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Abstract

A great amount of work has been devoted to the understanding of the long-time
behavior of cellular automata (CA). As for any other kind of dynamical system,
the long-time behavior of a CA is described by its attractors. In this context, it has
been proved that it is undecidable whether every circular configuration of a given CA
evolves to some fixed point (local attractor). In this paper we prove that it remains
undecidable whether every circular configuration of a given CA evolves to the same
fixed point (global attractor). Our proof is based on properties concerning NW-
deterministic periodic tilings of the plane. As a corollary we conclude the (already
proved) undecidability of the periodic tiling problem. Nevertheless, our approach
could also be used to prove this result in a direct and very simple way.

Key words: circular cellular automata; global attractors; periodic tilings;
undecidable problems.

1 Introduction

Cellular automata (CA) are discrete dynamical systems. They are defined by
a lattice of cells and a local rule by which the state of a cell is determined
as a function of the state of its neighborhood. A configuration of a CA is an
assignment of states to the cells of the lattice. The global transition function
is a map from the space of all configurations to itself obtained by applying
the local rule simultaneously to all the cells. This global transition function
corresponds to the CA dynamics.

1 This work was partially supported by program ECOS-97.
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Because of the dynamical-system nature of CA, a great amount of work has
been devoted to the understanding of its long-time behavior (consider, for
instance, the well-known classification of Wolfram [7]). The long-time behavior
of any dynamical system is described by its attractors. In this context, for the
two (and higher) dimensional CA, it was proved in [3] the undecidability of
the nilpotency problem. This problem consists, in practice, in deciding whether
every configuration of a given CA evolves to a global (unique) fixed point in
a finite number of steps. Later J. Kari proved in [4] the undecidability of the
nilpotency problem in the one-dimensional case.

On the other hand, K. Sutner in [6] restricted this study to circular config-
urations (those spatially periodic) because of their finitary description and
therefore their possibility of being handled in the framework of the ordinary
computability theory. More precisely, by the use of non-standard simulations
of Turing machines, it was proved that it is undecidable whether every circular
configuration of a given one-dimensional CA evolves to some fixed point. A
very particular property satisfied the CA of Sutner’s reduction: all of them
admitted an infinite number of circular fixed point configurations. In fact, by
considering CA configurations as tapes of Turing machines, we force the exis-
tence of an infinite number of fixed points consisting of representations of the
tape having no head.

In this paper we prove that it remains undecidable whether every circular
configuration of a given one-dimensional CA evolves to the same (and therefore
unique) fixed point. Our result allows us to conclude the one of Sutner in a
rather direct way.

The structure of our proof is inspired on the one developed by J. Kari in
[4]. In fact, our work is based on results concerning tiling problems and, in
particular, on the useful NW-deterministic notion (roughly, a set of tiles is
NW-deterministic if it is locally deterministic in one dimension). More pre-
cisely, here we prove that it is undecidable whether a given NW-deterministic
set of tiles admits a periodic tiling of the plane. Despite the similarity with
Kari’s nilpotency result, our objects are different in nature: the CA configu-
rations considered here are circular and the tilings of the plane are periodic.
In this particularity lies the difficulty of our proof.

By the way, and as an obvious consequence, it can be concluded the undecid-
ability of the periodic tiling problem (in which it is asked whether an arbitrary
set of tiles admits a periodic tiling of the plane). This result was obtained by
Y. Gurevich and I. O. Koriakov in [2]. We would like to remark that our ap-
proach could also be used to prove the Gurevich and Koriakov result in a direct
way. In fact, when the NW-deterministic property is no required, most of the
technicities of the proof are no longer needed and it becomes very simple.
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Fig. 1. Local matching. (i) The general case. (ii) The NW-deterministic case.

2 Definitions

A one-dimensional cellular automaton of radius one, or simply a CA, is defined
by a couple (Q,d) where @ is a finite set of states and § : @* — @ is a
transition function. A state ¢ € () is said to be a spreading state if for all
z,y,2 € Q, q € {x,y,z} = d(z,y, 2) = q. A configuration of a CA (Q,¢) is a
bi-infinite sequence C € Q%, and its global transition function G5 : Q% — Q%
is such that (G5(C)); = 6(Ci—1,C;,Cit1)- For t € N* = N\ {0} it is defined
recursively G4(C) = Gs(GY(C)) with GY(C) = C. A family of different
configurations {C®, ... CT=D} C Q% is said to be a cycle of length T if for
allt € {0,-+-,T — 1}, G5(C™) = C® and G5(CT~V) = CO). A fixed point is
a cycle of length one. We say that a configuration C € Q7 is circular if there
exists P € N* such that C; = C;,.p for all 1 € Z.

In the global fixed point attractor problem it is asked whether every circular
configuration of a given CA evolves to the same fixed point.

This work is mainly based on properties concerning periodic tilings of the
plane. A tiling system is a couple (7, ) where T is a finite set of tiles and
¢ : T* — T is a partial function called local matching. A tiling of the plane by
(T, ) is an assignment X € T%* satisfying for all 4, j € Z, as it is represented
in Figure 1—i, QD(Xi—l,jaXi,j—FlaXi+1,jaXi,j—1) = Xi,j- A tlhng system (T, (/7) is
said to be NW-deterministic if for every pair of tiles z,y € T there exists at
most one tile z € T accepting x as left neighbor and y as upper neighbor. In
other words, for a NW-deterministic tiling system (7, ¢), the domain of the
partial local matching function can be assumed to be 72. A tiling of the plane
by a NW-deterministic set of tiles (7, ) is an assignment X € T%* satisfying
for all 4,j € Z, as it is represented in Figure 1-ii, ¢(Xi_1;, X j11) = & ;.
A tiling X is said to be periodic if there exist horizontal and vertical trans-
lations for which X' remains invariant. In other words, X € TZ” is periodic if
there exists P € N* such that X ; = X; p; = X j1p forall 4,5 € Z.

In the NW-deterministic periodic tiling problem it is given a NW-deterministic
tiling system and it is asked whether it admits a periodic tiling of the plane.



3 The global fixed point attractor problem

It is direct to notice that every circular configuration of a CA evolves in a
finite number of steps to a finite cycle. By the use of non-standard simulations
of Turing machines, K. Sutner proved in [6] that it is undecidable whether
every circular configuration of a CA evolves to a fixed point (not unique).
In this section we show that it remains undecidable whether every circular
configuration of a CA evolves to the same fixed point. Our result allows us to
conclude the one of Sutner directly.

The reduction to the global fixed point attractor problem is done from the
NW-deterministic periodic tiling problem.

Proposition 1 The NW-deterministic periodic tiling problem is undecidable.

Proof. In section 4. O

Proposition 2 The global fixed point attractor problem is undecidable.

Proof. Let (7,¢) be a NW-deterministic tiling system. Let us consider now
the CA (@, ) with @ = {7 U {s}} such that s ¢ T, and with the transition
function ¢ defined as follows:

6(z,y,2) = {go(a:,y) if 2,9,z € T and ¢(z,y) is well defined,
s S otherwise.

Notice that s is a spreading state of (@, ). It follows that (7, ) admits a
periodic tiling of the plane if and only if there exists a circular configuration
of (@, ) not evolving to the trivial fixed point (---sss---).

In fact, let X € T% be a periodic tiling of the plane. Let C be a configuration
of (@, ) corresponding to the diagonal of X’ that intersects the origin as it
appears in Figure 2. More precisely, let C; = &} ; for all ¢ € Z. The configuration
C is a circular one because there exists P € N* such that &X;; = X p;p for
all 4 € Z. By construction, for all ¢ € N*, G4(C) corresponds to the diagonal
{X;11i}icz € T% and therefore G5(C) # (---sss...).

Conversely, let C be a P-circular configuration not evolving to the trivial
fixed point (---sss---). Using that s € @ is a spreading state then every
configuration of the cycle to which C evolves belongs to TZ. Let T € N* be
the length of this cycle and let C* be an arbitrary configuration belonging
to it. Let us consider the region R = {(i,j) € Z? : i > j} that appears
schematically in Figure 3. Let us tile R by the assignment X € 7% such that
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Fig. 2. The diagonals of a NW-deterministic tiling seen as CA configurations.

Xirri = (G5(C*));, with @ € Z and t > 0. By the definition of (Q,d) the
previous assignment effectively corresponds to a tiling of R.

It follows that the square {0,1,---, PT —1} x{0,—-1,---,—PT+1} C R tiled
by X has periodic boundary conditions and it can be repeated in order to tile
the plane periodically. In fact, considering that the cycle to which C* belongs
has length T it holds for all j € {0,—1,---,—PT + 1}:

Xpr; = Xjrpr—j)g = (G5 T 7(C); = (G57(C)); = Xj—jj = Xoy.

On the other hand, considering that if C* is P-periodic then also G%(C*) is
P-periodic for any ¢ > 0, then for all ¢ € {0,1,---, PT — 1}:

Xi—pr = X_pry(PT+i),—PT = (G5PT+i(C*))—PT = (Gfs(C*))o = Xio- O

In order to conclude the result of K. Sutner concerning the undecidability
of the local fized point attractor problem (in which it is asked whether every
circular configuration of a CA evolves to a not necessarily unique fixed point),
we need to use the following lemma.

Lemma 1 Given a CA, it is decidable whether it admits a unique circular
configuration as a fired point.

Proof. Let (Q,6) be a CA. Let us consider the directed graph G = (V, E)
with V' C @3 satisfying (z,y,2) € V if and only if 6(z,y, z) = y while, on the
other hand, ((z1,y1,21), (T2, Ye, 22)) € E if and only if y; = z9 and z; = .
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Fig. 3. A periodic square pattern of the tiled region R.

Fig. 4. A circular fixed point configuration and its associated graph cycle.

As it appears schematically in Figure 4, a cycle of the graph G corresponds
to a circular fixed point of (@, 9).

A fixed point configuration C, in order to be unique, has to be shift invariant
(i.e, C; = Ciyj for all 4,5 € Z). If not, we would obtain by a shift operation
another fixed point. Considering that the only shift invariant configurations
are those of the form (---qgg---), the problem has been reduced to decide
whether the graph G = (V, E) admits a unique cycle that, in addition, has
length one. O

Corollary 1 The local fized point attractor problem is undecidable.

Proof. First notice that the subproblem of the global fixed point attractor
problem in which each instance (CA) admits a unique circular fixed point
remains undecidable. In fact, let us assume that this is not true and let us
denote by ALG the corresponding decision algorithm. It follows that there
would exist a decision procedure for the global fixed point attractor problem:
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Fig. 5. (i) There exists at most one d € T such that ¢(a,b,c) = d. (ii) Equivalence
between the two NW-deterministic notions.

given a CA decide if it admits a unique circular fixed point (see Lemma 1); if
this is the case apply ALG and if this is not the case then obviously it does not
hold that all the circular configurations evolve to the same fixed point. Finally,
in order to conclude the undecidability of the local fized point attractor problem
it suffices to notice that the global and the local versions when restricted to
CA having a unique circular fixed point are equivalents. O

4 The NW-deterministic periodic tiling problem

The goal of this section is to prove the undecidability of the NW-deterministic
periodic tiling problem. As it was done in [4], in order to make the proof more
readable, we are going to use an equivalent notion of NW-determinism. From
now on we say that a tiling system (7, ¢) is NW-deterministic if for every
a,b,c € T there exists at most one tile d € 7 matching as in Figure 5-i. In
this case ¢ can be considered as a three-arguments partial function and we
note ¢(a, b, c) = d.

Notice that if (7, ) is a NW-deterministic tiling system in this new sense, then
there exists an “equivalent” tiling system (7, %) which is NW-deterministic
in the original sense. In fact, let 7 = 72 and let ¢ : 7> — T be defined for
all z,a,b,c € T as follows (see figure 5-ii):

¢((w,a), (b)) = (a, p(a, b, ¢))

It is direct to see that there exists a periodic tiling for (7, ¢) if and only if
there exists a periodic tiling for (7, @).

A natural superposition operation ®, which preserves the NW-deterministic
property, is defined for every pair of tiling systems (77, 1) and (73, ¢2). More
precisely, we define (7, ¢) = (71, 1) ® (T3, p2) with T = T; x T3 and, for all
(z1,72), (Y1, Y2), (21,22) € T

o((z1,22), (Y1, ¥2), (21, 22)) = (1(@1, Y1, 21), 2(T2, Y2, 22))-
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Fig. 6. (i) A NW-deterministic set of tiles. (ii) A tiling of a square region.

In order to code a NW-deterministic tiling system, each tile is going to be
represented as a unit-sized square having symbols and arrows on its four sides,
on its upper-left corner and on its bottom-right corner. In Figure 6 appears, as
an example, an arbitrary set of NW-deterministic tiles and a tiling of a square
region: adjacent tiles must have the same symbol on their common edges and
arrow heads must meet arrow tails. Because of the fact that the local matching
function is directly encoded in the tiles representation, we are simply going to
refer to “set of tiles” instead of “tiling system”.

The undecidability of the NW-deterministic periodic tiling problem is going to
be proved by a reduction from the halting problem on Turing machines. Before
showing this reduction, we must construct a pair of NW-deterministic sets of
tiles satisfying very particular conditions.

4.1 The NW-deterministic set of tiles A

The goal here is to prove the following lemma:

Lemma 2 There exists a NW-deterministic set of tiles A = A; U Ay such
that:

e Ay admits only nonperiodic tilings of the plane,
e For any n > 1 there exists a square of size 2" tiled by A satisfying:
- It has periodic boundary conditions. In other words, this square pattern
can be repeated in order to tile the plane periodically,
- The tiles of Ay appear only on the right and bottom borders of the square
as it 1s schematically showed in Figure 7.
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Fig. 7. A square tiled by A = A; U Ay with periodic boundary conditions.
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Fig. 8. The set of Robinson Ajg. (i) Crosses. (ii) Arms.
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Fig. 9. Alternative representation of bumps and humps.

Proof. The set A; to be considered corresponds to the one introduced in [4],
which is almost identical to the well-known set of Robinson [5] denoted here
by Ay and appearing in Figure 8. Notice that Ay has cardinality 32 (8 crosses
and 24 arms) because all the rotations of each tile are admissible. The use of
bumps and humps in the corners of the tiles is just a way to force the crosses
to appear in alternate columns and in alternate rows. As it is done in [5], we
show in Figure 9 how to replace bumps and humps by arrows. For clarity we
prefer to keep the “bumps and humps” representation. In [5] it was proved
that Ay admits only nonperiodic tilings of the plane.
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Fig. 10. Transforming Ay into A;. (i) A cross tile. (ii) An horizontally oriented arm.
(iii) A vertically oriented arm.

By simply adding symbols to the upper-left and bottom-right corners, it is
shown in [4] how to transform the set 4, into a NW-deterministic one A; pre-
serving the nonperiodicity property. More precisely, to the arms horizontally
oriented (those with the principal or “one-way” arrow lying horizontally) H
symbols are added on the upper-left corners and V' symbols are added on the
bottom-right corners. To the arms vertically oriented the V' symbols are added
on the upper-left corners while the H symbols are added on the bottom-right
corners. Finally the crosses are duplicated by adding the same symbols (V/
and H) on both corners. The way the modification is done for three particular
tiles corresponding to each one of previous cases appears in Figure 10.

It was proved in [4] that A; is a NW-deterministic set of tiles admitting only
nonperiodic tilings of the plane. The set A; satisfies another key property for
alln > 1:

If we denote by T,, the square of size (2" — 1) then, for each
of the border conditions represented in Figures 11 and 12, there
exists a corresponding tiling of T,, by Ay (notice that the number
of border conditions is 8 since each square of Figures 11 and 12

codes in fact 2 squares because the X symbol represents either V
or H).

In fact, for n = 2 the 8 cases appear in Figure 13. If we suppose the property
true for n we show in Figure 14 how to prove it for n+ 1 for 2 cases. The other
6 cases are similar.

Let us define the set of tiles A, as the one of cardinality 5 that appears in
Figure 15. The NW-determinism of A = A4; U A, follows directly: it suffices to
check that there are no two tiles in A with the same upper-left border. The
periodic square of size 2" with tiles of A5 only used on the right and bottom

10
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Fig. 11. The first 4 border conditions for T, with X € {V, H}.

borders appears schematically in Figure 16. Finally, in Figure 17 it is shown
that previous pattern effectively has periodic boundary conditions. O
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Fig. 12. The other 4 border conditions for T}, with X € {V, H}.

4.2  The NW-deterministic set of tiles AB

Here we generate a NW-deterministic set of tiles AB admitting periodic tilings
of the plane and satisfying that, in any of these possible periodic tilings, some

12
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Fig. 13. The 8 cases for n = 2.

particular patterns called “boards” always appear. Let us start with some
definitions.

Definition 1 Let A = A, U A, be the NW-deterministic set of tiles of the
previous section. Let B = By, U By U Bgg be the set of Figure 18 made of
internal tiles, NW-border tiles and SE-border tiles. We denote by AB the set
obtained by the superposition that follows:

AB = {A: ® By} U{A: @ Byt U {A> © Bgp}

ABint ABpord

The tiles belonging to AB;y,; are called AB-internal tiles while the tiles belong-
ing to ABy,,q are called AB-border tiles.

13
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Fig. 15. The set Ajs.
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Fig. 16. The periodic pattern.

Definition 2 An AB-board is a square tiled by AB with AB-border tiles ap-
pearing only at the border of the square as it is shown schematically in Fig-
ure 19. Notice that from now on, as it is done in Figure 19, for any tile in
AB the presence of the A-component will be represented by a unique shadowed
background (no matter whether the A-component belongs to A, or As).

By the following two lemmas we prove that the set AB satisfies our require-
ments.

Lemma 3 The set AB is NW-deterministic and for all n > 1 there exists an
AB-board of size 2™ with periodic boundary conditions.

Proof. For the NW-determinism notice that B is NW-deterministic and that
AB C A® B. On the other hand, for any n > 1, in order to obtain an AB-
board of size 2" with periodic boundary conditions it suffices to transform a
square of size 2" tiled by A with periodic boundary conditions (see Figure 7)
into an AB-board by superposing in the suitable way the tiles of B. O

Lemma 4 In any periodic tiling of the plane by AB an AB-board must appear.

15
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Fig. 18. The set of tiles B. (i) Internal tiles (ii) NW-border tiles. (iii) SE-border
tiles.

Proof. Let P be a periodic tiling of the plane by AB. First notice that at least
one AB-border tile ¢, must appear in P. In fact, if this is not the case then
the plane would be tiled periodically by A; ® Bj,¢. But this is not possible
because A; does not give periodic tilings of the plane. Notice also that ¢
can be assumed to be a corner tile (see Figure 20-i). In fact, let us suppose
that there are no corner tiles in P. If we define a curve to be any path in
P determined by the (vertical and horizontal) arrows of the B-components of

16
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Fig. 20. (i) A corner tile. (ii) P does not admit infinite lines without corner tiles.

the AB-border tiles and if we denote by Cj the curve that passes through %,
then Cj has to be an infinite line. Without loss of generality this line can be
assumed to be vertical and pointing down. By periodicity, there must exist
a parallel line identical to Cy and, because of the assumption that no corner
tiles appear in P, we have one of the two contradictions of Figure 20-ii.

We have just justified the fact that ¢y may be considered as a corner tile. Let
us consider the curve Cj that passes through t,. It follows that Cy has to be
a closed curve. In fact, if this is not the case then, by the fact that the curve
has to be bi-infinite, it is easy to verify that the only possibilities for Cy are
the two of Figure 21. But these two patterns cannot appear in any periodic
tiling of the plane.

17
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Fig. 21. Bi-infinite curves not allowing periodicity.
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Fig. 22. Unfeasibility of closed curves different from squares.

Considering that Cj is a closed curve and that different curves cannot cross
each other, we can conclude that there exists a closed curve Cjj containing in
its interior no AB-border tiles. It follows that Cj cannot have more than four
corners. In fact, as it is shown schematically in Figure 22-i, closed curves with
more than 4 corners are not feasible. Finally, it is not difficult to notice (see
Figure 22-ii) that the only feasible 4 corners curve is a square. By definition,
the square C§ delimits an AB-board and therefore the lemma is proved. O
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Fig. 23. The set of tiles 7. (i) Alphabet tiles. (ii) Merging tiles. (iii) Right tiles. (iv)
Left tiles. (v) Stay tiles.

4.3 The reduction

Now we are able to prove the undecidability of the NW-deterministic periodic
tiling problem. We do it by a reduction from the known undecidable halting
problem on Turing machines in which a Turing machine M = (3, B, Q, qo, g, 9)
is given and it is asked whether M reaches the halting state g, when starting
with the blank bi-infinite tape (---BB---) and in the initial state ¢o. Notice
that 0 : ¥ x Q@ — ¥ x Q x {L, R, S} represents the transition function of
M with ¥ being the alphabet, ) the set of states, and {L, R, S} the possible
moves (left, right, stay).

Proposition 3 The NW-deterministic periodic tiling problem is undecidable.

Proof. Let M* = (X, B,Q,qo,qr,9) be an arbitrary Turing machine. Let
M = (%,B,Q, q,qs,0) be the same as M* with the only difference that
it never halts. More precisely, when it reaches the halting state g, it erases
the tape and it stays in the final-quiescent configuration (i.e, in the state gf
and scanning the cell located at the origin of the blank tape). By a suitable
composition of a set of tiles 7 (which codes the Turing machine M) and the
set of tiles AB (introduced in the previous section) we are going to obtain a
NW-deterministic set of tiles H admitting a periodic tiling of the plane if and
only if M reaches the final-quiescent configuration.

Let 7 be the set of tiles that codes M of Figure 23: alphabet tiles are gen-
erated for each s € X; merging tiles for every pair (s,q) € ¥ X Q; right, left
and stay tiles are associated to the tuples (s1,q1,$2,q2, R), (81,41, $2,q2, L)
and (s1,q1, 2,2, S) satisfying respectively 6(s1,q1) = (s2,¢2, R), 0(s1,q1) =
(52,42, L), and d(s1,q1) = (82,2, S)-

As it is shown in Figure 24, any computation of M can be coded as a tiling of
the bottom-right quadrant of the plane (N?). In fact, if a ¢-frame is defined as a
region of the form {(¢,j) € N? : i = ¢ or j = ¢} with ¢ > 0, then instantaneous
configurations of M appear coded, successively, in those ¢t-frames where either
a right, a left, or a stay tile appears. In each of these t-frames the origin of the
tape is represented in the cell (¢,¢). The left part of the tape is represented
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Fig. 24. Equivalence between a Turing machine computation and a tiling of the
bottom-right quadrant of the plane.
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Fig. 25. Modification of ABy,.q in order to obtain Hy g

in the vertical part of the frame while the right part is represented in the
horizontal part of the frame. All the tiles of a frame correspond to alphabet
tiles except the scanning cell and, possibly, the neighbor with which it is
interacting. Notice that these tilings may be seen as alternative representations
of Turing machines evolutions.

Let the set of tiles # = H;p¢ U Hypopq be the one with Hi = ABjp @ T
and with Hy .4 being obtained by adding symbols to some tiles of ABy, .4
as it appears explicitly in Figure 25. The tiles belonging to H;,; are called
H-internal tiles, while the tiles belonging to H},q are called H-border tiles.

As for the set AB, we define an H-board as a square tiled by H with the #-
border tiles appearing only at the border of the square as it is schematically
shown in Figure 26. Notice that H is a NW-deterministic set of tiles. This fact
can be easily checked by considering that 7 is NW-deterministic (because
M is a deterministic machine) and that the set AB is NW-deterministic (see
Lemma 3).

It remains to prove that M reaches the final-quiescent configuration when it
starts from the blank tape if and only if H admits a periodic tiling of the
plane. In fact, if M reaches the final-quiescent configuration then there exists
a square S tiled by 7 with the boundary conditions that appears schematically
in Figure 27-i. Without loss of generality we can assume that the size of § is
(2" — 2) for some n > 1. In fact, if the size of the original square in which this
computation was represented is k, then we can construct another one of size
(k +1) as it is explained in Figure 27-ii. Now from & it is direct to obtain an

21



Cc C
c C
B B B
B
B
B
B
B
B
B B B
C C
Cc Cc

Fig. 26. An #-board.

‘H-board of size 2" (see Figure 27-iii). Moreover, considering that there exists
an AB-board of size 2" with periodic boundary conditions (see Lemma 3) we
can assume that the H-board has periodic boundary conditions and it can be
repeated in order to tile the plane periodically.

Let us now suppose that H admits a periodic tiling of the plane P. It follows
that an H-board must appear in P. In fact, if this is not the case we would
contradict Lemma 4. More precisely, if we suppose that in P no H-board
appears and we extract all the Turing machines symbols of P we would obtain
a periodic tiling of the plane by AB having no AB-boards. Finally, from an
‘H-board it is direct to obtain a square tiled by 7 encoding a computation of
M evolving to the final-quiescent configuration (see again Figure 27). O

Remark 1 The set H always admits a tiling of the plane. In fact, if M* never
halts, then it suffices to use M,y in order to tile nonperiodically the plane by
representing this never-halting computation.

Remark 2 As an obvious consequence of Proposition 8 we can conclude the
undecidability of the periodic tiling problem (in which it is asked whether an
arbitrary set of tiles admits a periodic tiling of the plane). This result was
obtained in [2]. Nevertheless, we would like to remark that our approach could
also be used to prove the Gurevich and Koriakov result in a direct way. In fact,
it suffices to notice that when the NW-deterministic property is no required,
most of the technicities of the proof are no longer needed and it becomes very
simple (for instance, the set A has just to be nonperiodic and it does not need
an explicit representation,).
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Fig. 27. (i) A square tiled by 7 representing a computation of M reaching the
final-quiscent configuration. (ii) A bigger square. (iii) The associated -board.
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