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Abstract A natural way to interpret a cellular automaton (CA) is as a mech-
anism that computes, in a distributed way, some function f . In other words,
from a computer science point of view, CAs can be seen as distributed sys-
tems where the cells of the CAs are nodes of a network linked by commu-
nication channels. A classic measure of efficiency in such distributed systems
is the number of bits exchanged during the computation process. A typical
approach is to look for bottlenecks: channels through which the nature of the
function f forces the exchange of a significant number of bits. In practice, a
widely used way to understand such congestion phenomena is to partition the
system into two subsystems and try to find bounds for the number of bits
that must pass through the channels that join them. Finding these bounds is
the focus of communication complexity theory. Measuring the communication
complexity of some problems induced by a CA φ turned out to be tremen-
dously useful to give clues regarding the intrinsic universality of φ (a CA is
said to be intrinsically universal if it is capable of emulating any other). In
fact, there exist particular problems P’s for which the following key property
holds: if φ is intrinsically universal, then the communication complexity of
P(φ) must be maximal. In this tutorial, we intend to explain the connections
that were found, through a series of papers, between intrinsic universality and
communication complexity in CAs.
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1 Introduction

Cellular automata (CAs) are discrete dynamical systems. They were intro-
duced by von Neumann as a formal model of self-reproducing organisms [58].
The simplest description of a CA is as an array of cells whose content evolves
in discrete time steps. At each time step each cell is in one of a finite set of
possible states. Every cell changes its own state at each clock tick following
a local rule which determines its new state as a function of its present state
together with the states of its neighbors. For a nice survey on CAs we refer to
[34].

Formally, a (one-dimensional) CA is defined by its local transition rule
φ : A2r+1 → A, where A corresponds to the set of states and r denotes the
radius of the local rule. A configuration c ∈ AZ is an assignment of states to the
lattice Z. To any CA φ we associate a global transition function Φ : AZ → AZ,
which corresponds to the synchronous and uniform application of the local
transition rule φ. More precisely, for every i ∈ Z, the updated state at position
i is given by (Φ(c))i = φ(ci−r, . . . , ci+r). The t-step iteration of the global
function is denoted by Φt : AZ → AZ.

This formalism turned out to be tremendously useful for describing all
kinds of phenomena, especially of physical [10,17,59,60] and biological [24,27,
51] nature. CAs also proved to be extremely versatile and, indeed, they have
been studied from purely theoretical perspectives [33,36,56] and, at the same
time, they have been used in very practical applications [5,6,14,39].

From the point of view of computer science, CAs can also be seen as
message-passing distributed systems [50]. For that reason, it comes as no
surprise the similarity between some message-passing distributed models and
some variants of CAs. This convergence between models occurred over time.
On the one hand, some researchers of the CA community relaxed certain orig-
inal restrictions of the model allowing asynchronous and/or random dynamics
[25,26,40,52] and less rigid topologies [2,35,44,57]. On the other hand, with
the proliferation of huge networks of very weak devices, the distributed com-
puting community became interested in models where processors, instead of
being considered as powerful Turing machines, were assumed to be finite au-
tomata [8,13,16,23].

Our approach is precisely focused at this point where the two communities
—that of distributed computing and that of CAs— meet.

The main idea is to view the cells of the CAs as nodes of an interconnection
network linked by communication channels. Our first step consists in apply-
ing ideas of communication complexity to CAs and to interpret the dynamic
processes as communication protocols [22,28]. After that first phase, a very
useful and interesting relationship appears between communication complex-
ity of CAs and intrinsic universality. Before explaining this relationship we
will refer to the general notion of universality.

Universality has always been present in the theory of computation. It is
related to the ability of certain systems to emulate others. This idea has had
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notable repercussions and gave rise to deep concepts and theories: computabil-
ity, universal Turing machines, reductions, NP-completeness, among others [3].

Informally, a Turing machine is said to be universal if it can emulate any
other Turing machine. A system (for instance a CA) is Turing-universal if it
has the same computing power of a universal Turing machine. By interpret-
ing the configurations of one-dimensional CAs as bi-infinite tapes, the emula-
tion of Turing machines, and therefore the existence of Turing-universal CAs,
is straightforward. In this framework, Smith constructed in 1971 a Turing-
universal CA with 18 states and radius 1 [54]. Later, in 1990, Lindgren and
Nordahl constructed a 7-state, radius 1 Turing-universal CA [38]. Finally, pub-
lished somewhat late (2004), Cook was able to show that Rule 110, a 2-state
CA of radius 1, was Turing-universal [15].

It is important to point out that there is actually no consensus on the
formal notion of Turing-universality in CAs (see [21] for a discussion about
encoding/decoding issues). On the other hand, by observing emulations where
the cells of the emulated CA are identified with blocks of cells of the emulating
CA, little by little the idea of intrinsic universality was forged. Roughly, a CA
is intrinsically universal if it is capable of emulating any other. This notion
was first outlined by Banks [4], to be later taken up by Albert and Čulik II
[1]. At the end of the 90s, the different types of universalities were clearly
and formally distinguished [21,41]. Finally, it is good to note at this point
that, although intrinsic universality implies Turing-universality —given any
reasonable definition of it— the converse can be shown to be false. For a
detailed tour, it is recommended to read Ollinger’s survey [48]. As with Turing-
universality, small intrinsically universal CAs have been constructed [49].

The notion of Turing-universality is extrinsic to the CA model. On the
other hand, emulations between CAs are intrinsic. An advantage of the defi-
nition of intrinsic universality is that it accepts well-defined characterizations,
without great arbitrariness. These well-defined characterizations allow us to
address the question of whether a certain CA is intrinsically universal (in
contrast, for the case of Turing-universality, we do not even know what the
input/output relationship is like, and therefore, finding negative results is par-
ticularly cumbersome).

Now we can precise the relationship between intrinsic universality in CAs
and communication complexity [11,29]. This relationship will be developed
later, but we can summarize it as follows. Given a CA φ, we define a computa-
tional problem P(φ) parametrized by φ. We split the input into two parts: one
given to a party called Alice and the other given to a second party called Bob.
Then, we view such problem as a communication problem and we prove that,
the existence of a CA ψ for which the communication complexity of P(ψ) is
higher than the one of P(φ), corresponds to a certificate of the fact that φ is
not intrinsically universal.

The intuition behind the previous result is the following. If a CA ψ can
be emulated through another CA φ, then, for “any” problem P parametrized
by CAs, the “complexity” of P(φ) cannot be “lower” than the complexity of
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P(ψ). Therefore, if the complexity is indeed lower, then it means that φ cannot
emulate ψ, and, in particular, φ cannot be intrinsically universal.

The organization of the paper is the following. In Section 2, we introduce
basic communication complexity ideas. In particular, we define the notion of
overlapping, that we apply to the study of CAs in the last section, but which
may be of interest by its own. In Section 3, we give the formal definition of
emulation between CAs and the corresponding notion of intrinsic universal-
ity. In Section 4, we introduce a natural communication problem induced by
CAs, known as the prediction problem. Through this particular problem, we
illustrate the connection between communication complexity and intrinsic uni-
versality. More precisely, since the communication complexity of the prediction
problem increases monotonically with respect to the order induced by emula-
tions, we can rule out CAs from being intrinsically universal (those for which
the prediction problem has low communication complexity). In Section 5, we
use the same approach but for other problems: length of cycle, spatial-invasion,
temporal-invasion, and controlled-invasion. Finally, in Section 6, through the
overlapping relation, we explain how to use simultaneously many problems in
order to rule out CAs from being intrinsically universal.

2 Communication complexity

The basic, deterministic two-party communication complexity model was in-
troduced by Yao [63]. For an extensive exposition of the model see [37]. The
model is the following. First, there is some function f : X × Y → Z, where
X,Y, Z are finite sets. Typically, X = Y = {0, 1}n and Z = {0, 1}. Two par-
ties, Alice and Bob, must cooperate exchanging messages in order to compute
f(x, y). The key point is that Alice receives the input x ∈ X (unknown to
Bob) while Bob receives the input y ∈ Y (unknown to Alice).

We usually refer to a function f : X×Y → Z as a two-party communication
problem. This problem can be solved by a deterministic protocol, which spec-
ifies, at each step of the communication between Alice and Bob, whose turn
it is to speak and what she/he says (a bit, 0 or 1) as a function of her/his re-
spective input, together with the messages received so far. A protocol specifies
when the communication has ended and, in each end state, the corresponding
output.

y1 y2 y3 y4
x1 z1 z1 z1 z2
x2 z1 z1 z1 z2
x3 z1 z1 z1 z1
x4 z1 z2 z2 z2

Table 1 A matrix Mf which represents a function f .

Note that we can represent a function f : X × Y → Z as a matrix Mf ,
where the rows are labeled with the set X of possible inputs for Alice, the
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columns with the set Y of possible inputs for Bob, and, finally, the entry (x, y)
of the matrix is f(x, y) ∈ Z. This matrix is fully known to both Alice and
Bob when they agree on a protocol. As an example, see the matrix of Table
1, where X = {x1, x2, x3, x4}, Y = {y1, y2, y3, y4}, and Z = {z1, z2}.

Formally, a protocol P over a domain X ×Y with range Z is a binary tree
where each internal node v is labeled either with a map av : X → {0, 1} or
with a map bv : Y → {0, 1}, and each leaf ` is labeled with an element z ∈ Z.
For instance, in Figure 1, we can see a tree/protocol that solves the function
of Table 1.

z2z1 a4(x1) = 0
a4(x2) = 0
a4(x3) = 0
a4(x4) = 1

b3(y1) = 1
b3(y2) = 0
b3(y3) = 0
b3(y4) = 0

b2(y1) = 0
b2(y2) = 0
b2(y3) = 0
b2(y4) = 1

a1(x1) = 0
a1(x2) = 0
a1(x3) = 1
a1(x4) = 1

z1

z1

z2

Fig. 1 A communication protocol as a binary tree.

The value of protocol P on input (x, y) ∈ X × Y is given by A`(x) (or
B`(y)), where A` (or B`) is the label of the leaf reached by walking on the
tree from the root, turning left if av(x) = 0 (or bv(y) = 0) and right otherwise.
We say that a protocol computes a function f : X × Y → Z if, for every
(x, y) ∈ X × Y , its value on input (x, y) is precisely f(x, y).

Intuitively, each internal node specifies a bit to be communicated either by
Alice or by Bob, whereas at the leaves both parties already know f(x, y).

The cost of a protocol is the maximum number of bits it ever sends, ranging
over all inputs, i.e., the depth of the associated tree. For example, the cost
of the protocol shown in Figure 1 is 3. The communication complexity of
a function f is the minimum cost over all protocols that compute it. We
denote by cc(f) the (deterministic) communication complexity of a function
f : X × Y → Z.
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A very successful approach for proving lower bounds on the communication
complexity of arbitrary functions is based on the so-called monochromatic
rectangles.

Definition 1 Given a function f : X×Y → Z, a subset R = A×B ⊆ X×Y
is an f -monochromatic rectangle if f is constant on R.

Lemma 1 ([37]) If any partition of X × Y into f -monochromatic rectangles
requires at least t rectangles, then cc(f) ≥ dlog2(t)e.

Remark 1 In order to lighten the notation, in this work we are going to write
log(t) instead of dlog2(t)e.

Let t(f) be the smallest number of f -monochromatic rectangles in a parti-
tion of X × Y . There are many approaches for finding lower bounds for t(f).
One of these approaches is based on the notion of fooling set . Roughly, a fool-
ing set is a (hopefully large) set of input pairs such that no two of them can
belong to a single monochromatic rectangle.

Definition 2 Given a function f : X × Y → Z and z ∈ Z, a set F ⊆ X × Y
is a z-fooling set for f if

1. for every (x, y) ∈ F , f(x, y) = z;
2. for every distinct pairs (x1, y1) and (x2, y2) in F , either f(x1, y2) 6= z or
f(x2, y1) 6= z.

The usefulness of fooling sets is given by the following lemma.

Lemma 2 ([37]) Let Z = {z1, . . . , zk}. If, for all 1 ≤ i ≤ k, Fi is a zi-fooling
set for f of size ti, then cc(f) ≥ log(t1 + · · ·+ tk).

Consider now the problem Equality , EQ : {0, 1}n×{0, 1}n → {0, 1}, where

EQ(x, y) =

{
1, x = y,

0, x 6= y.

Note that MEQ, the matrix associated to EQ, is the diagonal matrix of
dimension 2n (see Figure 2). The elements of the diagonal form a natural 1-
fooling set that we call FEQ. More precisely, for all x, y ∈ {0, 1}n, (x, y) ∈ FEQ

if and only if x = y. From Lemma 2, and considering that there exists a 0-
fooling set of size at least 1, we obtain that cc(EQ) ≥ log(2n + 1) > n. On
the other hand, there is a trivial protocol whose cost is n+ 1: Alice sends the
n bits of her input x and then Bob answers with a 1 if x = y and with a 0
otherwise. Hence, cc(EQ) = n+ 1.

A similar situation arises with another well-known communication problem
known as Disjointness, DISJ : {0, 1}n × {0, 1}n → {0, 1}, where

DISJ(x, y) =

{
1, ∀i ∈ {1, . . . , n} : xi = 0 ∨ yi = 0,

0, ∃i ∈ {1, . . . , n} : xi = yi = 1.
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If we interpret x and y as the indicator function of a set of n elements,
then DISJ(x, y) = 1 ⇐⇒ x ∩ y = ∅. A 1-fooling set of size 2n is FDISJ,
defined as follows: (x, y) ∈ FDISJ ⇐⇒ y = x, where x is the complement
of x. With a reasoning analogous to the one of problem EQ, we conclude
that cc(DISJ) = n + 1. (The fractal nature of matrix MDISJ is due to the
following two facts: On one hand, DISJ(x∪{n+ 1}, y ∪{n+ 1}) = 0. Second,
DISJ(x, y ∪ {n+ 1}) = DISJ(x, y).)

Fig. 2 A matrix representation of EQ and DISJ, where 1s are white and 0s are black).

The deterministic communication complexity notion can be either restricted
to one-way protocols or generalized from functions to relations.

2.1 One-way communication complexity

The protocol we introduced for EQ was extremely simple: Alice sent a message
to Bob, and then Bob decided the output and communicated it to Alice.
These type of protocols are called AB-one-way protocols. The AB-one-way
communication complexity of a function f : X×Y → Z, denoted by ccAB(f),
is the worst case number of bits Alice needs to send to Bob (in an AB-one-way
protocol that computes f). The BA-one-way protocols and the BA-one-way
communication complexity are defined analogously, by interchanging the role
of Alice and Bob.

By forbidding back-and-forth communication between Alice and Bob, we
simplify the analysis. In fact, consider the |X|× |Y | matrix Mf . Let x, x′ ∈ X,
and let mx and mx′ be the messages Alice would send to Bob upon receiving
the inputs x and x′, respectively. It follows that, if the x-row and the x′-row
of Mf are different, then it must be that mx 6= mx′ .

It is direct from the previous remark, that the AB-one-way communication
complexity of f corresponds exactly to the logarithm of the number of different
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rows of Mf , while the BA-one-way communication complexity corresponds
exactly to the logarithm of the number of different columns in the matrix Mf .
In other words, the optimal AB-one-way protocol is the natural one: Alice
sends to Bob the “name” of the row corresponding to her input x (and then
Bob computes the output using his input y).

More precisely, ccAB(f) = log(d(Mf )), where d(Mf ) is the number of
different rows of the matrix Mf . Obviously, cc(f) ≤ ccAB(f) + log(|Z|), and
the gap might be very large. In fact, there are problems like Clique-independent
set [37], denoted CIS, for which ccAB(CIS) = Θ(n) while cc(CIS) = O(log2 n).

2.2 Relations

A relation R is a subset R ⊆ X × Y × Z. The associated communication
problem is the following: Alice receives x ∈ X, Bob receives y ∈ Y , and then
they have to find a z ∈ Z such that (x, y, z) ∈ R. Note that, for a given
relation, there may be more than one z satisfying the above property: Alice
and Bob only need to give one such z. However, it might be the case that,
for a given (x, y) ∈ X × Y , there is no z ∈ Z such that (x, y, z) ∈ R. In that
situation, we say that the input (x, y) is illegal . Otherwise, we say that the
input is legal .

A protocol P computes a relation R if, for every legal input (x, y) ∈ X×Y ,
the protocol reaches a leaf marked by a value z such that (x, y, z) ∈ R. We
denote by cc(R) the (deterministic) communication complexity of a relation
R ⊆ X × Y × Z, which corresponds to the minimal depth of a protocol tree
computing R.

Consider the following example related to the function EQ. Let X,Y ⊆
{0, 1}n such that X∩Y = ∅. Assume that the task of Alice and Bob consists in
finding, for any input (x, y) ∈ X×Y , an index i ∈ {1, . . . , n} such that xi 6= yi.
Finding non-trivial lower bounds for the communication complexity of this
relation turns out to be a major open problem in computational complexity
[32,53].

One can also define monochromatic rectangles for relations.

Definition 3 Given a relation R ⊆ X×Y ×Z, a subset A×B ⊆ X×Y is an
R-monochromatic rectangle if there exists a value z ∈ Z such that, for every
(x, y) ∈ A×B, either (x, y, z) ∈ R or (x, y) is illegal.

Lemma 3 ([37]) If any partition of X×Y into R-monochromatic rectangles
requieres at least t rectangles, then cc(R) ≥ log(t).

2.3 Overlapping

In Section 6 we are going to use, in the context of CAs, a relation called
overlapping . This relation may be of interest by its own. The idea is that,
given a fixed collection of functions with common domain X × Y , let’s say
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{fi : X × Y → Zi}ki=1, once Alice and Bob receive their inputs, they may
choose online the function for which they prefer to give the answer. The formal
definition is the following.

Definition 4 Let {fi : X × Y → Zi}ki=1 be a finite family of functions with
common domain X × Y . We define the overlapping of such family as the
relation

f1 ] · · · ] fk ⊆ X × Y × (

k⋃
i=1

Zi × [k]),

given by

(x, y, (z, i)) ∈ f1 ] · · · ] fk ⇐⇒ fi(x, y) = z.

In other words, f1]· · ·]fk asks about some index i pointing towards a prob-
lem fi together with the answer z ∈ Zi to such problem. The communication
complexity of f1]· · ·]fk corresponds to the number of bits Alice and Bob need
to exchange in order to find a correct answer. Obviously, and this is the key mo-
tivation of the overlapping definition, cc (f1 ] · · · ] fk) ≤ mini=1,...,k cc (fi).

Let us give an example. Consider the functions EQ and DISJ with common
domain {0, 1}n×{0, 1}n. Recall that cc(EQ), cc(DISJ) ∈ Ω(n). Nevertheless,
cc(EQ]DISJ) ∈ Θ(log n). In fact, for the upper bound, consider the following
protocol. If x = 0 . . . 0, then Alice sends a 0 to Bob; otherwise, she sends a 1.
If Bob receives a 0 or, if y = 0 . . . 0, then he answers DISJ(x, y) = 1; otherwise
he sends the position i corresponding to the leftmost 1 in y. Finally, Alice
compares xi with yi. If xi = yi, then she answers DISJ(x, y) = 0; otherwise,
she answers EQ(x, y) = 0. Therefore, the complexity of the protocol is O(log n)
because of the number of bits needed to encode the index i.

For the lower bound, we will consider the following extension of the defi-
nition of a fooling set to this context.

Definition 5 Let {fi : X × Y → Zi}ki=1 be a finite family of functions with
common domain X × Y . A subset F ⊆ X × Y is called a fooling set for
f1 ] · · · ] fk if, for all 1 ≤ i ≤ k, there exists a value zi ∈ Zi such that

– for every (x, y) ∈ F , fi(x, y) = zi;
– for every two distinct pairs (x1, y1) and (x2, y2) in F , either fi (x1, y2) 6= zi

or fi (x2, y1) 6= zi.

The relevance of this definition is that, as in the case of functions, it allows
to obtain lower bounds.

Proposition 1 ([11]) If {fi : X × Y → Zi}ki=1 has a fooling set F for f1 ]
· · · ] fk of size t, then

cc (f1 ] · · · ] fk) ≥ log(t).
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Now, we can prove that the set

F = {(x, x) ∈ {0, 1}n × {0, 1}n :

n∑
i=1

xi = 1}

is a fooling set for EQ]DISJ (see Figure 3). Let (x, x), (x′, x′) ∈ F such that
x 6= x′. Then, DISJ(x, x) = DISJ(x′, x′) = 0 and EQ(x, x) = EQ(x′, x′) = 1.
But DISJ(x, x′) = 1 and EQ(x, x′) = 0. Note that |F| = n and therefore
cc(EQ ]DISJ) ∈ Ω(log n).

Fig. 3 On the left (in blue and red), the matrix representation of the EQ problem and, on
the right (in white and black), the matrix representation of the DISJ problem. At the center,
a representation of a partition for EQ ]DISJ into monochromatic rectangles from EQ and
DISJ. While EQ and DISJ require exponentially (in n) many monochromatic (blue-red and
white-black, respectively) rectangles to be partitioned, EQ]DISJ only requires a polynomial
number (in n) of monochromatic (blue-red-white-black) rectangles to be partitioned.

3 Intrinsic universality in CAs

The notion of intrinsic universality —which relies on a particular notion of
emulation— is very natural: a CA is intrinsically universal if it is able to emu-
late any other [21,41,48]. Since intrinsic universality is a very precise concept,
it may seem, because of this precision, restrictive. Nevertheless, the intrinsic
universality property can be very common in some natural families of CAs.
In [7,55], the authors exhibit natural families where almost all the CAs are
intrinsically universal.

By completely formalizing the notion of universality, we facilitate the proof
of negative results. It is important to point out that, since the notion of in-
trinsic universality is related to a process by which we change the scale of
space-time diagrams, we are answering pure dynamical questions by using
computational tools.

The notion of emulation involved in the definition of intrinsic universality
induces a partial order in the set of all CAs. Considering this, we can compare
CAs according to their power of emulation, being the intrinsically universal
CAs the maximum elements of such order, i.e., the most powerful ones.
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Remark 2 We would like to point out that if the reader decides to skip the
following formal definition of intrinsic universality, it is possible to follow the
rest of the tutorial with no problem. This is analogous to the situation in
which one studies reductions in computational complexity without the need
of understanding the Turing machine model in full detail.

We say that a CA φ is a sub-automaton of another CA ψ, denoted by
φ v ψ, if we can identify Φ : AZ → AZ in Ψ : BZ → BZ after renaming the
states, where Φ and Ψ denote the corresponding global transition functions.
Formally, φ v ψ if there is an injective map ι : A→ B such that ῑ ◦Φ = Ψ ◦ ῑ,
where ῑ : AZ → BZ denotes the uniform extension of ι, i.e.,

ῑ(c) = (ι(ci))i∈Z for c = (ci)i∈Z ∈ AZ.

We say that a CA ψ emulates a CA φ if some rescaling of φ is a subau-
tomaton of some rescaling of ψ. The ingredients of the rescaling are simple:
packing cells into blocks, iterating the rule, and shifting.

φ = φ〈1,1,0〉 φ〈1,2,0〉

φ〈1,2,1〉 φ〈3,2,1〉

t = 2

m = 3

z = 1

Fig. 4 The rescaling 〈m, t, z〉 of φ with parameters m = 3 (packing), t = 2 (iterating) and
z = 1 (shifting).

Formally, given any state set A and any m ≥ 1, we define the bijective
packing map γm : AZ → (Am)

Z
by

(γm(c))i = (cmi, . . . , cmi+m−1), for i ∈ Z and c = (ci)i∈Z ∈ AZ.

The shift map is defined as σ : AZ → AZ, where σ(c)i = ci+1 for c ∈ AZ.
Then, the rescaling 〈m, t, z〉 of φ by parameters m (packing), t ≥ 1 (iter-

ating), and q ∈ Z (shifting) is the CA φ〈m,t,q〉 (see Figure 4) with set of states
Am and the following global transition function:

γm ◦ σq ◦ Φt ◦ γ−1m .
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The fact that the above global transition function is induced by a CA (i.e.,
a local transition rule) follows from the Curtis-Hedlund-Lyndon Theorem [31],
which characterizes CAs as the continuous functions that commute with the
shift.

Having this, we say that ψ emulates φ, denoted by φ 4 ψ, if there exist
rescaling parameters m1,m2, t1, t2 ∈ N and q1, q2 ∈ Z such that

φ〈m1,t1,q1〉 v ψ〈m2,t2,q2〉.

We say that a CA ψ is intrinsically universal if for all CA φ it holds that
φ 4 ψ. It is possible to check that intrinsically universal CAs do exist and,
moreover, they are generic in natural classes [7,55].

4 The Prediction Problem

To simplify the exposition, let us consider here only CAs with radius r = 1.
There is no much loss of generality if we do this, since, by augmenting the
number of states in A, we can emulate an arbitrary CA, of any radius, with
some CA of radius 1. In this case, the local transition rule is of the form
φ : A3 → A. A natural way to interpret a CA is as a mechanism that computes
the function φn : A2n+1 → A for any n, where φn is defined inductively as the
top of a light-cone of base 2n+1 (see Figure 5). For example, if we take n = 2,

φ2(x−2, x−1, x0, x1, x2) = φ(φ(x−2, x−1, x0), φ(x−1, x0, x1), φ(x0, x1, x2)).

2n+ 1

n

−n 0 n

Fig. 5 Light-cone of base 2n+ 1 for the CA φ(x−1, x0, x1) = x−1 + x1 mod 1.

In computer science, functions such as φn : A2n+1 → A can be seen as
input/output problems, where the input is an element x ∈ A2n+1 and the
corresponding output is φn(x) ∈ A. Moreover, we refer to this problem –which
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consists in predicting the state at the top of the light-cone– as the prediction
problem. More precisely, Pred(φ) = φn

We can visualize the cells of a CA as nodes in a one-dimensional arrange-
ment where each node is connected through a channel with its two neighbors
(with the exception of the two extreme nodes, which have only one neighbor).
A classic measure of efficiency in such distributed systems is the number of
bits that cross each channel during the computation process.

For example, when considering the prediction problem Pred(φ) : A2n+1 →
A, we can say that, by solving it through the (2n + 1)-node CA φ, 2 states
(elements of A) pass through the first and last channel (one in each direction),
while in the channels adjacent to the central node, the number of states that
pass is 2n (n in each direction). In general, if we take 1 ≤ i ≤ n, we have that
both in the i-th channel and in the (2n+1−i)-th channel the number of states
that pass is 2i (i in each direction).

In distributed computing one typically looks for bottlenecks. That is, chan-
nels for which the nature of the problem (in this case Pred(φ)) forces the
exchange of a significant number of bits. In practice, a widely used way to
understand the congestion of a set of channels is to divide the system into
two subsystems joined by such channels (that we also understand as cuts) and
try to find (lower and upper) bounds for the number of bits that must pass
through these channels.

For the upper bounds, we look for protocols. For the lower bounds, we typ-
ically use techniques from the theory of communication complexity. Note that,
in our context, every channel is a bridge (i.e., by removing it we disconnect
the system into two independent components).

Let us introduce formally a key definition that captures previous ideas.

Definition 6 Let φ be CA. The two-party communication problem Predi(φ)
is defined, for all 1 ≤ i ≤ 2n, as follows.

Predi(φ) : Ai ×A2n+1−i → A,

where Alice receives x ∈ Ai, Bob receives y ∈ A2n+1−i, and together they
must compute φn(xy).

Now, in order to illustrate its usefulness, we are going to study the com-
munication problem Predi(φ) on particular CAs, called elementary .

4.1 Elementary CAs

The family of elementary CAs (ECAs) is the family of CAs of radius r = 1

and binary alphabet A = {0, 1}. There are 22
3

= 256 CAs of this type, each
of which corresponds to a local rule φ : {0, 1}3 → {0, 1} that can be identified
with its corresponding Wolfram number defined as

∑
x,y,z∈{0,1} 24x+2y+zφ(x, y, z),

which is between 0 and 255.



14 Raimundo Briceño, Ivan Rapaport

Thus, for instance, ECA Rule 105 is given by φ105(x, y, z) = x + y + z +
1, where the sum is taken modulo 2. This CA satisfies the following affine
property [22]: for all 1 ≤ i ≤ 2n, x ∈ {0, 1}i, y ∈ {0, 1}2n+1−i,

φn105(xy) = φn105(x 0 . . . 0︸ ︷︷ ︸
2n+1−i

) + φn105(0 . . . 0︸ ︷︷ ︸
i

y) + n,

where xy ∈ {0, 1}2n+1 denotes the concatenation of x and y.

Note that the communication complexity of Predi(φ105) is a lower bound
for the number of bits that must pass through the channel that connects the
i-th node with the (i + 1)-th node in order to compute Predi(φ105). More
precisely, there is one communication channel between Alice and Bob.

The affine property mentioned above allows us to design a very simple
protocol, whose communication complexity is 2 bits. The protocol is as follows
[22]. Alice computes b = φn(x0 . . . 0) and sends bit b ∈ {0, 1} to Bob. Then
Bob computes b + φn(0 . . . 0y) + n and shares the result with Alice. Hence,
cc (Predi(φ105)) = 2.

In the protocol defined for ECA Rule 105, Alice sends a message to Bob,
and then Bob decides the output and communicates it to Alice. As we already
mentioned in Section 2, this particular type of protocols are known as AB-
one-way protocols.

Consider now, for any ECA φ, the matrix M i
φ = MPredi(φ) with 2i rows

and 22n+1−i columns, where M i
φ(x, y) = φn(xy). As we explained in Section

2, ccAB(Predi(φ)), the AB-one-way communication complexity of a CA φ
corresponds exactly to log(d(M i

φ)), where d(M i
φ) is the number of different

rows of the matrix M i
φ.

The fact that the one-way communication complexity corresponds to a
parameter of the matrix M i

φ motivated the authors in [22] to measure the one-
way communication complexity of the ECAs for different values of n through
emulations, by simply counting the number of different rows.

Note that, since |A| = 2, 0 ≤ ccAB (Predi(φ)) ≤ i. The emulations suggest
the existence of well-defined types of behaviors for the ECAs, highly correlated
with the four Wolfram classes [61]. Indeed, it was observed that the number
of different rows of the matrices Mn

φ was upper bounded by a constant, grew
polynomially, or grew exponentially, depending on the particular ECA φ.

Many of these observations could be rigorously proved. In [22,30], the au-
thors exhibited (optimal) one-way protocols for different ECAs. More precisely,
for ECAs φ for which ccAB (Predn(φ)) was constant or equal to log(n).

In [28], a protocol for ECA Rule 218, where Alice needs to send 2 positions
of her input x ∈ {0, 1}n (i.e., 2 log(n) bits), was given. More precisely, it was
proved that ccAB (Predn(φ218)) ≤ 2 log(n). By using communication com-
plexity arguments, it was also proved that ccAB (Predn(φ218)) ≥ 2 log(n)−5.
Note that the difference, in terms of the number of different rows in the matrix,
between messages of size log(n) and 2 log(n) is n versus n2.
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4.2 The connection with intrinsic universality

As we have already said, given a CA φ, the communication complexity of
Pred(φ) attempts to capture the idea of bottleneck, i.e., a splitting that in-
duces the highest traffic. The definition is as follows:

CC(Pred(φ)) = max
1≤i<2n+1

cc (Predi(φ)) .

The main connection between bottlenecks and emulation between CAs is
that the communication complexity of the prediction problem increases mono-
tonically with respect to the order induced by emulations. More precisely, if
a CA emulates another one, its prediction problem has to have the same or
higher communication complexity than the emulated one. Combining the pre-
vious fact with the existence of just one particular —not necessarily intrinsi-
cally universal— CA φ such that

CC(Pred(φ)) ∈ Ω(n),

one has immediately the following useful result that links intrinsic universality
with communication complexity.

Theorem 1 [29] Let φ be a CA such that CC(Pred(φ)) ∈ o(n). Then, φ is
not intrinsically universal.

The previous theorem tell us that it is enough that a CA φ satisfies that
CC(Pred(φ)) ∈ o(n) for ruling it out from being intrinsically universal.
Hence, we can conclude that many different CAs such as number-conserving
ECAs, monotone ECAs, ECA Rule 105, ECA Rule 218, equicontinuous CAs,
etc., are not intrinsically universal [29,30].

The existence of a CA φ such that CC(Pred(φ)) ∈ Ω(n) is interesting
by itself. The main technique here is to design CAs that “solve”, by means of
their dynamics, well-known two-party communication problems. Then, solving
a problem like EQ, DISJ, etc., reduces to predicting the evolution of the CA
designed for this purpose.

For example, the prediction problem associated to the CA φ depicted in
Figure 6 could be used to solve the Equality problem of the strings represented
at both sides of the central tower of >’s. The idea is the following: given
strings x = x1 · · ·xn and y = y1 · · · yn, represent both of them as rows of
“labeled particles” that move towards the central tower from left to right and
from right to left, respectively. In this particular scenario, one can perfectly
define a local rule that generates this motion; then, in n steps, it is possible to
determine if the two strings are the same or not since any difference between
the two strings will eventually reach the central tower (more specifically, if i
is the first index such that xi 6= yi, then the corresponding particles will reach
the center in time i).

Therefore, the question of equality between the two strings can be trans-
lated into the question of whether any difference will reach the central tower
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∗ ∗∗ ∗−→xn ←−yn−→xi ←−yi−→
1

←−
1

−→
0
−→
0 > ←−0 ←−0

−→
0 > ←−0

−→
1

←−
1>

>−→xi ←−yi−→xn ←−yn
?

Fig. 6 CA with a prediction problem that solves EQ.

in time n or not, and such information can be registered in the central tower
by just considering a special state ⊥. Then, if the outcome of the prediction
problem is >, we know that x = y. On the other hand, if the outcome is ⊥, we
know that x 6= y. This can be formalized by constructing an explicit fooling
set; however, it is not hard to see that one can naturally translate the usual
fooling set for EQ into a fooling set for Predn(φ).

5 Communication problems in CAs

Let φ be a fixed CA and Φ its corresponding global transition function. For sim-
plicity, we will keep assuming that φ has radius 1, although all the definitions
introduced in this section can be extended to the general setting. Consider-
ing this, we can formulate at least five problems induced by CAs relevant for
our purposes. Besides the prediction problem, four additional problems that
are also relevant are the following: length of cycle, spatial-invasion, temporal-
invasion, and controlled-invasion.

Let x ∈ An be an input.

The prediction problem [29], denoted by Pred(φ), was introduced in
Section 4. We consider here a natural generalization related to the definition
of the output when the base of the light-cone is of even size. More precisely,
Pred(φ) outputs the value z ∈ A if n is odd, or z1z2 ∈ A2 if n is even, obtained
after iterating

⌊
n−1
2

⌋
steps the CA φ starting from x.

For the following problems, we require some extra notation. Given a finite
word u, we denote by pu the (spatially) periodic configuration . . . uuu . . . ∈ AZ

constructed by repeating u infinitely many times. Notice that the evolution
of Φ starting from pu becomes (temporally) periodic after a finite number of
steps, i.e., there exists t0 > 0 such that Φt+t0(pu) = Φt(pu) for al t ≥ 0, since
the spatial period of pu never increases under the action of Φ.
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Given a fixed parameter k ∈ N, the length of cycle problem [29], denoted
by Cyclk(φ), considers the evolution of Φt(px) and outputs a 1 if the length
of the ultimate (temporal) period is less than or equal to k, and 0 otherwise.

Now, we denote by pu(x) the “perturbed” configuration obtained from pu
by replacing the original content of coordinates from 0 to n− 1 with x. Then,
given a fixed finite word u, we can define the three following problems (see
Figure 7):

– the spatial-invasion problem [29], denoted by SInvu(φ), compares the
time evolution of pu with pu(x) and outputs 1 if the distance between the
rightmost and leftmost disagreement between Φt(pu) and Φt(pu(x)) goes
to infinity as t goes to infinity, and 0 otherwise;

– the temporal-invasion problem [9,11], denoted by TInvu(φ), compares
the time evolution of pu with pu(x) and outputs 1 if the disagreement
between Φt(pu) and Φt(pu(x)) persists forever, and 0 otherwise;

– the controlled-invasion problem [9,11], denoted by CInvu(φ), com-
pares the time evolution of pu and pu(x) and outputs 1 if the disagreement
between Φt(pu) and Φt(pu(x)) persists forever but the distance between the
rightmost and leftmost disagreement remains bounded as t goes to infinity,
and 0 otherwise.

0
· · ·· · · u u u u u u u u ux

CInvu(φ)(x) = 1
SInvu(φ)(x) = 1

TInvu(φ)(x) = 0

u

< ∞
→ ∞

Fig. 7 Possible outcomes for the disagreement between (Φt(pu))t≥0 and (Φt(pu(x)))t≥0.

Notice that in every problem introduced here, the input is x ∈ An. The
integer k and the word u are just parameters. Then, for each decision problem,
we can define the associated communication problem obtained after splitting
the input x.

Now, the key feature is that the communication complexity of the afore-
mentioned problems must be monotone with respect to emulations. Before
stating the theorem, let us define the ≺ relation. Given f, g : R+ → R+, we
denote f ≺ g if

∃a, b, d, x0 ∈ R+,∃c ∈ R : ∀x ≥ x0, f(ax) ≤ dg(b(x+ c)).
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Considering this, we have the following theorem.

Theorem 2 ([9,11,29]) Let φ and ψ be two CAs such that φ 4 ψ. Then:

1. CC(Pred(φ)) ≺ CC(Pred(ψ)).
2. ∀ k ∈ N, ∃ k1, k2 ≥ k such that CC(Cyclk1(φ)) ≺ CC(Cyclk2(ψ)).
3. For every finite word u, there exists a finite word v such that CC(Pu(φ)) ≺

CC(Pv(ψ)), where P ∈ {SInv,TInv,CInv}.

From Theorem2 it follows that, if a CA ψ is intrinsically universal, then it
must be the case that the communication complexity is maximal (in the sense
of ≺) for every problem. It turns out that for all the problems considered here,
there exists some CA φ (not necessarily intrinsically universal) such that the
communication complexity is of order n. Therefore, if a CA ψ is intrinsically
universal, there exist k and u such that

CC(Pred(ψ)),CC(Cyclk(ψ)),CC(Pu(ψ)) � n,

where P ∈ {SInv,TInv,CInv}. (A priori, u may depend on P but, with
additional work, it is possible to prove that a unique u suffices.)

Another interesting fact is that these problems are in some sense orthog-
onal. In other words, given a pair of problems P1 and P2, it is possible to
construct a specific CA φ such that the communication complexity of P1 for
φ is maximal and the communication complexity of P2 for φ is trivial [11,29].
Therefore, all the problems presented here are independent and none of them
can be reduced to another one.

The relevance of having a variety of problems can be appreciated better
when studying classes of CAs. Given a CA φ and its corresponding global
transition function Φ, it is customary to define classes of CAs according to
the dynamical behavior of Φ on AZ. Considering the previous problems and
developing clever protocols based on the general properties of a given class, it
is possible to discard full classes of CAs from being intrinsically universal by
proving that the communication complexity of a particular problem is o(n).

Let us consider the following case. A CA φ is said to be nilpotent if there
exists s ∈ A such that Φt(c) evolves towards the constant configuration s =
. . . sss . . . for every c ∈ AZ. In such case, given a finite word u and an input
x ∈ An, then both pu and its perturbation pu(x) will evolve towards s under
Φ. In particular, for large enough t, there is no disagreement between Φt(pu)
and Φt(pu(x)). Therefore, the answer to SInvu(φ), TInvu(φ), and CInvu(φ)
is always 0, for any u. In particular, there is no communication needed in order
to solve them, and therefore CC(SInvu(φ)),CC(TInvu(φ)),CC(CInvu(φ)) ∈
O(1).

On the other hand, a CA is nilpotent restricted to periodic configurations if
there exists s ∈ A such that Φt(p) evolves towards the constant configuration
s for every (spatially) periodic configuration p ∈ AZ [42]. It is possible to prove
that this class of CAs is simple in terms of communication for some problems.
Indeed, given any k ∈ N, we have that CC(Cycl(Φ)k) ∈ O(1), because every
periodic configuration px for some input x ∈ An evolves towards s, which is a



Communication complexity meets cellular automata 19

fixed point for Φ, so the ultimate (temporal) period has always length 1 and
Cycl(Φ)k is constant (Cycl(Φ)k = 0 if k ≥ 2 and Cycl(Φ)k = 1 if k = 1).

We do not attempt to be exhaustive here with regard to all the definitions
involved, but let us mention other meaningful classes. For example, if φ is such
that Φ is equicontinuous or linear, it is possible to prove that CC(Pred(φ)) ∈
O(1) (indeed, the protocol for a linear CA is very similar to the one described
for ECA Rule 105 in Section 4); if φ is such that Φ is reversible (or, as we

discussed before, nilpotent on periodic configurations), then CC
(

CYCLkΦ

)
=

0 for all k ∈ N; as we discussed before, if φ is such that Φ is nilpotent, then
CC(SInvu(φ)) = 0 for every finite word u; if φ is such that Φ is positively
expansive, then CC(CInvu(φ)) = 0 for every finite word u; and if φ is such
that Φ is surjective (or more generally, its limit set is a subshift of finite type),
then CC(TInvu(φ)) = 1 for every finite word u. We refer to [9,11,29] for these
and other examples.

6 Overlapping of problems in CAs

In the context of CAs and intrinsic universality, one usually looks for com-
munication problems that are monotone with respect to emulations and such
that (1) they are easy to solve for a great number of CAs and (2) they are dif-
ficult to solve for a particular CA. Then, the more CAs that induce instances
of the problem with low communication complexity, the more CAs that will
be ruled out from being intrinsically universal. Considering this principle of
what makes a problem a good filter for discarding CAs from being intrinsically
universal, it is a natural step in that direction to use the overlapping relation
defined in Section 2. In fact, solving the overlapping relation is necessarily not
harder than solving individually any of the problems involved in its definition.

Considering this, given k ∈ N and a finite word u, we define the overlap-
ping problem as

Ovrlk,u(φ) := Pred(φ) ]Cyclk(φ) ] SInvu(φ) ]TInvu(φ) ]CInvu(φ).

Analogously to what happened in previous section, there exist particular
CAs which are hard for CC(Ovrlk,u(φ)). Hence, we have the following result.

Theorem 3 ([11]) Let φ be a CA such that, for all k ∈ N and every finite
word u, CC(Ovrlk,u(φ)) ∈ o(n). Then, φ is not intrinsically universal.

It is possible to check that if each of the problems involved in the definition
of Ovrlk,u(φ) is compatible with emulations, then the overlapping problem
will also be. A natural question is whether the overlapping problem can be
strictly easier than all the other problems individually for some particular
CA such as in the case of EQ and DISJ. The next proposition answers this
question affirmatively.

Proposition 2 ([11]) There exists a CA φ such that
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1. CC(Pred(φ)) ∈ Ω(n);
2. there exists k ∈ N such that CC(Cyclk1(φ)) ∈ Ω(n);
3. there exists a finite word u such that CC(Pu(φ)) ∈ Ω(n), where P ∈
{SInv,TInv,CInv};

and, for all k ∈ N and for all finite words u,

CC(Ovrlk,u(φ)) ∈ O(1).

7 Conclusion

In this tutorial we presented a deep connection between communication com-
plexity and intrinsic universality in (one-dimensional) CAs. The first step was
to introduce communication problems parametrized by CAs. Some communi-
cation problems turned out to be very useful for ruling out specific CAs from
being intrinsically universal. In fact, we were able to find particular problems
P’s for which the following key property holds: if φ is intrinsically universal,
then the communication complexity of P(φ) must be maximal. We defined
five such “canonical” problems. Note that, if the communication complexity
of P(φ) is low, then we are ruling out φ from being intrinsically universal. It
is clear that the main goal of our approach is to find a problem P having a
small set of CAs φ’s for which the communication complexity of Pφ is high. In
such a way, P will be a good filter for ruling out CAs from being intrinsically
universal.

Instead of finding new problems like P, we explained in this tutorial how
to use all the canonical problems simultaneously . The idea is to give much
more freedom to Alice and Bob, the two parties of the communication com-
plexity model: depending on the input they receive, they are allowed to choose
the canonical problem to solve. By definition, this new “overlapping” problem
—which we denote Ovrl— will be simpler (in terms of communication com-
plexity) than all the canonical ones. In fact, given an input, in order to solve
Ovrl(φ) it suffices to find any canonical problem P for which P(φ) is simple.

Therefore, for a non intrinsically universal CA φ it is much more likely to
obtain a result saying that Ovrl(φ) has low communication complexity; and
this result serves as a certificate to the fact that φ is not intrinsically universal.
To do this we must be able to prove the existence of at least one CA φ for
which Ovrl(φ) is high.

It is known that a necessary condition for a CA φ to be intrinsically univer-
sal is the P-completeness of the prediction problem Pred(φ) when viewed as
a classical computational problem [47]. In fact, Neary and Woods [45] proved
that Pred(φ110) is P-complete for the ECA Rule 110. However, it is not
known yet whether ECA Rule 110 is intrinsically universal. Since it is not dif-
ficult to find non intrinsically universal CAs for which Pred is P-complete
[18], we think that our approach is very useful for proving negative results for
some particular CAs. The reason is the following: there exist CAs whose pre-
diction problem is P-complete but for which the communication complexity
of (the canonical problem) Pred grows as o(n) [29].
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In distributed computing, applying communication complexity is a stan-
dard method for proving lower bounds in a variety of network topologies [12].
This can be regarded as an indication that our approach could be extended to
CAs of higher dimensions (in particular, dimension 2) and other scenarios.
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