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Abstract

One of the most studied inverse problems in cellular automata (CAs) is the density classification problem. It consists in finding a
CA such that, given any initial configuration of 0’s and 1’s, it converges to the all-1 fixed point configuration if the fraction of 1’s
is greater than the critical density 1/2 and it converges to the all-0 fixed point configuration otherwise. In this paper we propose
an original approach to solve this problem by designing a CA inspired by two mechanisms ubiquitous in nature: diffusion and
non-linear sigmoidal response. This CA, which is different than the classical ones because it has many states, has a success ratio of
100%, works for any system size, any dimension and any critical density.

1. Introduction

Cellular automata (CAs) are discrete dynamical systems.
They were introduced by John von Neumann [17] after a sug-
gestion of Stanislaw Ulam [23]. We consider here finite CAs.
More precisely, nd cells arranged uniformly spaced in the d-
dimensional torus and following a local rule identical in every
cell. This local rule, which specifies how the state of each cell
is updated as a function of the states of its neighbor cells, is
applied in parallel and in discrete time steps.

One of the most studied inverse problems in CAs is the den-
sity classification problem. The challenge is to find a CA such
that, given any initial configuration x0 of 0’s and 1’s, it con-
verges to the all-1 fixed point configuration if the fraction of 1’s
in x0 is greater than ρc and it converges the the all-0 fixed point
configuration otherwise. The number 0 < ρc < 1 denotes the
critical density.

The problem was first formulated for dimension d = 1 (a
ring) and critical density ρc = 1/2 [19]. The best-known two-
state CA for tackling this instance of the density classification
problem is called GKL [10, 11]. Its original purpose was to
resist small amounts of noise. The performance of GKL was
very good but not perfect. In fact, an impossibility result was
proved: there is no perfect density classifier with two states
[14].

The impossibility of finding perfect classifiers led many re-
searchers to use different evolutionary computation approaches
to evolve good approximate solutions [12, 16, 18, 24, 25]. But
in order to obtain perfect density classifiers, researchers were
forced to modify the original problem. One idea was to change
the output specifications [3]. Another idea was to allow the ex-
istence of more than one local rule [8, 15] or to embed a mem-
ory on the cells [1, 21]. A very subtle and interesting relaxation

1Departamento de Ingenierı́a Matemática, Universidad de Chile
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of the original problem is related to determinism. In fact, fol-
lowing other works [9, 20], Fatès designed a two-state stochas-
tic CA that solves the density classification problem with arbi-
trary precision [7].

The idea of the present paper is to use a continuous ap-
proach for solving deterministically the density classification
problem. More precisely, our idea is to use local averaging
and saturation, a process represented by a bistable heat equa-
tion. This bistable model, which exhibits two stable critical
points (0 and 1), is a particular case of a reaction-diffusion
equation widely used for studying phase transitions and front
propagation in spatial ecology [2], physiology [13], chemistry
and physics [26]. The large diffusion small amplification CA Φ
that we define in this work is a discretization of such bistable
nonlinear heat equation (similar approaches have been previ-
ously used [4, 6]).

Two parameters characterize CA Φ: the amount of nonlin-
earity σ (or amplification factor) and the number of states s
(or discretization factor). The main result of this paper is that
–given arbitrary parameters n, d and ρc– there exist σ and s
such that the large diffusion and small amplification CA Φ(σ, s)
solves the density classification problem with a success ratio of
100%.

CA Φ, besides solving the density classification problem
perfectly in any dimension d for an arbitrary number of cells nd

and with any critical density ρc, allows an intuitive interpreta-
tion together with a deep theoretical analysis. It also maintains
the same classification properties for a wide range of different
averages and nonlinear amplifications.

The theoretical result concerning the existence of CA Φ
does not give us any indication about the critical values of s
and σ (even simply as a function of n, with ρc and d fixed).
Therefore, in Section 6 we implement Φ and we compare it not
only with GKL but also against a variant of the elementary CA
Rule 184 [22]. This CA, that we denote by 184∗, is particularly
interesting because it is similar to CA Φ in two senses: (1) it is
hand-designed, (2) cells are augmented with much more mem-
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ory (note that the only way to increase the memory capabilities
of a finite-state machine is by augmenting its number of states).

We run simulations using a fixed set of extremely hard in-
stances (initial configurations). These initial configurations are
generated by randomly permuting m 1’s and n−m 0’s. It turns
out that CA Φ with σ = 0.007 (and before discretizing the set
of states, i.e, s ∼ 200000), classifies all instances except a few
cases when m = 75 and n = 149. By contrast, both GKL
and 184∗ have a success ratio slightly above 50% (which can
be interpreted as random success). Note that, when the initial
configurations are generated with a uniform independent proba-
bility law (a binomial law of parameters n = 149 and p = 1/2)
the observed success ratio of GKL and 184∗ is ∼ 80%.

2. The density classification problem

Let [n]d = {0, . . . , n − 1}d represent a set of nd cells ar-
ranged uniformly spaced in the d-dimensional torus. For in-
stance, [n]1 is the ring, [n]2 is the two-dimensional grid with
periodic boundary conditions, etc.

Let v0 ∈ [n]d be a cell and let r be a natural number. The r-
(von Neumann) neighborhood of v0 is Nr,d(v0) = {v ∈ [n]d :
|v − v0| ≤ r}, where the differences are taken modulo n and
|u| =

∑
i |ui|. The size of the neighborhood is independent of

v0 and we denote it byNr,d. For instance,Nr,2 = 2r(r+1)+1.
A configuration x ∈ [0, 1]n

d

is an assignment of real num-
bers (that we call states) to the cells of the lattice. Later in this
work we are going to restrict the set of states to a finite one. For
simplicity, we write N to denote nd.

A radius r cellular automaton (CA), that we denote by Ψ,
transforms a configuration xk ∈ [0, 1]N into a new configura-
tion xk+1 ∈ [0, 1]N by applying in parallel, to all the cells of
xk, its local function ψ : [0, 1]Nr,d → [0, 1]. Hence, by fixing
the local function ψ, we fix the CA Ψ.

Given a configuration x ∈ [0, 1]N , its mean value x cor-
responds to the density. Therefore, the value x0 denotes the
fraction of 1’s in the initial configuration x0. Given ρc ∈ (0, 1)
and ε > 0 we introduce the sets

Xρc(−ε) = {x ∈ [0, 1]N | x < ρc − ε},
Xρc(+ε) = {x ∈ [0, 1]N | x > ρc + ε}.

Definition 1 (Generalized density classification problem).
Given ρc ∈ (0, 1) and ε > 0, we say that a CA Ψ solves the
density classification problem with accuracy ε if, regardless of
the initial configuration x0, the repeated application of Ψ con-
verges to the configuration of only 0′s if x0 is less than ρc − ε
and converges to the configuration of only 1′s if x0 is greater
than ρc + ε. That is:

∀x0 ∈ Xρc(−ε), limk→∞ xk = [0 · · · 0]T and

∀x0 ∈ Xρc(+ε), limk→∞ xk = [1 · · · 1]T .

Remark 1. Note that a configuration of the form [c · · · c]T de-
notes the all-c vector (the letter T stands for transposition). The

problem just defined is a generalization of the original density
classification problem in the following senses:

1. In our definition the initial configuration is arbitrary (not
restricted to 0’s and 1’s).

2. The dimension d, the number of cells N , the radius r and
the critical density ρc are also arbitrary.

3. The definition of convergence as a limit when k → ∞
is useful because it can be applied for CAs having either
infinite or finite number of states. When the set of states
is finite, the convergence definition implies that all cells
reach state 0 or 1 in a finite number of steps. In next sec-
tion we are going to introduce a CA with states in [0, 1].
Later, in Section 5, we are going to discretize it in or-
der to obtain a standard CA. The discretized version will
have a finite number of states.

Remark 2. In the classical density classification problem ini-
tial configurations are restricted to 0’s and 1’s. Therefore, if
we prove that some CA Ψ solves the problem with accuracy
ε < 1

2n , then we will be proving that Ψ solves the problem for
every initial configuration in {0, 1}n. In fact, suppose w.l.g.
that the critical density ρc = 2l+1

2n . In other words, if the initial
configuration has at most l 1’s then Ψ must converge to the all-
0 configuration. Otherwise, if it has at least l + 1 1’s, then it
must converge to the all-1 configuration. Obviously, if Ψ solves
the problem with accuracy ε < 1

2n , then it solves the problem
for every initial configuration in {0, 1}n.

3. The large diffusion and small amplification CA Φ

In this section we define the large diffusion and small am-
plification CA Φ. Its local rule φ is based on the discretization
of a bistable nonlinear heat equation (see Figure 1). More pre-
cisely, given a critical density ρc ∈ (0, 1), the idea is to build a
local rule based on a discrete version of the following equation:

∂u

∂t
− ν∆u = γ bρc(u), (1)

where u(x, t) is the state at time t ≥ 0 of the cell at point x in
a domain Ω = (0, 1)d with periodic boundary conditions. The
parameter ν > 0 is a diffusion coefficient, γ > 0 is an ampli-
fication parameter and bρc is some suitable bistable function.
In this paper (readers can see a discussion about other choices
in Appendix A) we choose the cubic polynomial:

bρc(u) = u(1− u)(u− ρc).

The resulting nonlinear heat-equation is called the bistable
heat equation, since it exhibits two stable critical points (0 and
1, attractors) and one unstable critical point (ρc, repulsor).

3.1. Cases d = 1 and d = 2

Before presenting the CA that solves the general instance
of the density classification problem, let us consider the one-
dimensional case d = 1 with radius r = 1. We can discretize
Eq. 1 with an explicit finite differences scheme on a uniform

2



lattice of size h > 0 defined by xi = ih and discrete time steps
tk = k∆t for some ∆t > 0. Let uki ≈ u(xi + h/2, tk) denote
the corresponding approximate discrete values in each cell of
the lattice. An explicit, first order in time and second order in
space discretization of Eq. 1 by finite differences is:

uk+1
i − uki

∆t
− ν

uki−1 − 2uki + uki+1

h2
= γ bρc(u

k
i ),

where the sum in the subindices are modulo the size of the lat-
tice (because of the periodic boundary conditions). If we define
β = ∆t/h2 and we fix νβ = 1/3, then we obtain the particular
local rule:

uk+1
i =

1

3
(uki−1 + uki + uki+1) +

γ h2

3ν
bρc(u

k
i ).

If we denote σ = γ h2

3ν and

uki =
1

3
(uki−1 + uki + uki+1),

then previous relation can be rewritten as:

uk+1
i = uki + σ bρc(u

k
i ). (2)

Now we are in position to define the local rule Φ of the
large diffusion and small amplification CA Φ for d = 1. More
precisely, if we define f as

f(x) = x+ σ bρc(x),

then we can write Φ as:

Φ(uki−1, u
k
i , u

k
i+1) = f(uki ). (3)

In other words, the local rule Φ is obtained by first averaging
and then applying a nonlinear amplification function f . Note
that, for our purposes, Eq. 2 and Eq. 3 are equivalent. In fact,
it is easy to see that vector u converges to a constant vector in
Eq. 2 if and only if it converges to the same constant vector in
Eq. 3.

The two-dimensional case with radius one is very similar.
Take β = ∆t/h2, fix νβ = 1/5 and define σ = γ h2

5ν . The local
update rule is:

uk+1
i,j = Φ(uki−1,j , u

k
i+1,j , u

k
i,j , u

k
i,j−1, u

k
i,j+1) = f(uki,j), (4)

where uki,j = 1
5 (uki−1,j + uki+1,j + uki,j + uki,j−1 + uki,j+1).

Note that previous CAs, defined by Eq. 3 in one dimension
and by Eq. 4 in two dimensions, correspond to discrete approx-
imations of Eq. 1 that satisfies (even strictly) the corresponding
Courant-Friedrich-Lewy CFL stability condition ν∆t

h2 = 1
3 <

1
2

in dimension one or ν∆t
h2 = 1

5 < 1
4 in dimension two. This

guarantees convergence of the corresponding CAs to the con-
tinuous equation as h and ∆t tend to zero but only in the case
σ = 0 [5]. This convergence result can not be directly extended

0

stable

stable

unstable

ρ0
1

1

x

Figure 1: Schematic view of Φ. Given an initial state, the CA corresponds to
a rule obtained by first averaging neighbors (arrows towards the diagonal) and
then applying a nonlinear amplification function f (arrows towards the curve).
In the figure the system is converging to the all-1 vector configuration.

to small positive values of σ by a perturbation argument. The
reason is that this small perturbation could be arbitrarily ampli-
fied (causing instability).

Nevertheless, the properties of the continuous nonlinear heat
Eq. 1 can give us some insight and intuition about the properties
of CA Φ for small σ. This is exactly the goal of the theoretical
study of Section 4.

3.2. General case

The neighborhood of cell i is denoted by Ni. Recall that
|Ni| = Nr,d. We are considering periodic boundary conditions
(d-dimensional torus).

Definition 2 (Large diffusion and small amplification CA). For
small values of σ we define the local rule Φ of the large diffu-
sion and small amplification CA Φ as follows:

xki =
1

Nr,d

∑
j∈Ni

xkj (diffusion), (5)

xk+1
i = fσ(xki ) (amplification), (6)

where fσ(x) = x+ σx(1− x)(x− ρc) and σ = γ
ν n2Nr,d

.

Recall that ν and γ are respectively the diffusion and am-
plification parameters of Eq. 1, the bistable heat equation. We
are going to prove in next section that the CA Φ given by Defi-
nition 2 solves the density classification problem for any given
accuracy ε, provided that the constant factor σ is small enough.
We impose the following:

0 < σ < min{ 1

ρc
,

1

1− ρc
}. (7)

These bounds guarantee that fσ is restricted to [0, 1] and it is
monotonically increasing. Both bounds are strictly required for
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CA Φ to solve the density classification problem, as we explain
in Section 4. Moreover, the values σ that solve the problem
are typically much smaller than the upper bound, as our exper-
iments of Section 6 show.

We say that CA Φ solves the density classification problem
if, regardless of how close the average of the initial configura-
tions is to ρc, there is a range of values for the nonlinearity σ
that guarantees convergence to the correct answer. Formally,

Definition 3 (Solution of accuracy ε).
We say that the large diffusion and small amplification CA Φ
solves the density classification problem with accuracy ε if the
following property holds. For all ε > 0 there exists σ0 > 0 such
that for all x0 ∈ Xρc(−ε) ∪ Xρc(+ε) classification succeeds.

4. Mathematical analysis of CA Φ

Eq. 5 can be rewritten using matrix notation. This notation
turns out to be very useful for analyzing Φ.

The N ×N averaging matrix A is given by Ai,j = 1/Nr,d
if j ∈ Ni and zero otherwise. Obviously, if xk ∈ [0, 1]N is a
configuration, then xki = (Axk)i.

Example 1. For instance, in the case d = 1, n = 8 and r = 2,
the averaging matrix is the following:

A =
1
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1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1


.

Note thatA has a very regular structure. It is doubly stochas-
tic (its entries are non-negative and their sums by rows and
columns are always 1) and symmetric. Moreover, A is a prim-
itive matrix. More precisely, there exists m > 0 such that
(Am)ij 6= 0 for all i, j. The minimum m satisfying this prop-
erty is called the length path of A. The existence of such m
simply follows from the fact that the underlying graph [n]d is
connected. Because of A being symmetric, we know that all of
its eigenvalues are real. From the Perron-Frobenius Theorem
for primitive matrices with non-negative entries we infer some
properties. First, λ = 1 is an eigenvalue ofA. Its multiplicity is
one. Also, the eigenspace associated with the eigenvalue λ = 1
is spanned by [1 · · · 1]T . The absolute value of all the other
eigenvalues is strictly less than 1. Finally, A can be decom-
posed as MTDM , where D is diagonal. The elements on the
main diagonal ofD are the eigenvalues ofA andM is orthonor-
mal. The decomposition of A is unique up to a permutation of
rows and columns. Hence, without loss of generality, we can
assume that D1,1 = 1. Note that

lim
k→∞

Dk =


1 0 · · · 0
0 0 · · · 0

. . .
0 0 · · · 0

 .

Next identity is obtained by considering thatAk = MTDkM
and noting that the first column ofM is the vector 1√

N
[1 · · · 1]T

(because it is in the eigenspace associated with λ = 1). There-
fore,

lim
k→∞

Ak =
1

N


1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

 . (8)

Note that Eq. 8 has a counterpart for the continuous bistable
model. For instance, if we integrate (1) in Ω with γ = 0 we
obtain d

dt

∫
Ω
u =

∫
∂Ω
ududx = 0 thanks to the periodic boundary

conditions, showing that the mean value is conserved in time.
Parameter σ is the nonlinear amplification factor. The case

σ = 0 corresponds to zero amplification and the corresponding
CA only acts by diffusion. In such case, the average of the
initial configuration is preserved in time. Moreover, from (8),
limk→∞ xk = limk→∞Akx0 = [x0 · · ·x0]T . Therefore, it
would be impossible to solve the density classification without
having σ > 0.

Let x0 ∈ [0, 1]N be an initial configuration. It follows that
xk ∈ [0, 1]N for all k. In fact, since fσ is strictly increasing,
fσ(0) = 0 and fσ(1) = 1 then we have, by continuity, that fσ
is a one to one map from [0, 1] onto [0, 1] (see Figure 1).

Suppose that x0 = [c · · · c]T with c ∈ (ρc, 1]. In this case
xk = [xk · · ·xk] with xk ∈ (ρc, 1]. Since fσ(x) > x for
x ∈ (ρc, 1) it follows that ρc < xk < fσ(xk) = xk+1 ≤ 1.
Therefore, xk → 1 as k → ∞. The case x0 = [c · · · c]T with
c ∈ [0, ρc) is analogous because fσ(x) < x for x ∈ (0, ρc).
In short, if c < ρc then xk → [0 · · · 0]T and if c > ρc then
xk → [1 · · · 1]T .

Remark 3. The property we just proved can be generalized.
Suppose that not all the components of x0 are equal, but ρc <
x0
i ≤ 1 for all i. In this case it is clear that ρc < x0

i ≤ 1 for all
i. Therefore, ρc < x0

i < fσ(x0
i ) = x1

i ≤ 1 for all i. Inductively,
this property is preserved throughout the iterations. Let c0 =
mini x

0
i . Consider the initial configuration z0 = [c0 · · · c0]T .

We already know that zk → [1 · · · 1]T . Since zk is dominated
by xk (in every coordinate), we conclude that xk → [1 · · · 1]T .
The case 0 ≤ x0

i < ρc is analogous. Therefore, if ρc < x0
i ≤ 1

for all i then xk → [1 · · · 1]T and if 0 ≤ x0
i < ρc for all i then

xk → [0 · · · 0]T .

Clearly, configurations [0 · · · 0]T and [1 · · · 1]T are stable
equilibrium points. On the other hand, [ρc · · · ρc]T is an un-
stable equilibrium point.

There is also an analogous property for the continuous model
(1). Indeed, if ρc < u(x, 0) ≤ 1 for all x ∈ Ω then ρc <
u(x, t) ≤ 1 for all t ≥ 0 and x ∈ Ω. Let z0 = minx∈Ω u(x, 0)
and let z(t) be the solution of Eq. 1 with (constant) initial con-
dition z0. By a comparison principle we have ρc < z(t) ≤
u(x, t) ≤ 1 for all x ∈ Ω and t ≥ 0. Since z(t) converges to
1 (the only equilibrium point of zt = γbρc(z) greater than ρc is
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1) we have that u(·, t) → 1 as t → ∞ uniformly in Ω. There-
fore ρc < u(x, 0) ≤ 1 implies that u(·, t) → 1. Analogously,
0 ≤ u(x, 0) < ρc implies that u(·, t)→ 0.

Remark 4. If we allow an initial configuration x0 such that
x0
i1
< ρc < x0

i2
for some indices i1 6= i2, then the dynam-

ics of CA Φ could be non-trivial. More precisely, consider the
following initial configuration:

x0 =
[

1 · · · 1 1
3 · · · 1

3 1 · · · 1
]T
,

where the blocks of consecutive 1’s and 1
3 ’s have the same size.

Suppose d = 1, r = 1, and ρc = 1/2. With these parameters,
xk should converge to [1 . . . 1]T . As we are going to see in the
proof that follows immediately, this is indeed the case. Never-
theless, it can be checked that there exists a transient period
where the global average decreases. For instance x1 < x0.

Let ε > 0. Now we prove that CA Φ solves the density
classification problem with accuracy ε. We split the proof into
three parts.

1. Because of Eq. 8, there exists k0 = k0(N, ε) such that
for every k ≥ k0:

max
x0∈[0,1]n

∥∥∥∥(Ak − 1

N
U

)
x0

∥∥∥∥
∞
≤ ε

3
, (9)

where U is the N ×N matrix such that all its entries
are 1. This is true because all the involved functions are
continuous and [0, 1]N is compact.

2. Recall that xk = Φk(x0). In order to include parameter
σ in the notation we are going to write xk = Φkσ(x0).
Therefore, Φk0(x0) corresponds to the case where only
diffusion is present in the dynamics. In Appendix B we
show that for every k ∈ N and for every i:

Φkσ(x)i ≥ min
i′

Φk0(x)i′ −
σkρc

4
. (10)

Similarly, using that bρc(·) ≤
(1−ρc)

4 , we can prove that
for every k ∈ N and for every i:

Φkσ(x)i ≤ max
i′

Φk0(x)i′ +
σk(1− ρc)

4
. (11)

Combining the result of Appendix B with Eq. 11, and
now considering the particular case k = k0, for all i

min
i′

Φk00 (x)i′ −
σk0ρc

4
≤ Φkσ(x)i

≤ max
i′

Φk00 (x)i′ +
σk0(1− ρc)

4
.

Using Eq. 9 we can bracket the values Φkσ(x)i:

x0 − ε

3
− σk0ρc

4
≤ Φkσ(x)i

≤ x0 +
ε

3
+
σk0(1− ρc)

4
.

Thus:

∣∣x0 − Φk0σ (x)i
∣∣ ≤ ε

3
+
σk0 max(ρc, 1− ρc)

4
.

3. We shall see now, that if σ is sufficiently small, then the
values for the σ-amplified dynamic at time k0 are not far
away from the original average x0. If

ε

3
+
σk0 max(ρc, 1− ρc)

4
≤ 2ε

3
,

that is, if σ ≤ 4ε
3k0 max(ρc,1−ρc) =: σ0, it follows that:∣∣x0 − Φk0σ (x)i

∣∣ ≤ 2ε

3
. (12)

Now consider the case of x0 ∈ Xρc(+ε), which means
that x0 > ρc + ε. This, combined with Eq. 12 im-
plies Φk0σ (x)i > ρc. By Remark 3, we can conclude that
Φkσ(x0) → [1 · · · 1]T . The case x0 ∈ Xρc(−ε) is similar
and hence ommited.

5. Quantization

Every CA has a finite, well-defined set of states. There-
fore, at this point, we need to quantize the values of xki to some
number s of discrete values in [0, 1]. To this end, we define the
quantization function (see Figure 2) as

Qs(x) =

min
{

1, ds(x−ρc)e
s + ρc

}
if ρc ≤ x ≤ 1,

max
{

0, bs(x−ρc)c
s + ρc

}
if 0 ≤ x < ρc.

By projecting at each iteration the state of each cell we de-
fine a new CA as follows:

xk+1
i = Qs(fσ(xki )). (13)

We are going to show that the CA defined in Eq. 13 also
solves the density classification problem with accuracy ε. First,
if δ ∈ [0, 1] is sufficiently small, it can be proven (see Appendix
C) that:

|bρc(x± δ)− bρc(x)| ≤ δ.

Using this fact, provided that s is large enough, the CA de-
fined in Eq. 13 behaves like the one of Definition 2. More
precisely (see Appendix D),

∣∣(Qs ◦ Φσ)k(x)i − Φkσ(x)i
∣∣ ≤ (1 + σ)k − 1

sσ
.

Now we can prove that, if 1
s is small enough, every initial

condition reaches the correct classification.
Let k0 be as before. We know from the previous section that

max
x0∈Qs(Xρc (+ε))

∥∥∥∥ 1

N
Ux0 − Φk0σ (x0)

∥∥∥∥
∞
≤ 2ε

3
.
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Figure 2: Quantization function Qs(x) of the number of states near ρc = 0.3
for s = 102.5 and s = 103.

If s is large enough such that 1
s + (1+σ)k0−1

sσ < ε
3

(or, equivalently, if s > 3
ε

(
1 + (1+σ)k0−1

σ

)
=: s0) then:

∣∣(Qs ◦ Φσ)k0(x)i − Φk0σ (x)i
∣∣ < ε

3
− 1

s
,

Therefore,

max
x0∈Qs(Xρc (+ε))

∥∥(Qs ◦ Φσ)k0(x0)− Φk0σ (x0)
∥∥
∞ <

ε

3
− 1

s
.

It follows that

max
x0∈Qs(Xρc (+ε))

∥∥∥∥ 1

N
Ux0 − (Qs ◦ Φσ)k0(x0)

∥∥∥∥
∞
<

2ε

3
+
ε

3
− 1

s︸ ︷︷ ︸
ε− 1

s

.

Finally, for the case x0 ≥ ρc + ε, we have that

xk0i := (Qs ◦ Φσ)k0(x0)i ≥ x0 − ε+
1

s
≥ ρc +

1

s
> ρc.

Since Qs rounds up the values above ρc, it can be easily
checked that

Φkσ(xk0)i ≤ (Qs ◦ Φσ)k(xk0)i.

Thanks to Remark 3 we have (Qs◦Φσ)k(xk0)→ [1 · · · 1]T and
we conclude. The other case, where x0 ≤ ρc − ε, is analogous
and we have (Qs ◦ Φσ)k(xk0)→ [0 · · · 0]T .

Remark 5. The choice of our quantization function may seem
unnecessarily intricate. A simpler quantization function Q̃s
would be the one which assigns, to any number, the closer value
of the 1

s -step staircase. However, we can construct counterex-
amples where such natural quantization fails to induce the be-
havior that we want. In fact, consider the case d = 1 and r = 1
with the following initial configuration x0:

[0, 1
s ,

1
s , · · · ,

m−1
s , m−1

s , ms ,
m
s ,

m−1
s , m−1

s , · · · , 1
s ,

1
s , 0]T ,

where s is the quantization number and m is any number be-
tween 1 and s. If σ is sufficiently small (σ < 2

3s ), then:

x0
2i =

1

3
(
i− 1

s
+
i

s
+
i

s
) =

i

s
− 1

3s
,

x0
2i+1 =

1

3
(
i

s
+
i

s
+
i+ 1

s
) =

i

s
+

1

3s
.

and:

fσ(x0)2i =

(
i

s
− 1

3s

)
+ σbρc

(
i

s
− 1

3s

)
,

fσ(x0)2i+1 =

(
i

s
+

1

3s

)
+ σbρc

(
i

s
− 1

3s

)
.

Therefore, if 1
3s + σ

4 <
1
2s , i.e., if σ < 2

3s , we would have:

Q̃s(fσ(x0)) = x0.

In other words, with this choice of quantization Q̃s, the CA
would have a non constant valued fixed point.

Remark 6. From now on, we are going to assume that the large
diffusion and small amplification CA Φ is the one defined in Eq.
13.

Remark 7. By considering Remark 2 we conclude that our CA
Φ solves the density classification problem for every initial con-
figuration in {0, 1}n (provided that the parameters σ and s are
fine-tuned).

6. Testing CA Φ empirically

We start by comparing the performance of the large diffu-
sion and small amplification CA Φ with a well-known two state,
one dimensional, radius r = 3 CA called GKL [10]. GKL is
one of the best-known density classifiers when ρc = 1/2 and
n = 149. The GKL local rule is the following:

“If the state of a cell is 0, then it takes the majority vote of the
first neighbor to its right, the third neighbor to its right, and
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itself. If the state of the cell is 1, it does so in the opposite
direction.”

We replicated some simulations of the literature. Initial con-
figurations were generated randomly. More precisely, the initial
state for each of the n cells was assigned independently: 1 with
probabiity p and 0 with probability 1−p. For different values of
p we generated 105 initial configurations. GKL was applied re-
peatedly, starting from each of these initial configurations, until
one of the following conditions was satisfied:

• GKL reached a fixed point.

• The number of iterations was 108.

In all of these experiments, GKL ended up in a fixed point
before reaching 108 iterations. Then, for each outcome, we
checked whether GKL classified or misclassified the initial con-
figuration.
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Figure 3: GKL success ratio for n = 149, 249, 1001.

For analyzing the scalability of GKL, we explored the suc-
cess ratio for different values of n. Figure 3 describes the re-
sults for n = 149, n = 249 and n = 1001. This figure show,
as we expected, that the ratio of correctly classified initial con-
figurations decreases as n increases. It is also clear that the
hardest instances of the density classification problem are those
for which p = 1/2. The success ratio of GKL for these hard
instances is 82% (in the case n = 149).

Recall that the local rule of the large diffusion and small
amplification CA Φ that we considered is the following:

xki =
xki−3 + xki−2 + xki−1 + xki + xki+1 + xki+2 + xki+3

7
,

xk+1
i = fσ(xki ).

To approximate the continuous values, we used standard
double precision floating point variables. In order to compare
Φ with GKL, we focused on the hardest instances (p = 1/2).

Our existential result does not indicate what the critical values
of σ and s are, given n. Also, it does not relate the rate of
convergence to the value of σ.

Therefore, we fixed a range 0 < σ < 1. We ran simulations
for different values of n and σ. Probability p was always 1/2.
For each pair (n, σ) we ran 1000 simulations using random
initial conditions generated in the usual way. CA Φ was applied
repeatedly, starting from each of theses initial configurations,
until one of the following conditions was satisfied:

1. Either all xi’s are above 3/4 = ρc + 1/4 or all of them
are below 1/4 = ρc − 1/4. This is a realistic surrogate
for convergence to 1 or 0, based on Remark 3. We call
this condition convergence to a constant.

2. No more progress is detected. That is, the system is
at/approaches a fixed point. To detect such a condition,
we checked whether ||xk−xk+1||1 ≤ n×10−8. We call
this condition convergence.

3. The number of iterations exceeded a threshold, which
was chosen to be 2 × 108. This suggests some form of
oscillatory behavior although it may not be the case. The
bound was chosen by trial and error.

If the sytem converged to a constant, we tested whether Φ
reached the “correct” fixed point. In Figure 4, we plot the ratio
of well-classified instances (as a function of σ).
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Figure 4: Breakdown of the success ratio for n = 149, 249, 1001.

In order to study the scalability of Φ we repeated the sim-
ulations with n = 249 and n = 1001 (also presented in Fig-
ure 4). The estimated values for the critical σ are: 0.030 for
n = 149, 0.011 for n = 249 and 0.001 for n = 1001, showing
a reciprocal dependency (Figure 5).

We can see in Table 1 the comparison between the perfor-
mances of GKL and Φ. We already knew that below some
threshold σ∗ the succes ratio of Φ would be 100%. Neverthe-
less, convergence time increases a lot (with respect to GKL).
There seems to be a trade-off between reliability and conver-
gence speed. It may also be interesting to explore the perfor-
mance degradation of Φ as σ grows.
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Figure 5: Critical σ as a function of n.

n GKL success ratio Φ success ratio for σ∗

149 0.82 1.0
249 0.80 1.0

1001 0.75 1.0
n GKL maximal time Φ maximal time for σ∗

149 80 500
249 140 1000

1001 500 30000

Table 1: Comparison between GKL and Φ (for p = 1/2).

Stone and Bull [22] studied a variant of the elementary CA
Rule 184. They augmented the state of each cell with a real
number. We call the resulting CA 184∗. Since CA Φ also
uses more memory (more number of states), it is interesting
to compare the behaviour of our method against CA 184∗. In a
notation consistent with ours, the rule is descibed as follows.
The state of cell i consists of two values: xi ∈ {0, 1} and
mi ∈ [0, 1]. Initiallymi = 0.5, for all i, while the configuration
of the xi’s is the configuration of 0’s and 1’s to be classified. To
update the state of cell i, we compute:

mk+1
i = mk

i + β(xki −mk
i ),

ski =

{
0, mk+1

i ≤ 0.5

1, otherwise.
,

xk+1
i = R184(ski−1, s

k
i , s

k
i+1).

β is a positive real parameter. It acts as a learning rate. Fol-
lowing [22], we set β = 0.48 for all our experiments. Note that,
unlike Φ, CA 184∗ does not have direct access to the continu-
ous state of the neighboring cells. The function R184 is defined
in Table 2.

In order to compare 184∗ with both Φ and GKL, we con-
sidered even harder instances than before. In fact, unlike previ-
ous experiments, we did not choose the initial configurations by

ski−1 ski ski+1 R184(ski−1, s
k
i , s

k
i+1)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 2: The local function R184.

tossing a coin with probability p = 1/2 for every cell. Instead,
we chose, with uniform probability, a permutation of m 1’s and
n−m 0’s. We chose values of m close to n/2.

This allowed us to analyze with more precision the behavior
of the system. The variance of the binomial distribution result-
ing from populating an array using a fair coin in the usual way,
averages result from cases of different difficulties. Therefore,
for each pair m,n we used in our experiments, we generated
1000 random configurations. We ran our simulations using the
same 1000 initial configurations for the three CAs. As we did
before, we measured the success ratio. The results are summa-
rized in Figure 6.

Figure 6 describes the cases n = 149 andm = 75, 76, . . . , 85.
For CA Φ, we chose σ = 0.007. Note that Φ classified all in-
stances except a few cases when m = 75. Both GKL and 184∗

had a success ratio slightly above 1/2. This contrasts with the
∼ 80% ratio observed when independent probabilities are used
in the population process.
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Figure 6: Success ratios for n = 149.

We tested larger instances of the problem. Figure 7 de-
scribes the cases n = 1001 and m = 501, 502, . . . , 520. For
CA Φ, we chose σ = 0.0002 and σ = 0.0003. These numbers
are close to σ∗ and allow us to show how the reliability of CA
Φ can deteriorate when cases are hard. In fact, we can observe
that, when σ = 0.0003, CA Φ failed to classify about ∼ 80%
of the hardest instances. On the other hand, σ = 0.0002 made

8



the method much more robust.
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Figure 7: Success ratios for n = 1001.

We also explored a natural question: how does CA Φ be-
have as we change the number of states s? Note that s is the
memory size of each cell.

Conceptually, we divide the [0, 1] interval into s sub-intervals
of the same size, centered at ρc (see Figure 2). The cells per-
form the intermediate computations using exact rational arith-
metic and the results are rounded to the center of its closest
interval. This is equivalent to use fixed point arithmetic with
q = log10 s significative digits.

In Figure 8, we present the results for s = 128 (q = 2.1),
s = 2000 (q = 3.3) and s = 200000 (q = 5.3) , obtaining in
this last case a result similar to the “almost continuous” case of
Figure 4.
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Figure 8: Breakdown of the success ratio for n = 149 and s =
128, 2000, 200000.

If s is too small, regardless of σ, the success ratio is low.

As s grows, the behavior of the discrete system approaches the
behavior of the continuous system. Note that, unlike the con-
tinuous case, the reliability of the classification can decrease
when decreasing the value of σ, as can be seen in Figure 8, for
s = 2000.

Finally, in order to illustrate the dimensional scalability of
CA Φ, we show some examples of density classification in a
two-dimensional lattice with periodic boundary conditions. We
consider two different types of initial configurations: uniformly
random and strip shape, both with initial mean near the critical
threshold ρc = 1/2. In all the simulations we considered σ =
0.05 and s = 104. With these parameters we obtained a success
ratio of 100% (in more than 200 random trials). In Figure 9 we
show two particular runs.

7. Conclusions and perspectives

The most important advantage of the large diffusion and
small amplification CA Φ we present in this work is its success
ratio of 100%. This can be achieved by tuning two parameters:
the amplification factor σ and the number of states s. Other
important advantages of Φ are the following:

Scalability. It can be easily modified to work for arbitrary size
regular grids in any dimension d.

Generalized classification. The critical density ρc can be arbi-
trary.

Analogy with continuous model. The fact that Φ was originated
from a PDE bistable model allows us to gain theoretical and
physical insight.

Robustness. The method maintains the same classification prop-
erties for a wide range of different parameters.

In order to achieve a 100% success ratio we need small val-
ues for σ and large values for s. Small σ’s imply large conver-
gence time. Therefore, it seems that the price one has to pay for
achieving a 100% success ratio is somehow related to the two
most relevant resources in computer systems: time and memory
(also known as space).

In other words, the main question this paper leaves open
is a complexity question. More precisely, let ρc be the critical
density, d the dimension, nd the size of the system, s(ρc, n, d, )
the number of states, t(ρc, n, d) the convergence time and χ the
success ratio. The general question is the following: what are
the critical values of s(ρc, n, d, ) and t(ρc, n, d) for which there
exists a CA that solves the density classification problem with a
success ratio of χ? This question has been partially studied for
χ = 100%, d = 1, 2 and s = 2.
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Figure 9: Two-dimensional CA Φ with radius r = 1. Random and stripe type
initial configurations with initial mean 0.4811 in the first case and 0.4667 in
the second case (i.e., slightly more 0’s than 1’s). Both systems should converge
to the all-0 fixed point configuration (black pixels).
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Appendix A.

Our choice of a cubic polynomial as a sigmoid function fσ
was somewhat arbitrary, but this choice seems not to be critical
for the results of this paper. For example, take ρc = 1/2, and
consider the family of functions:

gα(x) =
1

2

(
tanh(α(2x− 1)

tanh(α)
+ 1

)
characterized by an arbitrary real α > 0. Clearly, regardless

of α, gα(0) = 0, gα(1) = 1, and gα(1/2) = 1/2, g′α(1/2) > 1.
Also, gα is convex on [0, 1/2) and concave on (1/2, 1]. Finally,
if α → 0 then gα resembles the identity, as it can be proved
easily using a Taylor approximation. These are all desirable
properties for our non-linear amplification function. As a matter
of fact, most proofs of this paper can be easily adapted to gα.

The relation between these two functions is even stronger.
In order to achieve a high success ratio we are interested in am-
plification functions with a small amount of nonlinearity. For
the cubic function fσ that means small σ. For gα that means
small values of α. We are interested in the behavior for values
x ' ρc = 1/2 because they correspond to the cases when the
density classification problem is hard to solve. If we approxi-
mate fσ(x) at α = 0, x = 1/2 using a Taylor polynomial we
obtain fσ(x) ' 1

2 + (x − 1
2 ) + 1

4σ(x − 1
2 )3. Similarly, we

approximate gα(x) ' 1
2 + (x − 1

2 ) + 1
3α

2(x − 1
2 )3. Note that

if σ = 4α2/3 then fσ(x) ' ga(x) at α ' 0, σ ' 0, x ' 1/2.
This establishes an equivalence between the choices of α and σ
at least for ρc = 1/2.

Appendix B.

For proving that

Φkσ(x)i ≥ min
i′

Φk0(x)i′ −
σkρc

4

we proceed by induction. First observe that, if x ∈ [0, 1],
then −ρc4 ≤ bρc(x) ≤ (1−ρc)

4 . That follows immediately from
the definition of bρc . Now, if k = 1 we have:

Φσ(x)i = xi + σbρc(xi)

= Φ0(x)i + σbρc(xi)

≥ min
i′

Φ0(x)i′ −
σρc

4

For the inductive step, suppose that the property holds for
k. Then:

Φk+1
σ (x)i = Φkσ(x)i + σbρc(Φ

k
σ(x)i)

≥ min
i′

Φkσ(x)i′ −
σρc

4

≥
(

min
i′

Φk0(x)i′ −
σkρc

4

)
− σρc

4

= min
i′

Φk0(x)i′ −
σ(k + 1)ρc

4

Appendix C.

Given δ sufficiently small and 0 < ρc < 1, we are going to
analize the difference:

|bρc(x+ δ)− bρc(x)| .

By a Taylor expansion, we have that:

bρc(x+ δ) = bρc(x) + b′ρc(x)δ +
1

2
b′′ρc(x)δ2 +

1

6
b′′′ρc(x)δ3,

where:

bρc(x) = −x3 + (1 + ρc)x2 − ρcx

b′ρc(x) = −3x2 + 2(1 + ρc)x− ρc

b′′ρc(x) = −6x+ 2(1 + ρc)

b′′′ρc(x) = −6

Let us define an auxiliary function Φδ(x) given by:

bρc(x+ δ)− bρc(x) = δ

(
b′ρc(x) +

1

2
b′′ρc(x)δ +

1

6
b′′′ρc(x)δ2

)
︸ ︷︷ ︸

Ψδ(x)

.

We are going to study the minima and maxima of Ψδ(x).

Ψ′δ(x) = b′′ρc(x) +
1

2
b′′′ρc(x)δ

= −6x+ 2(1 + ρc)− 3δ.

The critical points of Ψδ(x) over [0, 1] are 0 and 1. Hence:

x∗ =
(1 + ρc)

3
− δ

2
.

Note that

cb′ρc(0) = −ρc, b′′ρc(0) = 2(1 + ρc),

b′ρc(1) = −1 + ρc, b′′ρc(1) = −4 + 2ρc.

b′ρc(x
∗) = −3

(
(1 + ρc)

3
− δ

2

)2

+2(1 + ρc)

(
(1 + ρc)

3
− δ

2

)
− ρc

=
1

3
(ρ2

c − ρc + 1)− 3

4
δ2.

b′′ρc(x
∗) = −6

(
(1 + ρc)

3
− δ

2

)
+ 2(1 + ρc) = 3δ.
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Then:

Ψδ(x) = b′ρc(x) +
1

2
b′′ρc(x)δ +

1

6
b′′′ρc(x)δ2.

Ψδ(0) = b′ρc(0) +
1

2
b′′ρc(0)δ +

1

6
b′′′ρc(0)δ2

= −ρc + (1 + ρc)δ − δ2.

Ψδ(1) = b′ρc(1) +
1

2
b′′ρc(1)δ +

1

6
b′′′ρc(1)δ2

= −(1− ρc) + (−2 + ρc)δ − δ2.

Ψδ(x
∗) = b′ρc(x

∗) +
1

2
b′′ρc(x

∗)δ +
1

6
b′′′ρc(x

∗)δ2

= (
1

3
(ρ2

c − ρc + 1)− 3

4
δ2) +

1

2
(3δ)δ +

1

6
(−6)δ2

=
1

3
(ρ2

c − ρc + 1) +
δ2

2
.

Therefore:

|bρc(x+ δ)− bρc(x)| = |δ||Ψδ(x)|
≤ |δ|max {|Φδ(0)|, |Ψδ(1)|, |Φδ(x∗)|}
≤ |δ|max{ρc + (1 + ρc)|δ|+ δ2, (1− ρc) + 3|δ|+ δ2,

1

3
(ρ2

c − ρc + 1) + δ2}

= |δ|(max{ρc, (1− ρc),
1

3
(ρ2

c − ρc + 1)}+ 3|δ|+ δ2)

< |δ|.

The last inequality is satisfied when |δ| is sufficiently small (de-
pending on ρc). More precisely, if:

3|δ|+ δ2 < 1−max{ρc, (1− ρc),
1

3
(ρ2

c − ρc + 1)}. (C.1)

Appendix D.

For proving that∣∣(Qs ◦ Φσ)k(x)i − Φkσ(x)i
∣∣ ≤ (1 + σ)k − 1

sσ
.

we proceed by induction. For k = 1:

|(Qs ◦ Φσ)(x)i − Φσ(x)i| ≤
1

s
=

(1 + σ)1 − 1

sσ
.

The case k + 1 goes as follows:

(Qs ◦ Φσ)k+1(x)i

≤ 1

s
+ Φσ ◦ (Qs ◦ Φσ)k(x)i

=
1

s
+ (Qs ◦ Φσ)k(x)i + σbρc((Qs ◦ Φσ)k(x)i)

≤ 1

s
+ Φkσ(x)i +

(1 + σ)k − 1

sσ

+σbρc(Φ
k
σ(x)i) + σ

(1 + σ)k − 1

sσ

= Φk+1
σ (x)i +

(1 + σ)k+1 − 1

sσ
.

The opposite direction is similar. Note that when σ = 0,
we can recover from the previous bound (making σ → 0 and
using the L’Hôpital rule) a linear bound for the non-amplified
case (which is very tight):∣∣(Qs ◦ Φ0)k(x)i − Φk0(x)i

∣∣ ≤ k

s
.

In addition, in the amplified case, the previous bounds are
correct if s is large enough and k is not so big. More precisely,
if (see Appendix C, equation (C.1)):

3 (1+σ)k−1
sσ +

(
(1+σ)k−1

sσ

)2

<

1−max{ρc, (1− ρc), 1
3 (ρ2

c − ρc + 1)}.
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