condition of
Theorem 2 (absence of strings). That condition may seem too restrictive; never-
theless, we find the following: if we keep that condition, but drop the condition
of planarity -not even of the graph, but of the representation determined by the
local left-right orientation- we may get exponential periods: the behavior of the
ant over the graph of Figure 1b is analogous to the case in 1a.
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3 Circuit Construction

We can impose a path to the ant, by putting the appropriate states in the nodes.
If, in addition, we define the states of certain nodes as our logical variables, the
ant will “read” them and choose its path accordingly. Now we will show how
to use this to build a logical gate, where the output is “calculated” by the ant.
The general form of the gate is described in Figure 2a: at the top, we have some
nodes whose states represent the input. At the bottom, some nodes represent
the output; at the beginning, all output nodes are in the to-left state, which will
represent the logical value false. The ant enters the gate at the left, and exits
at the right. While being in the gate, it visits the input nodes, and visits (and
switches) the correct output nodes, according to the function which the gate
represents. The changes are done from inside, thus allowing the output nodes to
be used as the input for other gates.

output #1 output #m.......

input #1 input #n.......

ant's 
entrance

ant's 
exit

false
/ true

inner connections
of the gate

false false

false
/ true

output

input 1 input 2

(a) (b)

Fig. 2. (a) Sketch of a Gate (b) XOR Function, Built as (∼ (i1 ∧ i2)∧ ∼ (∼
i1∧ ∼ i2))

To compute a boolean circuit we put the input variables in some nodes at
the top of the configuration (see Figure 2b), and for the consecutive stages of
evaluation we put consecutive rows of logical gates. The ant goes through every
row, starting with the upper one. After going through the last row, the state of
the last output node contains the evaluation of the circuit for the given input.

To write a boolean circuit it is enough to have the NOT and the AND
functions. To construct the circuit we also use gates that allow us to duplicate,
cross and copy variables. All these gates are sketched in Figure 3. The general
scheme is the following: the path of the ant bifurcates, depending on the input
states. After (possibly) changing the output states, the paths are joined and the
ant exits. In the next section, we show how to construct these configurations in
bi-regular graphs with degree 3 or 4.

3.1 Embedding in Infinite Regular Graphs

First of all, we need to have paths for the ant to follow. With ant-path we will
refer to a path which may be walked by the ant, provided that it encounters
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NOT Copy AND Duplicate Cross
input

output

input

output

input 1

output

input 2 input

output 1 output 2

input 2input 1

output 2 output 1

Fig. 3. Simplified Schemes of the Gates

the appropriate states on it. In a 3-regular graph, any path is an ant-path, but
in the general case this is not true. The next lemma shows that in Γ (k, 4), it is
always possible to bring the ant from any location to any other location. We will
see in Section 4 that this simple fact is not true in the Γ (k, d) graphs if d ≥ 5.

Lemma 1. Let P = v0, v1, .., vn be a simple path in Γ (k, 4). Then there is a
simple ant-path a0, ...am that begins at v0 and ends at vn. It is composed by
edges that share a face with those of P, and it arrives to vn through an edge that
is to the right or to the left from (vn−1, vn), or is (vn−1, vn) itself.

For the schemes of Figure 3, we need to cross and join paths. To do it, we built
Crossings and Junctions, which may be inserted at the places where they are
needed. They are shown in Figure 4. In the Junction, if the ant enters at 1 or
at 2, it exits at 3. In the Crossing, if the ant first enters at 1, it exits at 2. If
afterwards it enters at 3, it exits at 4. But if it enters first at 3, it exits at 5.

Γ (k, 3) Γ (6, 3) Γ (k, 4) Γ (4, 4)

Crossing

2

4
5

3

1

45

1 2

3

2

3

45

1

1

4

2
3

5

Junction

3

2

1

1

2

3

1

3

2

1

3

2

Fig. 4. White Stands for to-left, Black for to-right

Following Figure 3 and using the configurations of Figure 4, and simple paths,
we define configurations that simulate the AND, NOT, Cross, Copy and Dupli-
cate gates. We can choose the dimensions of these gates and the positions of their
inputs and outputs arbitrarily, and this can be done in an automatic way. A pro-
cedure that takes a boolean circuit and writes the corresponding configuration
in a Γ (k, d) graph can thus be defined.
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Figure 5 shows a Duplicate gate for Γ (4, 4) and Γ (6, 3) (the square and the
hexagonal grids, respectively). The construction of the other gates for Γ (4, 4)
may be found in [15]. The fast growth of the configurations in hyperbolic graphs
does not allow us to show them on Euclidean paper.

���
���
���
������
���
���
���

entranceant’s ant’eexit

Input

Output 1 Output 2

Input

Output 1 Output 2

ant’s
entrance

ant’s
exit

Fig. 5. Duplicate Gate in the Square and Hexagonal Grids

3.2 Computational Complexity

The problem (CIRCUIT-VALUE) of determining, given a boolean circuit C and
a truth assignment t, whether C outputs true with input t, is known to be P -
complete ([14], p.168). Now, fix (k, d), with d = 3, 4. From 3.1, for any pair
(C, t) we can build a configuration in Γ (k, d) representing them, so that the
ant will end the last row having visited or not having visited the output node
of that row, depending on the outcome of C with input t. Thus the problem
(CIRCUIT-VALUE) is being reduced to the problem (P) of knowing, for a finite
initial configuration of Γ (k, d), whether the ant visits a given node α before
another given node β, or not. For Γ (4, 4) (the square grid) we show in [15] that
the reduction satisfies the conditions needed to make (P) P -hard; the case of
Γ (6, 3) (the hexagonal grid) is analogous. Taking only the part of the graphs
which is being used for the construction of each circuit, we see that the problem
(P’) of answering the same question for a given finite graph and a given initial
configuration is also P -hard.

3.3 Universality

In a cellular automata (CA), a quiescent state is defined by the following pro-
perty: if a cell and all its neighbors are in the quiescent state, the cell remains
in it at the next iteration. Hence, all the dynamics of the system takes place
at the cells in non-quiescent states and their neighbors. An initial configuration
with a finite support (i.e., a finite number of non-quiescent states) will keep this
property through the iterations of the CA.

The transition rule of a CA can be calculated with a multi-output finite
boolean circuit. So, for a given one-dimensional CA with quiescent state, we can
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define an initial configuration on the grid consisting of infinitely many copies of
this circuit, arranged in an infinite trapezoidal array with top row of length L, as
shown in Figure 6. Any initial configuration of the CA whose support has width
less than L can be written as the input of the first row, and the ant simulates the
CA. For widths bigger than L, we just put the initial configuration in a lower
row, and let the ant start running from the appropriate node.

R

R

R

R

R

R

R R R R R

R R R R

R R R R

R R

R R R R

R

R

0 e1e2e1e2e3
e2e3e4 e e e

L-2 L-1 L
e e

L-1 L 0

000

000

0 0 0

000

Fig. 6. The ant simulates each iteration of the CA in a row of gates, crosses the
repetitions of the outputs (preparing the next input) and goes to the next row.
R stands for the circuit that calculates the rule.

The undecidability of some CA problems is inherited by the ant system. For
instance, the problem of knowing whether a given (finite) word will ever appear in
the evolution of a given one-dimensional CA, for a given initial configuration with
finite support, is reduced to the problem of deciding whether a given finite block
ever appears in the evolution of the ant, for a given infinite initial configuration
of the grid. Since any Turing machine, in particular a universal one, can be
simulated by a one-dimensional CA with quiescent state, the ant is also universal.

4 Limitations in Highly Connected Graphs

When the underlying graph has degree strictly greater than 4, the ant cannot
reach all the nodes of the graph, given a fixed starting position. In the triangular
grid, for instance, the unique simple path is a zigzagging line.

For most of the following results, we will consider a generalization of the
bi-regular graphs: A graph is said to verify (H), if all its nodes have degree ≥ d,
and its dual graph is k-regular, with d = 5 and k ≥ 4, or d ≥ 6 and k ≥ 3.

The proof of the following lemma is based on [16], and uses relations between
the number of nodes, edges and faces enclosed by the cycle. Here we call ant-cycle
an ant-path that is a cycle.

Lemma 2. For a graph verifying (H), the unique simple ant-cycles are the faces.

If one tries to design an ant-path so as to form a cycle different from a
face, soon it is noticed that the origin, as well as an infinity of other nodes, are
impossible to reach. This is exactly what Lemma 3 says.
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Lemma 3. Let us consider a Γ (k, 5) graph and Figure 7a. Then, no simple
ant-path starting with the nodes (a0, b) may exit the shaded zone.

-2a-1

b

a
0a

1a
a2

2a
-1

-2a
a

b

0a
1a

(a) (b)

Fig. 7. The boundary in (a) is composed by the two edges incident to a0 to the
right and to the left of (a0, b), and the edges found by adding recursively the
edges adjacent to the last ones, so as to leave two edges inside of the zone.

Applying recursively Lemma 3 to each edge of each simple ant-path, we
obtain that in fact the simple ant-paths are restricted to the sub-graph shown
in Figure 7b. This graph is a fractal tree of tiles, with degree k − 1. The nodes
have degree 4 or 5 in this sub-graph, except a0, which has degree 3. Moreover,
this fact is not only true for simple paths, and with the help of following lemma
we can apply it to arbitrary ant-paths.

Lemma 4. Let G be a graph verifying (H). If the ant begins between two nodes
in the same state, then, a node that can be reached by the ant, can be also reached
through simple ant-paths.

But the ant is frequently between two nodes in the same state. Indeed, it
cannot avoid this situation for more than k steps, for k consecutive equal states
would bring it back to the first node. The ant will therefore be always restricted
to a subgraph like the one described above. Since this sub-graph is defined in-
dependently of the degree of the graph (only the lower bound is required), the
result requires only (H), and we obtain the next theorem.

Theorem 4. Let G be a graph verifying (H). Then, each time the ant is between
two nodes in the same state, its future trajectory is restricted to the sub-graph
depicted in Figure 7b.

The following theorem shows that any problem related to the behavior of
the ant over a finite configuration is decidable. In general, there are many cases
where the trajectory of the ant turns out to be easily predicted, due to the
restricted behavior, and in particular, the trajectory of the ant is found to be
unbounded for any initial configuration.
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Theorem 5. Let G be a graph verifying (H). Starting over a finite initial con-
figuration, the ant always falls in a periodic motion with drift. The period of this
eventual behavior is (k − 1)(k + 1).

5 Conclusions

We studied the generalization of Langton’s ant to different planar graphs, with
special emphasis in the point of view of complexity. Several constructions and
formal results were obtained, and can be useful in future studies.

In the general cases, a high degree of unpredictability was seen. A hint for
this is the existence of families of finite graphs were the period of the system may
grow exponentially with the size of the graph. A further hint is the existence of
P -hard problems included in the prediction of the dynamics of the system, for
the family of the finite graphs, and for the square and hexagonal grids.

Infinite bi-regular graphs were studied, dividing them in two cases: first, the
graphs with degree 3 or 4, and second, the graphs with degree equal or greater
than 5. A natural reason for this division is found in Lemma 1 and Theorem 4:
in the graphs of the second case, the ant cannot go from any location to any
other location, whereas in the first case this is always possible. This difference
seems to have deep implications, for the results obtained in the different cases,
even if not directly contradictory, point towards different levels of complexity.

In the first case (low degrees), which includes the classical square grid, a
method for the evaluation of boolean circuits was found. This was used to show
the universality of the system, and to show the existence of undecidable problems
related to the trajectory of the ant.

In the second case, there are strong restrictions for the trajectory of the ant,
who can only walk on a tree of tiles. This forbids the construction of circuits
like the ones in the first case. Moreover, its behavior is decidable for initial
configurations with finite support.
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