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Abstract

We study the problem of finding maximum induced subgraphs of bounded maximum degree
k—so-called “k-pseudosnakes”— in D-dimensional grids with all side lengths large. We prove
several asymptotic upper bounds and give several lower bounds based on constructions. The
constructions turn out to be asymptotically optimal for every D when k = 0,1, D,2D—2,2D—1
and 2D.

1 Introduction

Many combinatorial optimization problems can be reformulated as the searching of a maximum
independent set of a graph G, ie. a set S of vertices inducing an edgeless subgraph. What
happens if this total isolation of the vertices is not required, but instead we ask that every vertex
of S is adjacent to at most k vertices of S in G?

Following the terminology of [5], we call an induced subgraph G[S] of a graph G a k-
pseudosnake if its maximum degree is at most k. The maximum size of the vertex set of a k-
pseudosnake in a graph G is denote by o (G). In [7] it is shown that a(G) > 3 c(da(v)+4) 7L
Some authors have studied the relation of k-pseudosnakes with other properties such as the
chromatic number [1] and the domination number [8]. For the particular graph consisting on
the product of D complete graphs on n vertices KT? , good bounds have been obtained in [3]:
ax(KP) < (1+ 5x)nP ! for n > 2 and D > 2, while ax(KP) > nP !+ n2 for n > 3 and
D >2.

Nevertheless, most of the work has been devoted to the problem of searching 2-pseudosnakes
in highly regular graphs (and in fact many results have been obtained for the even more restricted
case of 2-pseudosnakes with induced degree exactly 2 [2, 6, 13, 4, 11, 14]). A basic sharp result
is known for the D-dimensional hypercube Q. In [5] it is proved that as(Q?) = 6, aa(Q*) = 9
and a(QP) = 2P~ for D > 5.

Since the largest 2-pseudosnake in the D-dimensional hypercube contains half of the vertices,
the following is a natural question: How much the density of the 2-pseudosnake can increase if we
consider grids instead of hypercubes? Notice that hypercubes are special kind of grids. Indeed,
the grid PP is the Cartesian product of D paths P, on n vertices, and the hypercube QP is PP.

Let us define the asymptotic density )\kD of k-pseudosnakes in D-dimensional grids as follows
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The goal of this paper is to find sharp bounds for AkD . In Section 2 we study upper bounds
(we include some results valid for arbitrary graphs). In particular, we prove that A3 < 0.5373 and
)\‘21 < 0.5128. In Section 3 we exhibit constructions that yield lower bounds. In particular, we
prove that A3 > 0.5092 and A3 > 0.5008.

2 Upper Bounds

Before concentrating on grids, let us establish some inequalities that hold for general graphs.
Proposition 1. For every graph G and every integer k > 1

%akﬂ(G) -3 Jor k<3
ap1(G) > a(G) >
P g1 (G) — 1 —In(k +2) for k> 5

Proof: The first inequality is obvious since every k-pseudosnake is also a k + 1-pseudosnake. For
the second one, let S be a (k + 1)-pseudosnake in G. We add some complete graph Ky, to G[S],
and join vertices of S to sufficiently many vertices of Ky, o such that each vertex of S has degree
k + 1 in the resulting graph G'. Certainly this graph has minimum degree k + 1, so we can appl
theorems in [9] and [10], assuring that G’ has a dominating set U of cardinality at most (k+2+ 5

for k£ <5 and UCHHS')&; n(k+2) for k > 5. By the construction of G’, deleting U in G[S] results
3|5 —2k—4
5

in a graph of maximum degree at most k. This graph has at least vertices for £ < 5 and

S|kt 1okt 2)— (b4 2)(1In(h+2)) o, ktln(bi) o, ) In(k + 2) vertices for k > 5. O

at least

Proposition 2. Let G be a graph where o|V| of the vertices have degree smaller than A(G).
Then

A(G) + a(A(G) - §(Q)) v
2A(G) — k )
Proof: Let S be a k-pseudosnake in G. Let m denote the number of edges between S and V' \ S.

Let ' ={z € S :dg(z) < A(G)}. Since each z € S has at least dg(z) — k neighbors in V' \ S,
we get

Otk(G) S

m > Y (da(x) — k)

z€eS
> |S1(8(G) — k) + S\ S'|(A(G) — k)
= [S|(A(G) — k) +15/(4(G) — A(G))
ISI(A(G) — k) + a|V|(3(G) — A(G)).

v

On the other hand, each vertex y in V' \ S has at most dg(y) neighbors in §. Thus m <
(V| = |S|)A(G). Putting both inequalities together, we get |S| < G)+a((G() )k_‘s(G)) V|

O

Previous properties yield the following results for grids.

Proposition 3. For every integers D > 1 and 1 < k < 2D,

1P > AP
3yD
Ay for k<5
2. 0P > P o -
* { IR, fork>5



3. AP > APt

Proof: (1) and (2) follow from Proposition 1. For (3), take some maximum k-pseudosnake S in
some grid PP*! By the pigeonhole principle, some of the sets S; := {(x1,z2,...,2p+1) € S :
S|

Zp+1 = 1} has at least = elements and it induces a k-pseudosnake in PnD ] O

It is easy to see that )\kD = mn_)ooak(C,? ) where C,, is the cycle with n vertices. Therefore,
we can assume that our graph is not a grid but a torus. In particular, from Proposition 2 we have
the following.

Corollary 4. For all integers D > 1 and 1 < k < 2D, /\,? < 41%ka = 2_1k .
2D

By making use of the special structure of our graphs, the previous bound can be improved
for all cases k < D. We need the following terminology: Any given k-pseudosnake S in a graph
G partitions the set of edges into the set C of those edges contained in G[S], the set T of those
edges touching exactly one vertex in S and the set N of those edges with no end in S.

In our graphs we call two edges parallel if they are opposite edges of some 4-cycle.

2(D—-1)D 1

D(D-1)-k(k-1) ~ 2 L E-L-

Theorem 5. For every k < D we have that /\,? <7z

Proof: Let S be a k-pseudosnake in the torus G = CP. The graph G is 2D-regular and the
incident edges with a vertex z € S are either contained in S (e € C) or touched by S (e € T).
More precisely,
2D|S| =) " da(z) = 2/C| +|T|.
z€S
Since N, T, C is a partition of the edges in V' we have that D|V| = |[N|+ |T| + |C|. Therefore

IS| 2|C| + |T| _ 1
V]~ 2|N|+2[T| +2|C| — 2|N[+[T]
14 IN|+2|T| +2|C| 1+ e

Since S induces a k-pseudosnake in G, every vertex x of S meet at most k£ members of C.
Since members of C are counted twice in this way, we obtain 2|C| < k|S|. Moreover, every vertex
z of S meet at least 2D — k members of T which implies that (2D —k)|S| < |T'|. Both inequalities
combined yield

2a|C| < |T|

where a = % -

Let zy be an edge in C, i.e. =,y € S. If ¢ denotes the number of parallel edges of zy in T', and
c the number of parallel edges of zy in C, then 2k > dg(s)(z) + dg[s)(y) > 2+t + 2c. Since each
edge of G has 2(D — 1) parallel edges we have that every edge in C has at least 2(D —1) —t—c¢ >
2(D —1) — (2k — 2) = 2(D — k) parallel edges in N. Therefore 2(D — k)|C| < 2(D — 1)|N| and

b|C| < N
wherebz%zl—%<l.
Let e = % Then e < 1 and it holds that e = b+ a(1 — e). We get the following bounds

2|N|+|T| = 2|N| + (1 — €)|T| + e|T| > 2b|C| + 2a(1 — €)|C| + €e|T| = e(2|C| + |T|)

2|N|+|T|

Therefore SICTHT] > e and then
sl 11 1 1 2D(D — 1)
V= 1+e 2-(1—-¢ 2-.(1-b 2-K%kL 4D(D-1)—k(k-1)



O

The main idea in the proof of Theorem 5 was to concentrate on the N-parallels of a given
edge f. Now we are going to refine this method by having a closer look on the parallels in C for
those edges in N parallel to f.

For instance, for D = 3 and k = 2, although every edge in N may have up to 4 parallels in C,
this is impossible for both N-parallels of f € C in the situation given in Figure 1. (In the other
situation where f has just two IN-parallels shown in Figure 1, both these parallels may have 4
C-parallels each, so we need to look into this a little more carefully, see the proof of Theorem 7.)

TET TR ey

Figure 1: a) The two N-parallels to f can not have four C-parallels. b) The two N-parallels to
f can have four C-parallel.

The following Theorem improves the bound of Theorem 5 for the cases k < %D.

Theorem 6. Let kK < D. Then

<
2 - ﬁ@(Dak)
2

where QO(D,k) = m

Proof: The bound is similar to those already obtained in Corollary 4 and Theorem 5. The reader
should remark that we only have to prove that

k(k —1)
2(D—k)?>+k(k—1)

INI > (1 )IC]

For an edge f let us denote P the set of all parallel edges to f. We use the abbreviations

Ny =P;NN,Cy:=PNC, Ty:=P;NT, \:= |Nf| and p:=2(D —1).
Since for every f € C' and h € N we have that h € Ny if and only if f € C}, we deduce that

N=2 > et 2 2 G

hheN f, fech f.f€C h, heNf
If for all f € C we have that > ﬁ > b, where b does not depend on f, we would obtain
h,hGNf
IN| > b[C].
n
Since for every set of n positive numbers we have that (Z (3> ;1) > n?, in order to find

i=1 1=1
a lower bound for )] oAl C - we have to find an upper bound for > |Chl|- This quantity is the
h,h€Ny hheNy

number of edges in C' parallel to some parallel edge of f.
Since an edge g in Ty has at most k — 1 parallels in C', among all edges parallel to g and to
some h in Ny, at least A — 1 — (k — 1) are not in C. Since an edge in Cf has at most k — 2



parallels in C, at least A — 1 — (k — 2) edges parallel to g and to some h € Ny are not in C.
Clearly, these quantities are positive for £ < (D + 1) since A > p — 2(k — 1). Moreover, we have
|Ts| + |Cy| = u — A Therefore

Yo 1G < AT (A =1~ (k—1)) = |Cfl(A =1 = (k —2)

h,h€Ny
< pA=(p—=AA—k)
= M +k(p-N)

Therefore we get

Z 1 S 22
— )2 _
hhen, |Chl = A2+ k(u—A)

The right hand side term is monotonically increasing for A = y — 2(k — 1), ..., u. Whence

IN| > (u—2(k — 1))?

> a0 a0 = O s a1

O

For D = 3,k = 2, we can even improve the bound of 6/11 ~ 0.545 obtained in Theorem 5 and
Theorem 6 slightly:

Theorem 7. A3 < 36/67 ~ 0.537.
Proof: We will show that for every two incident edges f and f’ in C' we have
1

n .__ ]‘
s(f, )= )] AR > AR

hhe N h.heN ;1

| =3

If [Ng| + |[Np| > 5 then s(f, f') > 2 > I, since |Cp| < 4. Otherwise |[Ny| + [Np| = 4. In this
situation f and f’ are edges of some 4—cycle If there are two adjacent edges h and h' with h € Ny
and h' € Ny then |G| < 3 and |Ch| < 3 which gives s(f, ) > Z. So we can assume that h and
h' are not adjacent for any pair h, h’ with h € Ny and h' € Np.
To study this situation we need some notations. Let us denote by hi, hg, h3, hy the parallel
edges to f and by hl,hj, ki, h) those parallel to f'. Moreover, let us assume that hi,hy € Ny,
', hy € Ny, hg is the edge adjacent to f' and hf is the edge adjacent to f. Additionally, let us
assume that the edge h; belongs to the plane defined by f and hg and that A} belongs to the
plane defined by f’ and h%. Remember that we are assuming that hy and h’2 are not adjacent.
Let g be the edge different from f in Py, N Py,. If g € C then the edge 7’ different from f’ in
Py N Py, can not belong to C, due to the degree constrain in the vertex incident with g and hY.
Therefore |Ch2| + |Cpy | < 7. Similarly we can show that [Cy:| + |Ch,| < 7 which implies that

s(f, f') >
Finally we have that 2|N| = Y nce s(f, /) > §|C|. Thus

7
N|> —
NI > =[C]

and we obtain the bound )\g < 2_12 5 2? as indicated in the proof of Theorem 5. O
612




3 Lower bounds

We start this section by showing some fairly simple constructions which imply that, at least for
certain cases, the previously given bounds are sharp.

Let us label the vertices of the torus G = CP by (z1,%2,...,2p) with 0 < z; < n — 1 and
1 =1,...,D. Three canonical induced subgraphs of the D-dimensional torus will turn out to be
optimal solutions for certain k’s. The first graph is G itself and we have )\QDD = 1. The second
graph is the checkerboard subgraph. Let S be the set of those vertices (z1,z2,...,zp) of G for
which Ziil x; is odd. This set is independent and contains asymptotically half of the vertices of
the torus. The optimality of this construction for £k = 0 and k = 1 follows from Theorem 5. More
precisely,

Corollary 8. \) =P =1/2 for D > 2.

The third subgraph, G[S], is induced by the set S of all the vertices (z1,z2,...zp) for which
the sum Eiil z; of its coordinates equals 0 or 1 modulo 3. Surely |S|/|V| — 2/3 for n — co. Now
consider z = (z1,%2,...,2zp) € S. If Zi’il z; = 0 (mod 3), then each neighbor (z1,...,2;—1,2; +
1,%it1,...,2p) is in S, but each neighbor (z1,...,%;—1,2; — 1,Zj+1,...,2p) is not. Thus = has
exactly one neighbor in S in each dimension. The case EZ'; 12; =1 (mod 3) is analogous. Using
Corollary 4 we get

2

D _
Corollary 9. For every D we have A\p = 3.

For getting more general bounds let us fix p > D and a = (1,2,..., D). Let us define the linear
function f(z) = za’ = ZiD:1 iz;, where £ = (z1,Z2,...,zp) € G = CP and all the calculations
are taken modulo p. For each 0 < i < p — 1, we define S; as the set of vertices corresponding to

f~*({i}). Since p > D, every S; is independent. On the other hand, all the sets of the partition

So,81,...,Sp—1 have “almost” the same cardinality. Moreover, for the n’s which are multiple of
p, all the sets satisfy |S;| = %. To see this, notice that if we fix z5,...,zp then the value of
z1 will determine to which class the vertex x = (z1,z2,...,2p) belongs. We will consider the

particular cases for which p =2D + 1 and p=D + 1.

Theorem 10.

1. For every integer k, 1 < k < 2D, \{ > QkD++11-

2. For every integer k, 1 <k < D, A} > _54_'-_11

Proof: For the first inequality let p = 2D + 1. Let n be a multiple of 2D + 1 and let G = CP.
Let us consider the graph G [Uf:o S;]. Its maximum degree is at most k. In fact, let z € S; and
let i’ # i. In order to find a vertex z’ € Sy such that zz' € E(G), we have to solve the equation
i =i+y (mod 2D + 1), where y € {1,---,D} U {-1,---,—D}. It’s easy to notice that this
equation admits only one solution. It follows that the number of vertices is (k + 1)n? /2D + 1
and the first inequality is concluded.

We can improve the bound when the pseudosnake degree is bounded by an even number by
taking p = D + 1. In fact, in this case the maximum degree of the graph G [Uf:o S;] is at most 2k:
The equation i = i +y (mod D +1), wherey € {1,---,D}U{-1,---,—D}, admits two solutions.
It follows that the number of vertices is (k + 1)n” /D + 1 and the second inequality is concluded.
([l

Using again Corollary 4 we have
Corollary 11. A\ = 2D and )\QDD_Q = ==

2D—-1 — 2D+1’ D+1

6



We know from Theorem 10 that, for every 1 < k < D, )\QD,C > %. But we can remove
one third of the vertices of the pseudosnake in such a way that the degree is reduced to half the
original, i.e:

Theorem 12. For every integer 1 < k < D, )\kD > %(%)

Proof: We are in the context of the second construction of Theorem 10. Let us consider the
sets A; C Uf:o S; of those z’s for which ZiD:1 z; = 1 (mod 3) where [ = 0,1,2. Without loss of
generality we can assume that [Ag| < (3)n” (otherwise we choose the sum to be 1 or 2 instead
of 0). All we need to prove is that for any vertex belonging to either A; or As, at least half of
its neighbors belong to Ay. Therefore, by removing Ay, we reduce in one half the degree of the
graph. Let z = (21,9, 23,...,2p) € A1 NS,. It follows that, for each 7' # r, x has two neighbors
in Sp: (.’L‘l,... y Lol _p + 1,....'I,'D) € Ay and (.Tl,...,QJTI_H« — 1,....TD) € Ap. O

Since %(%) > 2’€D++11 for all D > 1 previous result is an improvement of our bound in Theorem
10 for all £ < D.

We will now concentrate on torus-hypercube constructions. The idea is very simple: k-
pseudosnakes for tori CP yield k-pseudosnakes for tori CL . TLet us recall that QP denotes
the D-dimensional hypercube.

Proposition 13. Let G be a fized graph. Let D > 1. Assume that S as well as its complement
S induce k-pseudosnakes in QP x G. Then there exist complementary k-pseudosnakes S’ and S’

in CP x G such that |S'| > |S| + (3P0 — 1)2P"11V(G)|.

Proof: By induction on the dimension D. Let D=1. We know that both S C {0,1} x V(G) and its
complement S = ({0,1} x V(G))\ S induce k-pseudosnakes in Q' x G. It is useful to see Q' x G as
“two layers of G”. Let Sy and S; be the part of S in each layer. In other words, Sy = {z € V(G) :
(0,z) € S} and S; = {z € V(G) : (1,z) € S}. Notice that |Sy| + |S1| = |S|. Since CP x G is a six
layers graph, the k-pseudosnake S’ will be constructed as a six layers pseudosnake. More precisely,
Sy = So, S\ =S4, 84 =51, S} =Sy, S}, = S1, St = 5. It is easy to notice that both S’ and S’
are k-pseudosnakes. On the other hand, |S'| = |So|+|S1]|+[S1|+|So| +[S1|+|S1| = 2|V (G)| +|S|-
Let us assume the proposition true for D. Let S induce a k-pseudosnake in QP! x G such
that S is also a k-pseudosnake. Since QP! x G = QP x (Q' x G) then, by the induction
hypothesis, we know the existence of a k-pseudosnake S’ in CP x (Q' x G) such that |S'| >
1S| + (3P —1)2P~1|V(Q! x G)| and with §" in CP x (Q' x G) also being a k-pseudosnake. Since
CP x (Q' x G) = Q' x (CP x G) we can apply the result for the case D = 1 and deduce the
existence of a k-pseudosnake S” in CGD +1 % G with S” also being a k-pseudosnake and such that
5" || + 2|V (C§ x G
S|+ (87 = 12271V (Q" x @)+ 2[V(CP x G)
IS| + (3P — 1)2P~ 12|V (G)| + 2 6P|V (GQ)|
S|+ (87F! = 1)2PH V(G

v Iv

O

Therefore, lower bounds for k-pseudosnakes in QP would be highly desirable. For k = 2,
everything is known:

Theorem 14 (Danzer/Klee [5]). a2(Q?) = 6, aa(Q*) = 9. For every D > 5, az(QP) = 2P~1.

Corollary 15. ag(C(; X C6 X 06) > 110 and Oé2(C6 X C6 X Cﬁ X 06) > 649.



Figure 2: A 9-vertex pseudosnake in the cube Q*.

Proof: We apply Proposition 13. For the first equation we use the 6-vertex 2-pseudosnake in 3,
whose complement turns out to be also a 2-pseudosnake. For the second equation we take the
9-vertex 2-pseudosnake in Q*, shown in Figure 2. O

Corollary 16. )3 > 110/216 ~ 0.509, and A3 > 649/1296 ~ 0.5008.

For arbitrary & > 2, k-pseudosnakes in hypercubes have not yet been investigated. But
for every k-pseudosnake S in QP the set S’ = {0,1} x S is a (k + 1)-pseudosnake in QP*! and
|S’| = 2|S|. Therefore each useful lower bound for a;(QP) yields lower bounds for all a4 (QP1).
Whence a1 ¢(Q31?) > 286 and ap+(Q*H) > 28-9, for each ¢ > 0. The second family of inequalities
can be improved. In fact, the construction of Figure 3 gives the lower bounds az¢(Q3?) > 2¢.20
for each integer ¢ > 0.

Figure 3: A 20-vertex 3-pseudosnake in Q°.

3+t < 201434621t 5+t 201243464+t
Corollary 17. For everyt >0, A1y > =—g57r— and A3, > ~—557—-

The first bounds are much weaker than that in Theorem 12. The second bounds are very close
to 0.5 but for three values still the best we have at the moment. We get A3 > 3892/7776 = 0.5005,
2§ > 23336/46656 =~ 0.50017, A\I > 139984/279936 = 0.500057, and the others are again much
weaker than the bound in Theorem 12.

4 Conclusion

The current lower and upper bounds for )\kD for D < 7 can be seen in the following table.



k| D=1|D=2 D=3 D=4 D=5 D=6 D=7
0 .5 .5 .5 .5 .5 .5 .5
1| .667 b .5 .5 .5 .5 .5
2 1 .667 | .509 — .537 | .5008 — .5128 .5 — .505 .5 — .502 .5 — .501
3 .667 .533 — .571 | .5005 — .5344 .5 — .516 .5 — .509
4 1 .75 .667 .556 — .b8&8 | .50017 — .556 .5 — .530
5 .857 .667 — .727 .667 571 — .6 .5000s7 — .568
6 1 .8 667 — .714 .667 .583 — .609
7 .889 727 — 769 .667 — .706 .667
8 1 .833 714 — .75 667 — .7
9 .909 7169 — .8 .667 — .737
10 1 .857 75— 778
11 .923 .8 — .824
12 1 .875
13 .933
14 1
Notice that from Theorem 5 and Theorem 10 we have
UNES
and
\D-1 2(D-1) _2(D-1)
AD-D=3 = 4D—-1)-2(D-1)+3 2D +1

which explains some regularities in previous table.
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