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Abstract

We apply tiling groups and height functions to
tilings of regions in the plane by Wang tiles,
which are squares with colored boundaries where
the colors of shared edges must match. We define
a set of tiles as unambiguous if it contains all
tiles equivalent to the identity in its tiling group.
For all but one set of unambiguous tiles with
two colors, we give efficient algorithms that tell
whether a given region with colored boundary
is tileable, show how to sample random tilings,
and how to calculate the number of local moves
or “flips” required to transform one tiling into
another. We also analyze the lattice structure
of the set of tilings, and study several examples
with three and four colors as well.

1 Introduction

Tilings of the plane with Wang tiles [1, 8] have
been studied in computer science since the fa-
mous result of Berger [4] that the problem of
whether we can tile the infinite plane using a
given set of Wang tiles is undecidable. This pa-
per focuses on tilings of a given finite region
with colored boundary. This is a well-known
NP-complete problem [15, 10] and we intend
to tackle the subproblem in which the number
of colors is fixed. Our approach is algebraic:
we use the tiling groups of Conway and La-
garias [7], and height functions, introduced by
Thurston [26] and independently in the statisti-
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cal physics literature (see [6] for a review). These
ideas were used and generalized by Kenyon and
Kenyon [13], Rémila [23, 25], Propp [21], and
others, for the problem of tiling planar regions
with different types of polyominoes or simple
polygons. Our work is, to our knowledge, the
first time Wang tiles have been addressed with
these techniques.

We define a set of tiles as unambiguous
if a certain algebraic condition is both neces-
sary and sufficient for single tiles. For all but
one unambiguous set of two-color tiles, we give
a polynomial-time algorithm to tell whether a
given region with given colors on its boundary is
tileable. We also study the structure of the set of
tilings under local “flips” that change the color of
a few interior edges, and show that this is either
a distributive lattice or a hypercube. In partic-
ular, this graph is connected, i.e. any tiling can
be turned into any other with a series of flips,
and we give a formula for the minimum num-
ber of flips necessary to do so. In several cases,
these tilings turn out to be equivalent to familiar
systems with height functions, such as domino
tilings and Eulerian orientations. We can then
apply the techniques of Luby, Randall and Sin-
clair [16] and Propp and Wilson [22] to sample
random tilings in polynomial time.

We finish by carefully studying a set of tiles
with three colors, and by noting that some sets of
three- and four-color tiles possess two- and three-
dimensional height functions. We also note that
several sets of tiles are isomorphic in the sense
that there is a natural bijection between pairs
of tilings and boundary conditions, even though
their tilings groups are not isomorphic.
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2 The tiling group

Let Λ be the square lattice of the Euclidean plane
R2. A (finite) region P of Λ is a (finite) union
of closed square cells of Λ. A region P is said to
be a polygon if its interior and its complement
R2 \ P are both connected.

A Wang tile is a square of side one with
colored edges. An assignment of Wang tiles
to the cells of a polygon P corresponds to a
tiling if tiles on neighboring cells have the same
color along their common edge. Throughout the
paper, the “boundary conditions” of a tiling will
include not just the shape of the region, but the
colors on its boundary.

Let S be a set of Wang tiles constructed with
two colors, Blue and Red. Let P be a polygon
with colors B and R on the edges of its boundary.
We study the problem of finding a tiling of P
using the tiles of S in such a way that the colors
of the boundary condition are satisfied.

Let W = {w1, w2, w3, w4, w5, w6} be the set
of all Wang tiles with two colors. i.e.
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Note that we allow these tiles to be rotated. A
subset {wx1

, · · · , wxn
} ⊆ W will be denoted by

Wx1···xn
.

To solve the tiling problem for particular
subsets of W , we start by introducing an ori-
entation of the edges of Λ. First, we will assume
that the squares of Λ are colored black and white
like a checkerboard. We orient the edges of Λ
so that they go clockwise and counterclockwise
around black and white squares respectively, so
that an ant going along an edge will have a white
square on its left and a black square on its right.

Whenever we have a tiling T of a polygon
P with tiles in W , the colors of the edges of P

will be either B or R. Let us write a symbol
b whenever we move along a blue edge with
the orientation, and b−1 when we move against
it. Similarly, we write r and r−1 for moving
along a red edge. To every tiled polygon P
with colored edges we can associate a contour
word w ∈ {b, r, b−1, r−1}∗ starting from any
external vertex and following a path around the
boundary of P . Let S ⊆ W and let v be the
set of contour words of the tiles in S. Then
the tiling group GS = 〈b, r | v〉 is the free group
modulo the relations w = e for each contour
word w ∈ v. This can also be written as a
factor GS = 〈b, r〉 /NS where NS is the normal
subgroup generated by the contour words in v
and their conjugates.

Note that uv = e if and only if vu = e,
and that for square two-color tiles, every mirror
image is also a rotation. Thus it doesn’t matter
where we start on a tile, or in which direction
we go around it, to define its contour word; we
obtain the same tiling group GS . On the other
hand, for three or more colors, we would have to
explicitly allow reflections as well as rotations.

Now that we have defined the tiling group
for tiles with colored edges, we make several
observations. First, any tiling T of a polygon
P with a set of tiles S corresponds to a tiling
function fT : V → GS , where V is the set
of vertices in P or on its boundary. We do
this by first fixing f on a particular vertex, say
fT (x0) = e, where x0 is the leftmost vertex of the
bottom of P . We then define f inductively as
follows: If we have already assigned an element
x ∈ GS to a vertex v and if the oriented edge
(v, u) ∈ P is colored with B (resp. R), then
set fT (u) = xb (resp. fT (u) = xr). Similarly,
if (u, v) ∈ P is colored B (resp. R) then set
fT (u) = xb−1 (resp. xr−1). Thus moving along
the arrows, or against them, changes the value
of fT (v) by b, r, b−1, or r−1.

If r 6= b in GS then the map from tilings
to tiling functions is invertible, since we can get
the color of any edge in T by comparing fT at
its ends.

It is easy to prove by induction on the
number of cells that fT (v) is well-defined; it is
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single-valued since going around any single tile
gives a contour word which is equivalent to the
identity of GS . The same observation gives

Proposition 2.1. (Conway’s criterion) If
a polygon P with a colored boundary admits a
tiling with a set of tiles S, then its contour word
is equivalent to the identity in GS .

The converse of this proposition is obviously
false for some sets of tiles, even for regions
consisting of a single cell! This leads us to the
notion of an unambiguous set of tiles. A set
S is unambiguous if the converse of Conway’s
criterion is true for single cells, i.e. a tile belongs
to S if and only if its contour word is e ∈ GS .

For instance, if S is unambiguous then it
cannot contain two tiles which differ only in
the color of a single edge unless S = W , since
dividing the contour word of one of these tiles
by the other gives r = b.

These and similar considerations easily show
that the unambiguous subsets of W are the
singletons, W12, W13, W23, W16, W25, W34, W56,
W123, W124, W1234, and W . These are the sets
of tiles we will focus on next.

Proposition 2.2. Conway’s criterion is suffi-
cient for a set of tiles S if and only if (i) S is un-
ambiguous and (ii) For any three colors x, y, z,
there is at least one color w such that the tile with
edges x, y, z, w (going, say, counterclockwise) is
in S.

Proof. To prove the first direction, making Con-
way’s criterion sufficient for single squares is the
definition of unambiguity. Since the contour
word of the domino shown in the figure below
is xx−1y−1z−1zy = e, sufficiency implies that it
must be tileable, meaning that there must exist
a color w for the interior edge. To prove the con-
verse, note that if the second condition holds, we
can take any polygon, start at the boundary, and
repeatedly choose cells which can be removed
while keeping the region simply-connected as in
Muchnik and Pak [19]. Since each such cell has
at most three of its edges set by the boundary
conditions, condition (ii) allows us to place a tile

there and remove it from the region, until only
one cell remains. This cell is tileable if and only
if it is in S, which if S is unambiguous means if
and only if Conway’s criterion holds.

X X

Y

ZZ

Y

It is easy to see that this rules out all sets
except W56, W1234, and W , for which the reader
can easily check both conditions. We discuss
these further below.

3 Unambiguous two-color tiles

3.1 Trivial cases. For W1, W2, W3, W4, W12,
W13, W23 and W123, a polygon has at most one
tiling, and if it exists we can find it in time
proportional to the area. This is because for all
these sets the tile is determined by the colors of
two adjacent edges, so we can start at a corner of
P and scan, say, left to right and top to bottom.

Trivially any polygon can be tiled if S = W ,
and Conway’s criterion is trivially sufficient with
GW = Z4. We note as well that the number of
such tilings is 2m where m is the number of edges
in the interior of P . If we define a local flip as
changing the color of an edge (and the two tiles
on either side of it), then the set of tilings has
the structure of an m-dimensional hypercube.
We will see below that similar structures can be
found for other unambiguous sets of tiles.

3.2 Finite tiling groups: W56 and W1234.
Proposition 2.2 shows that Conway’s criterion
is sufficient as well as necessary for W56 and
W1234. This gives us a linear-time algorithm
for tileability: simply calculate P ’s contour word
and compare it to the identity.

The tiling group of W56 is
〈

b, r | b3r, r3b
〉

.
Since b3r = e, we have r = b−3, and since
b = r−3 = b9, the group is isomorphic to Z8 with
(say) b = 1 and r = −3. For W1234, on the other
hand, since brbr = bbrr = e we have br = rb,
and since b4 = r4 = b2r2 = e, the tiling group is
isomorphic to Z4 ⊕ Z2 with (say) r = (1, 0) and
b = (1, 1).
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Although their tiling groups are not isomor-
phic, there is a simple bijection between tilings
with the two sets. By flipping the colors of
the horizontal edges on the even-numbered rows
(say), we change one edge of each tile, trans-
forming tiles in W56 to tiles in W1234 and vice
versa. This may also change some of the colors
on the boundary, so this is actually a bijection
between pairs (P, T ) where P is a region with
colored boundary and T is a tiling of it.

There is also a simple bijection between these
and assignments of two colors, say yellow and
green, to the vertices of P . If we color an edge
red if its two vertices are the same color and
blue if they are different, we obtain tilings with
the set W1234. This also shows that, once the
colors on P ’s boundary are chosen, the number
of tilings is 2k where k is the number of vertices
in the interior of P . The local flip changes the
color of a vertex and thus the four edges and
the four tiles around it, and the graph of tilings
forms a k-dimensional hypercube. This gives a
trivial algorithm for sampling random tilings, by
flipping k independent coins.

3.3 Infinite tiling groups and height func-
tions. The use of height functions for tilings
was introduced by Thurston [26], and since then
they have been applied to several sets of polyomi-
noes and polygons. They were found indepen-
dently in statistical physics, and have been ap-
plied to ice models, antiferromagnets, and Potts
models (see e.g. [3, 6]). We will see that they can
be applied to some sets of Wang tiles as well.

The idea is to transform the tiling function
fT to an integer height at each vertex, by com-
posing it with an appropriate function z : GS →
Z and writing hT = z ◦fT . Then we can define a
partial order on the set of tilings of a particular
polygon with colored boundary,

T � T ′ ⇐⇒ ∀v ∈ P : hT (v) ≤ hT ′(v)

The height function typically possesses the fol-
lowing properties, which will help us solve tiling
problems:

• Given the boundary conditions, there is

a one-to-one relation between tilings and
height functions.

• Local flips can be applied at local extrema of
hT in the interior of P , and can connect any
tiling to any other with the same boundary
conditions.

• With respect to �, the set of tilings is a
distributive lattice. In particular, there are
minimal and maximal tilings ⊥ and >.

• ⊥ is convex, i.e. h⊥ has no local maxima in
the interior of P .

The distributive lattice structure will help
us in several ways. Since there exists a tiling
iff there exists a minimal tiling and the heights
of the vertices of the boundary are given by
the boundary conditions, this will give us a
straightforward algorithm for tileability. We will
also have an algorithm to compute the shortest
way to pass from one tiling to another by a series
of flips. Finally, the technique of coupling from
the past will allow us to sample random tilings
in polynomial time [16, 22].

3.3.1 W5 and dominoes. It is easy to see
that if S is the singleton W5 we have domino
tilings, where blue edges are the boundaries of
dominoes and red edges cross their interiors. The
tiling group

〈

b, r | b3r
〉

is isomorphic to Z with
b = 1 and r = −3. Thus we can take the height
function hT = fT where z is simply the identity.
If the perimeter of P is blue, Conway’s criterion
simply checks that there are an equal number
of black and white squares in P . We already
know from Proposition 2.2 that this criterion is
not sufficient. To discuss the lattice structure of
the set of tilings we will follow [24] and omit the
proofs.

A local flip can be applied at a vertex v
when its two incoming edges have the same color,
and its two outgoing edges have the same color.
Equivalently, a flip consists of exchanging two
horizontal dominoes for two vertical ones or vice
versa. It is easy to see that a flip is possible
at v if and only if v is a local extremum of the
height function. Since this flip changes the color
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of all four edges around a vertex, it can only be
applied at a vertex in the interior of P . We call a
flip upwards if it transforms a local minimum to
a local maximum and downwards if it does the
reverse. The reader can check that these flips
increase or decrease hT (v) by 4.

Recall that a lattice [5, 9] is a set equipped
with a partial order, where any two elements
a and b have a unique infimum a ∧ b and a
unique supremum a ∨ b. A lattice is distributive
if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) =
(a ∧ b) ∨ (a ∧ c). Viewing the set as a directed
acyclic graph, it follows that any pair of directed
paths between two points (which, if a path exists,
are comparable) have the same length.

Standard arguments then allow us to prove
the following properties of the partial order �
defined above:

Proposition 3.1. (Flips and order) For
any pair of tilings T and T ′ of the same polygon
P with the same colored boundary, T � T ′ if
and only if T ′ can be obtained from T by a
sequence of upwards flips.

Proposition 3.2. (Lattice structure) If a
polygon P is tileable then, with respect to the
order �, the graph of tilings is a distributive
lattice. In particular, there is a unique minimal
tiling ⊥.

Proposition 3.3. (Convexity) Let P be a
tileable polygon and let ⊥ be its minimal tiling.
Then h⊥ has no local maxima in the interior of
P .

Proposition 3.4. (Flip formula) For any
pair of tilings T and T ′ with the same boundary
conditions, the minimal number of flips to pass
from T to T ′ is (1/4)

∑

v
|hT ′(v) − hT (v)|.

Combining Propositions 3.2 and 3.3 gives the
following algorithm, which either constructs the
minimal tiling or confirms that the region is not
colorable:

• Calculate the heights of vertices on the
boundary. If Conway’s criterion is not
satisfied then the region is not tileable.

Otherwise repeat the following steps until
the region is completely tiled.

• Whenever all four corners of a cell have an
assigned height, place the appropriate tile
there and remove that cell from the region.
If no tile is consistent with these heights,
halt and conclude that the region is not
tileable.

• Find a vertex v with maximum height hmax

on the current boundary; it has a neighbor
w whose height has not yet been assigned.
Since h⊥ may not have local maxima in the
interior, set h⊥(w) smaller than hmax, either
to hmax − 1 or hmax − 3 depending on the
orientation of the edge from v to w.

If we remove cells at P ’s boundary whenever
one of their edges is red, tilings with W5 corre-
spond exactly to domino tilings of the remaining
region. We can then use the results of Propp and
Wilson [22] and Luby, Randall and Sinclair [16]
to sample perfectly random tilings in time poly-
nomial in the area of P .

3.3.2 W34, W124, and Eulerian ori-
entations. The tiling group of W34 is
〈

b, r | brbr, b2r2
〉

, which is isomorphic to Z
with b = +1 and r = −1. Once again we can
take hT = fT as our height function. We have
all the same tools as in the previous example,
except that now for any pair of neighbors u, v we
have |hT (u) − hT (v)| = 1. This is recognizable
as the height function for Eulerian orientations
of the dual lattice, called the six-vertex ice
model by physicists [3]. This is also equivalent
to the height function for three-colorings of the
square lattice, and to alternating-sign matrices
[20]. The algorithm for tileability is completely
analogous to that for the domino tiling W5,
except that we always set the height of the
neighboring vertex to hmax − 1. The progress
of the algorithm is shown in Figure 1; it either
constructs the minimum tiling, or arrives at a
contradiction where two neighboring vertices
have heights differing by more than 1, violating
the definition of the height function and proving
that the region is not tileable.
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Figure 1: The progress of the tiling algorithm
for W34, or equivalently Eulerian orientations of
the grid, which constructs the minimal tiling or
shows that none exists.

For W124, the tiling group
〈

b, r | b4, r4, b2r2
〉

is more complex. However, by imposing the
additional relations b2 = r2 = e we can obtain
a simple quotient for it, the free group on two
generators of order 2, which has the following
Cayley graph:

������������ ������������ 	�	
�
������
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b

b
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While this is not isomorphic to Z it clearly has
the same “shape” as Z. We can define a height
function hT = z ◦fT with the following z, taking
advantage of the fact that if r2 = b2 = e every
element can be written as a word w of alternating
r’s and b’s:

z(w) = |w| if w begins with b

z(w) = −|w| if w begins with r

Then the same results follow as for W34.
Just as for W56 and W1234, there is a sim-

ple bijection between tilings with W34 and those
with W124 even though their tiling groups are not
isomorphic. If we flip the colors of all the hori-
zontal edges (say), each tile in W34 becomes one
in W124 and vice versa. Composing this with the
bijections shown above gives a simple bijection
between W124 tilings and Eulerian orientations.

As in the previous case, the techniques of
[16, 22] can be used to sample random tilings in
polynomial time.

3.4 The curious case of W16. The set W16

(and its symmetry partner W25) is the only un-
ambiguous two-color set which remains unsolved.
Its tiling group

〈

b, r | b4, r3b
〉

is isomorphic to Z12

with b = 3 and r = −1. Thus its tiling group is
finite; however, Conway’s criterion is not suffi-
cient.

By lifting from Z12 to Z we see that the num-
ber of w1 tiles on white squares minus the num-
ber of w1 tiles on black squares is an invariant,
since for a polygon P this is n/12 where n is the
integer corresponding to P ’s contour word. No-
tice that, for each vertex, the tiling function has
three possible values, since fT (v) is equivalent
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mod 4 to the length of a path from the origin
vertex to v.

We leave as an open problem whether there
is a polynomial-time algorithm to tell whether
a given polygon can be tiled with W16. The
reader may enjoy showing that a region with
red boundary is tileable if and only if it can
be tiled by dominoes and X-pentominoes. It
seems likely that such tilings are NP-complete
for non-simply-connected regions using construc-
tions similar to Moore and Robson [18].

4 Examples with more colors

4.1 Height functions on Cayley trees. In
this section we show that the notion of height
function can also be used for some Wang tiles
with three (or more) colors. While the height
function is more complex, it still gives us an
efficient algorithm to determine whether a region
is tileable. Our example is a generalization of
W124, where each tile has at most two colors, and
where every colored edge shares a vertex with
another edge with the same color. The set V is
the following:
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Taking our colors to be Red, Green and Blue,
with the associated generators r, g and b, then
the tiling group is

〈

r, g, b | r2g2, g2b2, b2r2
〉

(note
that these relations imply r4 = g4 = b4 = e) and
this appears to be quite complex. Luckily, there
is a simple quotient which does not create any
ambiguity, namely G =

〈

r, g, b | r2, g2, b2
〉

. Its
Cayley graph Γ(G) has a tree structure (if oppo-
site arrows are identified) as shown in Figure 2,
and a height function can be constructed from
the following axioms:

• For every n ≥ 0, z((br)n) = −2n and
z((br)nb) = −2n − 1.

• For each element x of G, there exists a
unique neighbor pG(x) of x, called the G-

g
r

b

−2

0

1

0 2

2

3−1−3 3

31

1 −1 1 3

Figure 2: The Cayley tree Γ(G) for the three-
color tiling, and the height function z.

predecessor of x, such that z(pG(x)) =
z(x) − 1. For the other two neighbors y of
x, we have z(y) = z(x) + 1.

These imply, for instance, that if w is a word
in {r, g, b} where no two adjacent letters are the
same, then

z(w) = |w| if w begins with r or g

z(w) = |w| − 4n if w begins with (br)ng

z(w) = |w| − 4n − 2 if w begins with (br)nbg

To define a partial order on G, we say that
x ≤G y if there exists a finite sequence of
elements of G, starting with x and finishing with
y, such that the predecessor in the sequence is
the G-predecessor as defined above. If we define
the index of any element x ∈ G as h(x) mod 2,
then the partial order ≤G induces an order ≤i

on each of the two index classes. Each element
v has a unique predecessor in its index class,
pi(x) = pG(pG(x)).

For each pair x, y of elements with the same
index i, we define inf i(x, y) as the infimum
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of x and y with respect to ≤i. Notice that
inf i(x, y) is not always equal to the infimum
infG(x, y) with respect to ≤G, since the latter
might be in the other index class, in which case
inf i(x, y) = pG(infG(x, y)). Note also that hT (v)
is equivalent mod 2 to the length of any path
from the origin vertex to v, so fT (v) and fT ′(v)
are in the same index class for any two tilings T ,
T ′ of the same region.

A local flip changes the colors around a fixed
interior vertex v. This can only happen if all the
edges linking v to its neighbors have the same
color, which means that the height function has
a local extremum at v.

As before, we define a partial order on tilings
by T � T ′ if fT (v) ≤G fT ′(v) for all v (which
implies fT ≤i fT ′ and hT ≤ hT ′). We also
define a distance between elements of G: for
x, y ∈ G, let d(x, y) be the length of the shortest
path between them, using the generators r, g and
b. Then define the distance between two tilings
as d(T, T ′) =

∑

v
d(fT (v), fT ′(v)). Note that if

T and T ′ are comparable, we have d(T, T ′) =
∑

v
|hT (v) − hT ′ |.

Proposition 4.1. (Flips and order) For
any pair of tilings T and T ′ with the same
boundary conditions, T � T ′ if and only if
T can be obtained from T ′ by a sequence of
downwards flips.

Proof. By induction on d(T, T ′). Take a vertex
v such that hT ′(v) > hT (v), where v is a
local maximum of hT ′ (note v is an interior
vertex). Then hT ′(u) = hT ′(v) − 1 and fT ′(u) =
pG(fT ′(v)) for all neighbors u of v. Thus T ′

can be flipped downwards at v, inducing a tiling
T ′′ such that fT ′′(v) = pi(fT (v)) where i is the
index of fT (v). We have T � T ′′ � T ′, and
d(T, T ′′) = d(T, T ′) − 2. This gives the result by
induction, until d(T, T ′′) = 0 and T = T ′′.

Recall that an inferior semi-lattice is similar
to a lattice, but with only the infimum of two
elements a ∧ b guaranteed to be unique. Then:

Proposition 4.2. (Inferior semi-lattice)
If a polygon P is tileable then the graph of tilings

with respect to � is a inferior semi-lattice,
where the tiling function of T ′′ = T ∧ T ′ is given
by fT ′′ = inf i(fT , fT ′) at each vertex.

Proof. We have to prove that fT ′′ = infi(fT , fT ′)
is a valid tiling function. Note that if u, v are
neighbors (by which we mean that the edge
connecting them is in P ) then their values of the
tiling function are neighbors in Γ(G), i.e. either
fT (u) = pG(fT (v)) or fT (v) = pG(fT (u)), and
similarly for T ′. Therefore, we need to show that
fT ′′(u) and fT ′′(v) are neighbors in Γ(G).

We have two cases up to symmetry. If
fT (u) = pG(fT (v)) and fT ′(u) = pG(fT ′(v)),
then if fT (v) and fT ′(v) are compa-
rable, then fT ′′(u) = pG(fT ′′(v). If
fT (v) and fT ′(v) are incomparable, then
infG(fT (u), fT ′(u)) = infG(fT (v), fT ′(v)), in
which case either fT ′′(u) = pG(fT ′′(v)) or
fT ′′(v) = pG(fT ′′(u)) using the relationship
between infG and infi stated above. The
other case, in which fT (u) = pG(fT (v)) and
fT ′(v) = pG(fT ′(u)), can be analyzed similarly.

Thus the pointwise infimum of fT and fT ′

with respect to ≤i is a tiling function, and the
corresponding tiling T ′′ is clearly the unique
infimum of T and T ′ with respect to �.

This also implies that there is a unique
minimal tiling ⊥, which has the same properties
as in the simpler cases above:

Proposition 4.3. (Convexity) Let P be a re-
gion tileable with tiles in V and let ⊥ be its min-
imal tiling. Then h⊥ has no local maxima in the
interior of P .

Proof. Suppose that for ⊥ we have an internal
vertex v such that h⊥(v) is a local maximum.
Then flipping v downwards would give a new
tiling T ′ ≺ ⊥, a contradiction.

This gives us an efficient algorithm for con-
structing the minimal tiling and confirming
tileability similar to that of Section 3.3.1, except
that we set f⊥(w) = pG(fmax). We also have:

Proposition 4.4. (Flip formula) For any
pair of tilings T and T ′ satisfying the same
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boundary condition, the minimal number of flips
to go from T to T ′ is (1/2)d(T, T ′).

Proof. We use the method of [25]. Clearly,
(1/2)d(T, T ′) is a lower bound for the number
of necessary flips since flipping at v changes
d(T, T ′) by zero or ±2. Now take an inte-
rior vertex v such that fT ′(v) 6= fT (v) and
sup(hT (v), hT ′(v)) is locally maximal. We as-
sume w.l.o.g. that sup(hT (v), hT ′(v)) = hT (v),
in which case fT (u) = pG(fT (v)) for each neigh-
bor u of v. Then T can be flipped at v, moving
fT (v) towards fT ′(v) in Γ(G) and giving a tiling
T ′′ such that d(T ′′, T ′) = d(T, T ′)−2 (notice that
this flip either reduces the height of v or keeps it
the same, changing fT (v) but not hT (v)). This
gives the result by induction.

Note that we have actually defined one
height function in an uncountably infinite fam-
ily of them, where the height decreases along one
path (in this case (br)∗) and increases along all
others. Each of these induces a different partial
order, and for each computable one we have an
algorithm similar to that above to find the min-
imal tiling with respect to it.

4.2 Higher-dimensional height functions.
As another example, consider the set V of four-
color Wang tiles where a tile is in V if and
only if each color appears once on its bound-
ary. The tiling group Z4/{1, 1, 1, 1} is Abelian
and infinite, and is isomorphic to the body-
centered cubic lattice with the four generators
(+1,+1,+1), (+1,−1,−1), (−1,+1,−1), and
(−1,−1,+1). This corresponds to a three-
dimensional height function. Similarly, three-
color triangular tiles have a two-dimensional
height function Z3/{1, 1, 1} isomorphic to the
triangular lattice, and six-color hexagonal tiles
have a five-dimensional height function.

All these tilings are equivalent to edge k-
colorings of the dual lattice (the square, hexag-
onal, and triangular lattices respectively) where
k is equal to the dual lattice’s degree. Edge 3-
colorings of the hexagonal lattice are also equiva-
lent to vertex 4-colorings of the triangular lattice,
and were studied by Baxter [2], Huse and Ruten-

berg [12], and Moore and Newman [17]. Edge
4-colorings of the square lattice were studied by
Kondev and Henley [14]. None of these tilings
are connected under local moves, but they are
connected under “loop moves” where we choose
two colors, find a loop consisting of edges with
those two colors, and switch the colors along the
loop. Little is known about the mixing time of
the resulting Markov chain; the techniques of
[16, 22] appear not to apply, since these non-
local moves make it hard to define a monotonic
coupling. We suggest this as an area for future
research.

References

[1] C. Allauzen and B. Durand, “Tiling problems.”
In E. Borger, E. Gradel, Y. Gurevich, The clas-
sical decision problem. Springer-Verlag, 1997.

[2] R.J. Baxter, “Colorings of a hexagonal lattice.”
J. Math. Phys. 11 (1970) 784–789.

[3] H. van Beijeren, “Exactly solvable model for
the roughening transition of a crystal surface.”
Phys. Rev. Lett. 38 (1977) 993–996.

[4] R. Berger, “The undecidability of the domino
problem.” Memoirs of the American Mathemat-
ical Society 66 (1996)

[5] G. Birkhoff, Lattice theory. American Mathe-
matical Society, 1967.

[6] J.K. Burton Jr. and C.L. Henley, “A con-
strained Potts antiferromagnet model with an
interface representation.” J. Phys. A 30 (1997)
8385-8413.

[7] J. H. Conway, J. C. Lagarias, “Tiling with
Polyominoes and Combinatorial Group The-
ory.” Journal of Combinatorial Theory Series
A 53 (1990) 183–208.

[8] K. Culik and J. Kari, “On Aperiodic Sets
of Wang Tiles.” Lecture Notes in Computer
Science 1337 (1997) 153–162.

[9] B.A. Davey and H.A. Priestley, Introduction to
lattices and orders. Cambridge university press,
1990

[10] P. van Emde Boas, “Dominoes are forever.”
Proc. 1st GTI Workshop, Rheie Theoretische
Informatik, UGH Paderborn (1983) 75–95.

[11] R. Hassim, “Maximum flows in (s, t) planar
networks.” Information Processing Letters 13
(1981) 107–.

9



[12] D.A. Huse and A.D. Rutenberg, “Classical an-
tiferromagnets on the Kagomé lattice.” Phys.
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