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Tiling with bars under tomographic constraints

Christoph Dürr1 Eric Goles2,3 Ivan Rapaport3,4,5 Eric Rémila3,6

Abstract

We wish to tile a rectangle or a torus with only vertical and horizontal bars of a given length, such

that the number of bars in every column and row equals given numbers. We present results for particular

instances and for a more general problem, while leaving open the initial problem.
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1 Introduction

In general terms, tomography is the area of reconstructing objects from lower dimensional projections. We
consider the problem of reconstructing a rectangular grid from projections on the columns and on the rows.
Think of the grid as a layer in a crystal, and in order to measure it, we send beams through the crystal from
two orthogonal directions. Measurements will give us quantitative information about columns or rows of the
grid (3). Consider the problem, where each cell of the grid (think of it as an atom) is matched with at most
one of its immediate neighbors (think of it as a chemical connection). Physicists call them monomer-dimer
systems. Many research has been done about counting the number of configurations of such a system (2),
or about almost uniform randomly sampling configurations (4).

We are interested in the particular problem, were each cell is matched to exactly one neighboring cell.
These objects correspond to domino tilings of the grid. A measurement will reveal the number of vertical
dominoes in each column and the number of horizontal dominoes in each row. Given these numbers we wish
to reconstruct the grid, or any grid which satisfies the projection constraints. As a
natural generalization of this combinatorial problem we are interested in the tiling
of the grid with horizontal bars of length h and vertical bars of length v, for some
integers h, v. We call it the Tiling with Bars Reconstruction problem. Given
a pair of column and row vectors (m, n) (tomographic constraints) and integers h, v
we want to construct a tiling with bars, such that m counts the number of vertical
bars in the columns and n counts the number of horizontal bars in the rows. This
problem has two variants, whether we tile a rectangle or a torus.
The problem is left open by this paper, but we were able to find solutions for sub-
problems and for a more general problem. We summarize our results in this table:
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Figure 1: A tiling and its
projections.
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1 Université de Paris-Sud, LRI bât 490, 91405 Orsay, France, durr@lri.fr. partially supported by the Programme de
Coopération Franco-Chilienne du Ministère des affaires Etrangères (France). Corresponding author. Work was done while the
author was affiliated with Computer Science Institute, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.

2 DIM, Universidad de Chile, casilla 170-3 correo 3, Santiago, Chile, egoles@dim.uchile.cl.
3 Partially supported by project Fondap on Applied Mathematics.
5 Partially supported by project Fondecyt Nr.1990616 and ECOS.
4 CMM (CNRS UMR 2071) and DIM, Universidad de Chile, irapapor@dim.uchile.cl.
6 Grima, IUT Roanne, 42334 Roanne cedex, France or LIP, ENS-Lyon, CNRS umr 8512, 69364 Lyon cedex 07, France,

Eric.Remila@ens-lyon.fr.

1



The quadratic algorithm has been found independently by Picouleau (5) for a more general condition
(see end of section 4.3).

2 Definitions

Let a, b ≥ 1. The rectangle Ra·b is the product {0, ⋅ ⋅ ⋅ , a − 1} · {0, ⋅ ⋅ ⋅ , b − 1} and the torus Ta·b is the
product Za · Zb. Columns are numbered from left to right and rows from top to bottom (see Figure 2).
Each element of a rectangle or a torus is called a cell.

a a

b b

Figure 2: A rectangle Ra·b and a torus Ta·b.

Let h, v ≥ 1. The horizontal bar of length h is the rectangle Rh·1 and the vertical bar of length v is the
rectangle R1·v. If the length is 2 we call the bar a domino.

A rectangle Ra·b (respectively a torus Ta·b) is said to be tillable with the vertical and horizontal bars
(of lengths v and h respectively) if it can be partitioned into those bars. The projections of such a tiling is
the pair of vectors (m, n) = (m1 ⋅ ⋅ ⋅ma, n1 ⋅ ⋅ ⋅nb) ∈ N

a · N
b such that for every column i, mi is the number

of vertical bars in it, and for every row j, nj is the number of horizontal bars in it.

We define the following reconstruction problems.

Tiling a Rectangle (respectively Torus) with Bars under Tomographic Constraints

input (m, n) ∈ N
a · N

b and h, v ≥ 1.

output a tiling of the Ra·b (respectively Ta·b) with projections (m, n).

3 Uniform constraints

In this section we characterize valid instances for the special case when the constraints vectors are uniform,
that is ∀i : mi = m, ∀j : nj = n for some integers m, n. Both the torus and the rectangle case are studied.

3.1 The torus case

The number of cells covered with vertical bars is amv and the number of cells tiled with horizontal bars
bnh. Clearly these numbers must add up to the total number of cells ab. In this section we show that this
condition is sufficient for a torus tiling to exist.

Lemma 1 If a, b, h, v, m, n ≥ 1 are such that ab = amv + bnh then there exist p, q, a′, b′ ≥ 1 satisfying

• (p + q) = gcd(a, b) and a = (p + q)a′ and b = (p + q)b′.

• nh = pa′ and mv = qb′.
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Proof. If we denote c = gcd(a, b), a = ca′, and b = cb′, then the equality ab = amv + bnh can be rewritten as
ca′b′ = a′mv + b′nh. It follows that (ca′ − nh)b′ = a′mv. From Gauss theorem, a′|(ca′ − nh), and therefore
a′|nh. In other words, there exists p such that pa′ = nh. By symmetry, there exists q such that qb′ = mv.
Finally, notice that

p + q =
c(cb′nh + ca′mv)

c2a′b′
= c.

�

Theorem 1 Let a, b, h, v, m, n ≥ 1. Let (m, n) = (m ⋅ ⋅ ⋅m, n ⋅ ⋅ ⋅n) ∈ N
a · N

b. The torus Ta·b is (m, n)-
tillable with the bars Rh·1 and R1·v if and only if ab = amv + bnh.

Proof. If we assume that the torus Ta·b admits an (m, n)-tiling with the bars Rh·1 and R1·v then, by
simple considering the area covered by the tiling, it is direct to notice that ab = amv + bnh.

Conversely, if ab = amv + bnh then, by Lemma 1, there exist p, q, a′, b′ ≥ 1 such that:

• (p + q) = gcd(a, b) and a = (p + q)a′ and b = (p + q)b′.

• nh = pa′ and mv = qb′.

As it appears in Figure 3, the torus Ta·b can be partitioned into (p + q)2 rectangles Θi,j defined for each
i, j ∈ {0, ⋅ ⋅ ⋅ , p + q − 1} as follows:

Θi,j = the rectangle Ra′·b′ whose upper left corner is the cell (a′i, b′j).

Let us define for each i ∈ {0, ⋅ ⋅ ⋅ , p + q − 1}, the following rectangular regions of Ta·b:

• Hi =
⋃i+p−1

k=i Θk,i, which is simply the rectangle Rnh·b′ whose upper left corner is the cell (a′i, b′i),

• Vi =
⋃i+q

k=i+1 Θi,k, which is simply the rectangle Ra′·mv whose upper left corner is the cell (a′i, b′(i+1)).

It is easy to notice that every Θi,j belongs to exactly one of the rectangles {Hi,Vi}0≤i<p+q and that therefore
the latter is a partition of the torus Ta·b.

In order to conclude, notice that each Hi is tillable by using only horizontal bars Rh·1 with each row
having n bars. In the same way, each Vj is tillable by using only vertical bars R1·v with each column having
m bars. �

Figure 3: A (2 ⋅ ⋅ ⋅ 2, 3 ⋅ ⋅ ⋅3)-tiling of T15·10 by R2·1 and R1·3.

Corollary 1 If a torus Ta·b admits a tiling with uniform tomographic constraints then gcd(a, b) > 1.

Proof. From Theorem 1 together with Lemma 1, gcd(a, b) = p + q with p, q ≥ 1. �
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3.2 The rectangle case

Theorem 2 Let a, b, h, v, m, n ≥ 1. Let (m, n) = (m ⋅ ⋅ ⋅m, n ⋅ ⋅ ⋅n) ∈ N
a · N

b. The rectangle Ra·b is
(m, n)-tillable with the bars Rh·1 and R1·v if and only if ab = amv + bnh, h|a, and v|b.

Proof. Let us suppose that the rectangle Ra·b admits an (m, n)-tiling with the bars Rh·1 and R1·v. By
simple area considerations, it holds that ab = amv+bnh. The fact h|a follows from this observation. Since in
every column we have mv cells tiled by vertical bars, the remaining k = b−mv cells are tiled with horizontal
bars. Therefore k horizontal bars are between column 1 and column h, another k bars between columns
h + 1 and 2h, and so on. In the same way we conclude v|b.

For the converse, let ab = amv + bnh, h|a, and v|b. We reduce this case to a 01-Matrix Reconstruc-
tion Problem. Let p, q be such that a = ph and b = qv. Now Ra·b may be partitioned into pq rectangles
Rh·v and each of these rectangles may be tiled by using one type of bars (vertical or horizontal). We define
a p · q 01-matrix, where each entry corresponds to a Rh·v rectangle, and contains “1” if the later is tiled
with vertical bars, and “0” otherwise. The problem is reduced to the following: given p, q, m, n ≥ 1 such
that pq = pm + qn, construct a 0-1 matrix of size p · q in such a way that each column has m 1’s and each
row has n 0’s. The solution is trivial. In fact, it suffices to consider the 1’s as vertical bars of unitary length
(simple squares), the 0’s as horizontal bars of unitary length (simple squares), and to apply Theorem 1 (for
unitary length bars the torus is equivalent to the rectangle). �

4 Horizontal bars of unit length

In this section, we give a polynomial time algorithm for reconstructing a rectangle tiling with horizontal bars
of unit length. We assume in this section that h = 1. For technical reasons we will even give a more general
algorithm for reconstructing tilings of histograms.

Definition 1 A histogram H of a rectangle Ra·b is a subset of Ra·b such that if cell (i, j) is an element
of H with j < b − 1, then (i, j + 1) is also an element of H. The top of column i is the cell (i, j) ∈ H
with minimal j (remember rows are numbered from top to bottom). The number of cells of the row j of H is
denoted by cj. The height of column i of H is the number of cells in it.

We will give an algorithm which, given a vector (m0, m1, . . . , ma−1, n0, n1, . . . , nb−1) of integer coordi-
nates, an integer v and a histogram H of rectangle Ra·b, constructs a tiling of H with the bars R1·1 and
R1·v satisfying the tomographic constraints (m, n) or answers “No” if there is no such tiling.

4.1 Algorithm

This algorithm is based on a very simple idea: A solution is constructed iteratively row by row, where
vertical tiles are placed in columns of largest remaining constraint. See http://www.lri.fr/˜durr/VertOnly/-
vertOnly.html for an implementation.

input: m ∈ N
a, n ∈ N

b, v > 0, histogram H ⊆ Ra·b.

promise:
∑a−1

i=0 vmi +
∑b−1

j=0 nj = |H |.

For j∗ from 0 to b − 1 do

If cj∗ < nj∗ answer “No” and stop.
While cj∗ > nj∗ do

If j∗ + v − 1 ≥ b − 1 answer “No” and stop.
Let i be a column with maximal mi which satisfies (i, j∗) ∈ H .
Place a vertical bar between (i, j∗) and (i, j∗ + v − 1).
For k from j∗ to j∗ + v − 1 do

Remove cell (i, k) from H .
Update ck := ck − 1.

Update mi := mi − 1.
While nj∗ > 0 do
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Let i be any column which satisfies (i, j∗) ∈ H .
Place a horizontal bar (cell actually) on (i, j∗).
Remove this cell from H .
Update nj∗ := nj∗ − 1.

4.2 Analysis

The correctness of the algorithm is a consequence of the lemma below:

Lemma 2 Let T be a tiling of an histogram H satisfying the constraints given by vector (m0, . . . , ma−1, n0, . . . , nb−1).
Let Salgo be the set of columns of maximal height where vertical bars are placed in the first step of the algo-
rithm.

Assume that there exists a solution. For each tiling T which solves our problem, let ST be the set of
columns with maximal height in H whose top is covered by a vertical bar. Let T ∗ be such a solution such
that Salgo ∩ ST∗ is maximal. Then Salgo = ST∗

Proof by contradiction. Since |Salgo| = |ST∗ | there is a column i1 of Salgo which is not an element of ST∗ ,
and a column i2 of ST∗ which is not an element of Salgo. Fix such a pair of columns i1, i2. Notice that
mi2 ≤ mi1 .

Let V1 (respectively V2) denote the set of vertical bars of T ∗ included in column i1 (respectively column
i2). We construct a bipartite undirected graph G whose set of vertices is V1 ∪ V2. Two tiles are joined by an
edge if they cross a same row. Notice that, in G, each bar has at most two neighbors, and G has no cycle.
Hence, G is formed from disjoint chains (each bar with no neighbor is considered as a chain of null length).
For every chain C let IC be the set of rows traversing the bars in C. Then clearly IC is an interval, and
different chains have disjoint row sets.
From such a chain C, one can construct a tiling TC transforming T ∗, by
an exchange on chains, which is the exchange of IC·{i1} with IC·{i2}.
Notice that this operation preserves the tomographic constraints on the
rows, while preserving those on the columns if and only if C has an even
number of vertices.
Let C0 be the chain with lowest row indices.
If C0 has an even number of vertices, then the tiling TC0

contradicts
the maximality of the intersection Salgo ∩ ST∗ , which, consequently,
achieves the proof.

C

1i 1 i2i2 i

Figure 4: The exchange of IC×{i1} with
IC × {i2}.

If C0 has an odd number of vertices (i.e. both endpoints of C0 are bars in column i2), then by the inequality
mi2 ≤ mi1 there exists another chain C1 with an odd number of vertices, whose extremities are bars in
column i1. Let T ′ be the tiling obtained from T ∗ by exchanging C0 and C1. T ′ satisfies the same vertical
and horizontal constraints as T ∗, and, consequently contradicts the maximality of the intersection Salgo∩ST∗ .
This last fact achieves the proof.

�

Lemma 3 The algorithm presented in this section gives a tiling satisfying the constraints, if such a tiling
exists. It’s running time is O(a log a + ab).

Proof. We prove its correctness by induction on the number of cells of the histogram H given as input. If
H is empty, the result is obvious.

Now assume that the theorem holds for each histogram which has less cells than H . If H admits a
tiling with constraints, then, by the previous lemma, there exists such a tiling using tiles placed in the first
execution of the loop.

After the first execution of the loop (and updating), we have to prove the theorem for an histogram which
has less cells than H , which is true by induction hypothesis.

Now we turn to the proof of the time complexity. The algorithm will maintain an ordering on n.

• the initialization costs O(a log a) time units (because of the ordering of the columns),
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Figure 5: Trace of the reconstructing algorithm on Example 1.

• each passage through the loop costs O(a) time units, since the update of the order can easily be done
in O(a) time units,

• there are b passages through the loop.

This proves that the execution of this algorithm costs O(a log a + ab) time units. �

Example 1 For the rectangle R10·8, for vertical bars of size 2 and the projections

m = (2, 3, 3, 1, 3, 3, 4, 3, 2, 2) ∈ N
10 and n = (4, 2, 3, 3, 4, 3, 2, 6) ∈ N

8.

Figure 5 shows the trace of the algorithm. Numbers in the cells indicate the remaining column constraints.

4.3 Application

The previous algorithm can be used to reconstruct a tiling, when some particular promise on m is given.
This promise is fulfilled in particular if m is uniform, or monotone (m0 ≤ . . . ≤ ma−1), as shown in (5).

Theorem 3 Let a, b, h, v ≥ 1. Let (m, n) = (m0 ⋅ ⋅ ⋅ma−1, n0 ⋅ ⋅ ⋅nb−1) ∈ N
a · N

b with mi = mj for all
i, j ∈ {0, . . . , a − 1} satisfying ⌊i/h⌋ = ⌊j/h⌋. There is an algorithm in O(a log a + ab) that decides whether
the rectangle Ra·b is (m, n)-tillable with the bars Rh·1 and R1·v and if yes outputs a valid tiling.

Proof. By the same argument of the first part of Theorem 2 it can be concluded that the tiling of Ra·b may
be partitioned into a

h
tilings of rectangles of type Rh·b. It suffices now to divide every horizontal measure by

h (i.e, to change the horizontal scale) in order to reduce the original problem to a new one in which a′ = a
h
,

b′ = b, h′ = h
h

= 1, v′ = v, (m)′ = (m0, mh, . . . , m(a′−1)h) ∈ N
a′

, (n)′ = n ∈ N
b (see Figure 6). We can apply

now Lemma 3. �

5 Tiling a sub-grid

In the previous section we showed that some instances of the Tiling with Bars Reconstruction problem
have a polynomial solution. In this section we show that a more general problem is NP-hard. In the Sub-
grid Domino Tiling Reconstruction Problem From Projections we are given a only sub-grid
S ⊆ Ra·b to tile. We show that this problem is NP-hard by a reduction from the following problem.

The 3-Color Consistency Problem
We fix a set of colors ∆ = {colorless, red, blue, green}.
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Figure 6: Reducing the problem by changing its horizontal scale.

input mc ∈ N
a and nc ∈ N

b for every c ∈ ∆.

decide if there is a matrix T ∈ ∆a·b with projections (mc, nc)c∈∆ that is for all colors c we have

mc
i = |{j : Tij = c}| and nc

j = |{i : Tij = c}|.

It has been shown in (1) that this problem is NP-hard in the strong sense, while the 1-Color Consistency
Problem is solvable in linear time (6). The 2-Color Consistency Problem is still open.

5.1 Gadget

A sub-grid is a cycle if every cell has exactly two (horizontal or vertical) adjacent neighbors, and if every
pair of cells is connected by transitivity. We start by giving some facts about cycles.

The cycle length is always even. This can be easily seen by coloring the cells checkerboard wise black
and white. Then adjacent cells have different colors. The claim follows from the fact that the cycle is closed.

There are exactly two domino tilings of a cycle. Fix any numbering of the cells such that every cell
i has neighbors i− 1 and i + 1 modulo the length of the cycle. Then clearly one tiling covers all pair of cells
(2i, 2i + 1) with a domino, while the other one covers (2i, 2i − 1) for all i.

We specify now a sub-grid S consisting of two cycles intersecting at a corner and an addition cell. This
additional cell must, in a domino tiling, be matched to a cell of one of the cycles, therefore “forcing” it to
admit a unique tiling, while the other one admits the usual two tilings. As a result we will have exactly four
tilings of S. We define S to be the subgrid shown with its tilings in figure 7. We refer to these tilings as
Tcolorless, Tred, Tblue, Tgreen respectively. Let (sc, tc) be their projection vectors for every color c. Note that
by the symmetry of S we have {sc}c∈∆ = {tc}c∈∆.

2 0 0 3 1 0 1 2 0 0 2 0 0 1 2 0 0 3 0 0 21 0 0 2 1 0 1

0
0
2
0
0
2

1
0
1
3
0
0
2

1
0
1
2
0
0
1

1
0
0
3
0
0
2

2

"blue""colorless" "red" "green"

Figure 7: All four tilings of S.

Lemma 4 The vectors {sc}c∈∆ are linear independent.
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Proof. Let u ∈ N
7 be an arbitrary linear composition of the column vectors. We have to show that the

coefficients in u =
∑

c αcs
c are uniquely defined. We have

u1 = 2αcolorless + 1αred + 2αblue + 2αgreen

u3 = 3αcolorless + 2αred + 2αblue + 3αgreen

u4 = 1αcolorless + 1αred + 0αblue + 0αgreen

u7 = 1αcolorless + 1αred + 1αblue + 2αgreen

This system of equations has a unique solution which concludes the proof: αcolorless = −2, αred = 3, αblue =
2, αgreen = −1. �

5.2 The proof of NP-hardness
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Figure 8: Idea of the reduction

Theorem 4 The Domino Sub-grid Tiling Reconstruction Problem From Projections is NP-
hard in the strong sense.

Proof. Let I = (mc, nc) an arbitrary instance of the 3-Color Consistency problem for an a · b matrix.
We construct an instance of the former problem, such that there is a bijection between the respective sets
of solutions. This proves then the theorem. (see figure 8)
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Figure 9: Separations for h = 2, v = 2.

We define the instance I ′ as (m, n) ∈ N
7a · N

7b with

m =

a
⊗

i=1

(

∑

c

mc
is

c

)

and n =

b
⊗

j=1

(

∑

c

nc
jt

c

)

,

where ⊗ denotes the concatenation of vectors and

S′ =

a−1
⋃

i=0

b−1
⋃

j=0

(S + (7i, 7j)).

In a tiling of S′ every 7 · 7 block contains one of the four tilings of S. Therefore there is a natural
bijection f between the set of domino tilings of S and the set of matrices ∆a·b. It follows from lemma 4
that T is a solution to the instance I ′ if and only if f(T ) is a solution of I. Moreover for the unary encoding
the size of f(T ) is linear in the size of T . �

6 Concluding remarks

We will conclude with a observation for the general problem. Let (m, n, h, v) be an instance for the recon-
struction problem for tilings of an a · b-rectangle.

We say that a particular realization is separated between column i and column i + 1, if there is no
horizontal bar traversing the border in between. We claim that if this is the case for one realization, it holds
for all other realizations as well: Let ci be the number of horizontal bars beginning in column i and ending
in column i + h − 1. Let us also denote ci = 0 for all i < 0. Then clearly the following induction holds:

ci = b − (vmi + ci−h+1 + . . . + ci−1).

Therefore there is a separation between column i and column i+1 if and only if ci−h+2 + . . .+ ci = 0, which
is a realization independent condition.

In the same manner we define the separation between lines. These separations, which can be computed
in linear time, partition the grid into separated rectangles which are surrounded either by a separation or by
the border of the grid. Clearly if there is a realization of (m, n, h, v) then

1. (vm, n, h, 1) and (m, hn, 1, v) must have a realization as well

2. and every separated rectangle must admit a tiling with horizontal bars of length h and vertical bars of
height v, even without any tomographic constraint.

Left part of figure 9 shows an instance which satisfies the first but not the second condition, since each of
the four separated rectangle has odd size. However the two conditions are not sufficient: The right hand
instance satisfies conditions 1 and 2. But it has no solution, since the last column must be filled with vertical
dominoes, the remaining cells of the first row must be tiled with horizontal dominoes, and for the remaining
rectangle we end up with the left hand side instance. However the two conditions are not sufficient, as shows
the right part.
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