
Two Rounds are Enough for Reconstructing
any Graph (Class) in the Congested Clique

Model?

P. Montealegre1(�), S. Perez-Salazar2, I. Rapaport3, and I. Todinca4

1 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
p.montealegre@edu.uai

2 ISyE, Georgia Institute of Technology, Atlanta, USA
sperez@gatech.edu

3 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
rapaport@dim.uchile.cl

4 Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, France
ioan.todinca@univ-orleans.fr

Abstract. In this paper we study the reconstruction problem in the
congested clique model. In the reconstruction problem nodes are asked
to recover all the edges of the input graph G. Formally, given a class of
graphs G, the problem is defined as follows: if G /∈ G, then every node
must reject; on the other hand, if G ∈ G, then every node must end up
knowing all the edges of G. It is not difficult to see that the cost Rb
of any algorithm that solves this problem (even with public coins) is at
least Ω(log |Gn|/n), where Gn is the subclass of all n-node labeled graphs
in G, R is the number of rounds and b is the bandwidth.

We prove here that the lower bound above is in fact tight and that
it is possible to achieve it with only R = 2 rounds and private coins.
More precisely, we exhibit (i) a one-round algorithm that achieves this
bound for hereditary graph classes; and (ii) a two-round algorithm that
achieves this bound for arbitrary graph classes. Later, we show that the
bound Ω(log |Gn|/n) cannot be achieved in one round for arbitrary graph
classes, and we give tight algorithms for that case.

From (i) we recover all known results concerning the reconstruction
of graph classes in one round and bandwidth O(logn): forests, planar
graphs, cographs, etc. But we also get new one-round algorithms for
other hereditary graph classes such as unit-disc graphs, interval graphs,
etc. From (ii), we can conclude that any problem restricted to a class of
graphs of size 2O(n logn) can be solved in the congested clique model in
two rounds, with bandwidth O(logn). Moreover, our general two-round
algorithm is valid for any set of labeled graphs, not only for graph classes.

Keywords: congested clique · round complexity · reconstruction prob-
lem · graph classes · hereditary graphs

? Partially supported by CONICYT PIA/ Apoyo a Centros Cient́ıficos y Tecnológicoss
de Excelencia AFB 170001 (P.M. and I.R.), Fondecyt 1170021 (I.R.) and CONICYT
+ PAI + CONVOCATORIA NACIONAL SUBVENCIÓN A INSTALACIÓN EN
LA ACADEMIA CONVOCATORIA AÑO 2017 + PAI77170068 (P.M.).

2 P. Montealegre et al.

1 Introduction

The congested clique model –a message-passing model of distributed computa-
tion where the underlying communication network is the complete graph [20]–
is receiving increasingly more attention [4, 8–11, 14]. This model allows us to
separate and understand the impact of congestion in distributed computing.
The point is the following: if the communication network is a complete graph
and the cost of local computation is ignored, then the only obstacle to perform
any task is due to congestion alone. In other words, by isolating the effect of the
bandwidth, we intend to understand it. Despite the theoretical motivation of the
congested clique model, examples of distributed and parallel systems, where the
efficiency depends heavily on the bandwidth and therefore might benefit from
our results, are increasingly less exceptional [5, 21, 26]. For instance, in [12], the
authors show that fast algorithms in the congested clique model can be trans-
lated into fast algorithms in the MapReduce model. Many theoretical models,
aiming to bridging the gap between theory and previously mentioned softwares,
have emerged [1, 16, 17] (These models are all very similar, but not completely
identical, to the congested clique model).

The congested clique model is defined as follows. There are n nodes which
are given distinct identities (IDs), that we assume for simplicity to be numbers
between 1 and n. In this paper we consider the situation where the joint input
to the nodes is a graph G. More precisely, each node v receives as input an n-bit
boolean vector xv ∈ {0, 1}n, which is the indicator function of its neighborhood
in G. Note that the input graph G is an arbitrary n-node graph, a subgraph of the
communication network Kn. Nodes execute an algorithm, communicating with
each other in synchronous rounds and their goal is to compute some function f
that depends on G. In every round, each of the n nodes may send up to n − 1
different b-bit messages through each of its n − 1 communication links. When
an algorithm stops every node must know f(G). We call f(G) the output of
the distributed algorithm. The parameter b is known as the bandwidth of the
algorithm. We denote by R the number of rounds. The product Rb represents
the total number of bits received by a node through one link, and we call it the
cost of the algorithm.

An algorithm may be deterministic or randomized. We distinguish two sub-
cases of randomized algorithms: the private-coin setting, where each node flips its
own coin; and the public-coin setting, where the coin is shared between all nodes.
An ε-error algorithm A that computes a function f is a randomized algorithm
such that, for every input graph G, Pr(A outputs f(G)) ≥ 1 − ε. In the case
where ε→ 0 as n→∞, we say that A computes f with high probability (whp).

Function f defines the problem to be solved. A 0 − 1 function corresponds
to a decision problem (such as connectivity [11]). For other, more general types
of problems, f should be defined, in fact, as a relation. This happens, for in-
stance, when we want to construct a minimum spanning tree [9, 14], a maximal
independent set [10], a 3-ruling set [13], all-pairs shortest-paths [4], etc.

The most difficult problem one could attempt to solve is the reconstruction
problem, where nodes are asked to reconstruct the input graph G. In fact, if at

Graph Reconstruction in the Congested Clique 3

the end of the algorithm every node v has full knowledge of G, then it could
answer any question concerning G. (This holds because in the congested clique
model nodes have unbounded computational power).

In centralized, classical graph algorithms, a widely used approach to cope
with NP-hardness is to restrict the class of graphs where the input G belongs.
We are going to use an analogous approach here, in the congested clique model.
But, as we are going to explain later, surprisingly, the complexity of the recon-
struction problem will only depend on the cardinality of the subclass of n-node
graphs in G.

Formally, for any fixed set of graphs G, we are going to introduce two prob-
lems. The first one, the strong recognition problem G-Strong-Rec, is the fol-
lowing.

Input: An arbitrary graph G

Output:

{
all the edges of G if G ∈ G;

reject otherwise.

G-Strong-Rec

Recall that the output is computed by every node of the network. In other
words, every node of an algorithm that solves G-Strong-Rec must end up
knowing whether G belongs to G; and, in the positive cases, every node also
finishes knowing all the edges of G.

We also define a weak recognition problem G-Weak-Rec. This is a promise
problem, where the input graph G is promised to belong to G. In other words,
for graphs that do not belong to G, the behavior of an algorithm that solves
G-Weak-Rec does not matter.

Input: G ∈ G
Output: all the edges of G

G-Weak-Rec

For any positive integer n we define Gn as the set of n-node graphs in G. There
is an obvious lower bound for Rb, even for the weak reconstruction problem G-
Weak-Rec and even in the public-coin setting. In fact, Rb = Ω(log |Gn|/n).
This can be easily seen if we note that, in the randomized case, there must be at
least one outcome of the coin tosses for which the correct algorithm reconstructs
the input graph in at least (1− ε) of the cases.

In this paper we are going to prove that this bound is essentially tight even
with R = 1 (if G is an hereditary class of graphs) and R = 2 (in the general
case).

4 P. Montealegre et al.

1.1 Our Results

We start this paper by studying a very natural family of graph classes known
as hereditary. A class G is hereditary if, for every graph G ∈ G, every induced
subgraph of G also belongs to G. Many graph classes are hereditary: forests,
planar graphs, bipartite graphs, k-colorable graphs, bounded tree-width graphs,
d-degenerate graphs, etc. [3]. Moreover, any intersection class of graphs –such as
interval graphs, chordal graphs, unit disc graphs, etc.– is also hereditary [3].

In Section 3 we give, for every hereditary class of graphs G, a one-round
private-coin randomized algorithm that solves G-Strong-Rec with bandwidth
O(maxk∈[n] log |Gk|/k + log n).

We emphasize that our algorithm runs in one round, and therefore it runs in
the broadcast congested clique, a restricted version of the congested clique model
where, in every round, the n−1 messages sent by a node must be the same. (This
equivalence is a consequence of the requirement that all nodes must compute
the output after one round). We also remark that for many hereditary graph
classes, including all classes listed above, our algorithm is tight. Moreover, our
result implies that G-Strong-Rec can be solved in one round with bandwidth
O(log n) when G is the class of forests, planar graphs, interval graphs, unit-circle
graphs, or any other hereditary graph class G such that |Gn| = 2O(n logn).

In Section 4 we give a very general result, showing that two rounds are
sufficient to solve G-Strong-Rec in the congested clique model, for any set of
graphs G. More precisely, we provide a two-round deterministic algorithm that
solves G-Weak-Rec and a two-round private-coin randomized algorithm that
solves G-Strong-Rec whp. We also give a three-round deterministic algorithm
solving G-Strong-Rec. All algorithms run using bandwidth O(log |Gn|/n +
log n), so they are asymptotically optimal when |Gn| = 2Ω(n logn).

Our result implies, in particular, that G-Strong-Rec can be solved in two
rounds with bandwidth O(log n), when G is any set of graphs of size 2O(n logn).
The only property of the set of graphs G used by our algorithm is the cardinality
of Gn. Our algorithm does not require G to be closed under isomorphisms.

In Section 5 we revisit the one-round case. Our general algorithm can be
adapted to run in one round (i.e., in the broadcast congested clique model) by
allowing a larger bandwidth. We show that, for every set of graphs G, there
is a one-round deterministic algorithm that solves G-Weak-Rec, and a one-
round private-coin algorithm that solves G-Strong-Rec whp, both of them
using bandwidth O(

√
log |Gn| log n + log n). We finish Section 5 pointing out

that these algorithms, with respect to the bandwidth, are tight.

1.2 Some Remarks

Lenzen’s algorithm. Lenzen’s algorithm performs a load balancing procedure
in the congested clique model [18]. Therefore, if the input graph is sparse, it solves
the reconstruction problem very fast (by simply distributing all the edges among
the nodes, and then broadcasting everything). For instance, if the input graph G
contains O(n) edges, then it reconstruct G in a constant number of rounds with

Graph Reconstruction in the Congested Clique 5

bandwidth O(log n). Our result is much more general. We do not need the graphs
to be sparse. We just need the class to be small . For example, the class of interval
graphs contains very dense graphs (including the clique), but it is small, since it
contains 2O(n logn) different labeled graphs. In Section 4 we prove that, if the class
G is such that |Gn| = 2O(n logn), then there exists a three-round deterministic
algorithm that reconstructs G using bandwidth O(log n). Therefore, our three-
round deterministic algorithm can be applied to sparse graphs, interval graphs,
etc.

Broadcast congested clique. Consider the case where G is indeed sparse
but we want to reconstruct it using the broadcast congested clique model (and
therefore we can not use Lenzen’s algorithm). Suppose, for instance, that the
number of edges of graphs in G is O(n). The naive algorithm, where every node
broadcasts its incident edges, may take Ω(n/b) rounds, because some nodes may
have Ω(n) neighbors (recall that b is the bandwidth). In Section 5 we prove
that, in the broadcast congested clique model, we can reconstruct any class of
graphs G in one round using bandwidth b = O(

√
log |Gn| log n+log n). The class

of graphs having O(n) edges satisfies that log |Gn| = O(n log n). Hence, we can
reconstruct it in one round using bandwidth b = O(

√
n log n). This algorithm

is much faster than the naive one, that would take, for the same bandwidth,
Ω(
√
n/ log n) rounds.

Reconstruction versus recognition. The recognition problem is the classical
decision problem, where we simply want to decide whether the input graph be-
longs to some class G. It is clear that finding a formal proof showing some type
of equivalence between the reconstruction and the recognition problems would
yield a non-trivial lower bound on the recognition problem. However, in [6], the
authors show that any non-trivial unconditional lower bound on a decision prob-
lem in the congested clique model would imply novel Boolean circuit complexity
lower bounds. Nevertheless, proving lower bounds for explicit Boolean functions
in the theory of circuit complexity has been an elusive goal for decades. There-
fore, even though for some graph classes G, it seems that the only strategy to
decide whether G ∈ G is to reconstruct G, proving this is as difficult as proving
fundamental conjectures in circuit complexity, a notoriously difficult challenge.

1.3 Techniques

The main techiques we use in this paper are fingerprints and error correcting
codes. A fingerprint is a small representation of a large vector which statisfies
that, if two vectors are different, then their fingerprints, whp, are also differ-
ent [25]. We define in this paper the fingerprint of a graph, which is simply
the collection of fingerprints of the rows of its adjacency matrix. Consider two
graphs G and H defined on the same set of nodes. The fingerprints of these two
graphs are different with a probability that grows exponentially with respect
to the number of nodes having different neighborhoods in G and H. Therefore,
roughly speaking, if G is a set of graphs where all graphs are very different, then
each graph in G will have a different fingerprint.

6 P. Montealegre et al.

What happens when G differs from H only in a few nodes? We have two dif-
ferent answers, depending on whether: (i) the graphs belong to some hereditary
class of graphs G; (ii) the graphs are arbitrary. In the first, hereditary case, we
prove that, for any graph G, the number of graphs H ∈ G which are close to G
(in terms of the number different rows in the corresponding adjacency matrices)
is small. Therefore, the fingerprints will be different even for graphs which are
close between themselves.

In the second, general case, we use, together with fingerprints, error-corecting
codes. More precicely, we use Reed-Solomon codes [23]. The idea of these codes
consists in mapping a vector into a sligthly larger one, satisfying that the map-
ping of two different vectors differ in many coordinates. With this, we define
error-correcting-graphs where, instead of vectors, we map any graph into a
slightly larger one. The mapping of two different graphs will have many nodes
with different neighborhoods. We show that the fingerprint of such mapping
uniquely identifies the graphs in G, for any G. The advantage of our construc-
tions is that it mainly depends on the neighborhoods of the nodes (i.e., rows
of the adjacency matrix), and can be implemented efficiently in the congested
clique model.

1.4 Related Work

All known results concerning the reconstruction of graphs obtained so far, have
been obtained in the context of hereditary graph classes. For instance, let G
be the class of cograph, that is, the class of graphs that do not contain the 4-
node path as an induced subgraph. This class is obviously hereditary. In [15], the
authors presented a one-round public-coin algorithm that solves G-Strong-Rec
with bandwidth O(log n). Note that |Gn| = 2Θ(n logn). The result we give in this
paper is stronger, because our one-round algorithm needs the same bandwidth
but uses private coins.

In [2, 22] it is shown that, if G is the class of d-degenerate graphs, then there is
a one-round deterministic algorithm that solves G-Strong-Rec with bandwidth
O(d log n) = O(log n). A graph G is d-degenerate if one can remove from G a
vertex r of degree at most d, and then proceed recursively on the resulting graph
G′ = G− r, until obtaining the empty graph. Note that planar graphs (or more
generally, bounded genus graphs), bounded tree-width graphs, graphs without a
fixed graph H as a minor, are all d-degenerate, for some constant d > 0. Since
the class of d-degenerate graphs is hereditary and satisfies |Gn| = 2Θ(n logn), it
follows, from this paper, the existence of a one-round private-coin randomized
algorithm that solves G-Strong-Rec with bandwidth O(log n). However, the
result of [2] for this particular class is stronger, since their algorithm is deter-
ministic.

Another example of reconstruction with one-round deterministic algorithms
can be found in [6]. There, the authors consider the class of graphs defined by
one forbidden subgraph H. They show that such classes can be reconstructed
deterministically in one round with bandwidth b = O((ex(n,H) log n)/n), where
ex(n,H) is the Turán number of H, defined as be the maximum number of edges

Graph Reconstruction in the Congested Clique 7

in an n-node graph not containing an isomorphic copy of H as a subgraph. For
example, if C4 is the cycle of length 4, then ex(n,C4) = O(n3/2). This implies
that, if we define G as the class of graphs not containing C4 as a subgraph, then
there is a one-round deterministic algorithm that solves G-Strong-Rec with
bandwidth O(

√
n log n).

2 Preliminaries

2.1 Some Graph Terminology

Two graphs G and H are isomorphic if there exists a bijection ϕ : V (G)→ V (H)
such that any pair of vertices u, v are adjacent in G if and only if f(u) and f(v)
are adjacent in H. A class of graphs G is a set of graphs which is closed under
isomorphisms, i.e., if G belongs to G and H is isomorphic to G, then H also
belongs to G. For a class of graphs G and n > 0, we call Gn the subclass of
n-node graphs in G. For a graph G = (V,E) and U ⊆ V we denote G[U] the
subgraph of G induced by U . More precisely, the vertex set of G[U] is U and
the edge set consists of all of the edges in E that have both endpoints in U . A
class G is hereditary if it is closed under taking induced subgraphs, i.e., for every
G = (V,E) ∈ G and every U ⊆ V , the induced subgraph G[U] ∈ G.

For a graph G = ({v1, . . . , vn}, E), we call A(G) its adjacency matrix, i.e.,
the 0 − 1 square matrix of dimension n where [A(G)]ij = 1 if and only if vi is
adjacent to vj . Let M be a square matrix of dimension n, and let i ∈ [n] =
{1, . . . , n}. We call Mi the i-th row of M . Let N be another square matrix of
dimension n. We denote by dr(M,N) the row-distance between M and N , that
is, the number of rows that are different between M and N . In other words,
dr(M,N) = |{i ∈ [n] : Mi 6= Ni}|. For k > 0 and G = (V,E), we denote by
D(G, k) the set of all graphs H = (V,E′) such that dr(A(G), A(H)) = k.

2.2 Fingerprints

Let n be a positive integer and p be a prime number. In the following, we
denote by Fp the finite field of size p and by Fp[X] the polynomial ring on Fp. A

polynomial P ∈ Fp[X] is an expression of the form P (x) =
∑d
i=1 aix

i−1, where
ai ∈ Fp.

Let q be a prime number such that q < n < p. For each a ∈ Fnq , consider

the polynomial FP (a, ·) ∈ Fp[X] defined as FP (a, x) =
∑
i∈[n] aix

i−1 mod p.

(Note that we interpret the coordinates of a as elements of Fp).
For t ∈ Fp, we call FP (a, t) the fingerprint of a and t. The following lemma

is direct.

Lemma 1. [19] Let n be a positive integer, p and q be two prime numbers such
that q < n < p. Let a, b ∈ (Fq)n such that a 6= b. Then, |{t ∈ Fp : P (a, t) =
P (b, t)}| ≤ n− 1.

8 P. Montealegre et al.

We extend the definition of fingerprints to matrices. Let M be a square
matrix of dimension n and coordinates in Fq, and let T be an element of (Fp)n.
We call FP (M,T) ∈ (Fp)n the fingerprint of M and T , defined as FP (M,T) =
(FP (M1, T1), . . . , FP (Mn, Tn)), where Mi is the i-th row of M , for each i ∈ [n].
Moreover, for a graph of size n, and T ∈ (Fp)n we call FP (G,T) the fingerprint
of A(G) and T .

3 Reconstructing Hereditary Graph Classes

In this section we start giving the main result. Later we explain the consequence
of this result on well-known hereditary graph classes.

Theorem 1. Let G be an hereditary class of graphs. There exists a one-round
private-coin algorithm that solves G-Strong-Rec whp and bandwidth

O(max
k∈[n]

(log(|Gk|)/k) + log n).

Proof. In the algorithm, nodes use a prime number p, whose value will be cho-
sen later. The algorithm consists in: (1) Each node i picks ti in Fp uniformly at
random (using private coins), and computes FP (xi, ti). (2) Each node com-
municates ti and FP (xi, ti). (3) Every node constructs T = (t1, . . . tn) and
FP (G,T) = (FP (x1, t1), . . . , F (xn, tn)) from the messages sent in the commu-
nication round. Finally: (4) Every node looks in Gn for a graph H such that
FP (H,T) = FP (G,T). If such graph H exists, the algorithm outputs H, oth-
erwise it rejects.

Let T in (Zp)n, picked uniformly at random. We aim to show that, for every
G, if some H ∈ Gn satisfies FP (H,T) = FP (G,T), then G = H whp. First,
note that

Pr(∃H ∈ Gn s.t. H 6= G and FP (G,T) = FP (H,T))
≤∑

k∈[n] Pr(∃H ∈ Gn ∩D(G, k) s.t. FP (G,T) = FP (H,T)).

Now suppose that H 6= G and let k > 0 such that H belongs to D(G, k)∩Gn.

From Lemma 1 we deduce that Pr(FP (G,T) = FP (H,T)) ≤
(
n
p

)k
. It follows

that

Pr(∃H ∈ Gn ∩D(G, k) s.t. FP (G,T) = FP (H,T)) ≤
(
n

p

)k
· |Gn ∩D(G, k)|.

We now claim that |Gn∩D(G, k)| ≤
(
n
k

)
|Gk|. Indeed, we can interpret a graph

H in D(G, k) as a graph built by picking k vertices {v1, . . . vk} of G and then
adding or removing edges between those vertices. Since G is hereditary, the graph
induced by {v1, . . . , vk} must belong to Gk. Therefore, |Gn ∩D(G, k)| ≤

(
n
k

)
|Gk|.

This claim implies:

Graph Reconstruction in the Congested Clique 9

Pr(∃H ∈ Gn ∩D(G, k) s.t. FP (G,T) = FP (H,T)) ≤
(
n

p

)k
·
(ne
k

)k
· |Gk|

≤
(
n2 · e · (|Gk|)1/k

p

)k
.

Let f : N → R be defined as f(n) = n · maxk∈[n]
log |Gk|

k . Note that this
function is increasing, satisfies f(n)/n ≤ f(n+ 1)/(n+ 1), and log |Gn| ≤ f(n).
Therefore, (|Gk|)1/k ≤ 2f(k)/k ≤ 2f(n)/n. We deduce:

Pr(∃H ∈ Gn s.t. H 6= G and FP (G,T) = FP (H,T)) ≤
∑
k∈[n]

(
n2 · e · 2f(n)/n

p

)k
.

We now fix p as the smallest prime number greater than n4 ·e·2f(n)/n, and we
get that with probability at least 1− 1/n, either G = H or F (H,T) 6= F (G,T),
for every H ∈ Gn. Hence, the algorithm solves G-Strong-Rec whp.

Note that the bandwidth required by node i in the algorithm equals the
number of bits required to represent the pair (ti, F (xi, ti)), which are two integers
in [p]. Therefore, the bandwidth of the algorithm is

2dlog pe = O(f(n)/n+ log n) = O
(

max
k∈[n]

(log(|Gk|)/k) + log n

)
.

ut

We deduce the following corollary.

Corollary 1. Let G be an hereditary class of graphs, and h be an increasing
function such that |Gn| = 2θ(nh(n)). Then, our private-coin algorithm solves G-
Strong-Rec whp, in one-round, with bandwidth Θ(log |Gn|/n + log n). This
matches the lower bound on the cost Rb (which must be satisfied even in the
public coin setting).

In [24], Scheinerman and Zito showed that hereditary graph classes have
a very specific growing rate. They showed (Theorem 1 in [24]) that, for any
hereditary class of graphs G, one of the following behaviors must hold: |Gn| ∈
{O(1), nΘ(1), 2Θ(n), 2Θ(n logn), 2ω(n logn)}. Corollary 1 implies that our algorithm
is tight for any hereditary class of graphs such that |Gn| = 2Θ(n logn).

4 Reconstructing Arbitrary Graph Classes

In this section we show that there exists a two-round private-coin algorithm
in the congested clique model that solves G-Strong-Rec whp and bandwidth
O(log |Gn|/n + log n). Our algorithm is based, roughly, on the same ideas used
to reconstruct hereditary classes of graphs. But the problem we encounter is

10 P. Montealegre et al.

the following: while in the case of hereditary classes of graphs, we had for every
graph G and k > 0, a bound on the number of graphs contained in D(G, k)∩Gn,
this is not the case in an arbitrary family G. Therefore, fingerprints alone are not
enough to differentiate graphs. To cope with this obstacle, we use error correcting
codes.

Definition 1. Let 0 ≤ k ≤ n, and let q be the smallest prime number greater
that n + k. An error correcting code with parameters (n, k) is a mapping C :
{0, 1}n → (Fq)n+k, satisfying:

1) For every x ∈ {0, 1}n and i ∈ [n], C(x)i = xi.
2) For each x, y ∈ {0, 1}n, x 6= y implies |{i ∈ [n+ k] : C(x)i 6= C(y)i}| ≥ k.

For sake of completeness, we give the construction of an error correcting code
with parameters (n, k). For x ∈ {0, 1}n, let Px be the unique polynomial of degree
(at most) n in Fq[X] satisfying Px(i) = xi for each i ∈ [n]. The function C is
then defined as C(x) = (Px(1), . . . , Px(n+ k)). This function satisfies properties
(1) and (2). We now adapt the definition of error correcting codes to graphs.

Definition 2. For a graph G, we call C(G) the square matrix of dimension n+k
with elements in Fq defined as follows.

– For each i ∈ [n], the i-th row of C(G) is C(A(G)i) ∈ (Fq)n+k (recall that
A(G)i is the i-th row of the adjacency matrix of G).

– For each i ∈ [k], the (n+ i)-th row of C(G) is the vector

(C(x1)n+i, . . . , C(xn)n+i,0) ∈ (Fq)n+k,

where 0 is the zero-vector of Fdq , and C(x)j ∈ Fq is the j-th element of C(x).

We can represent C(x) as a pair (x, x̃), where x̃ belongs to (Fq)k. Similarly,
for a graph G, we can represent C(G) as the symmetric matrix:

C(G) =

[
A(G) ˜A(G)

˜A(G)
T

0

]
,

where ˜A(G) is the matrix with rows C(A(G)i)n+1, . . . , C(A(G)i)n+k, with i ∈
[n].

Remark 1. Note that dr(C(G), C(H)) > k, for every two different n-node graphs
H and G. Indeed, if G 6= H, there exists i ∈ [n] such that A(G)i is different than
A(H)i. Then, by definition of C, |{j ∈ [n+ k] : C(A(G))i,j 6= C(A(H))i,j}| > k.
This means that dr(C(G), C(H)) > k, because C(G) and C(H) are symmetric
matrices.

Lemma 2. Let G be a set of graphs, C the error correcting code with parameters
(n, k), and let p be the smallest prime number greater than (n + k) · |Gn|2/k.
Then, there exists T ∈ (Fp)n+k depending only on G, satisfying FP (C(G), T) 6=
FP (C(H), T) for all different G,H ∈ Gn.

Graph Reconstruction in the Congested Clique 11

Proof. From Remark 1, we know that dr(C(G), C(H)) > k, for every two differ-
ent n-node graphs H and G. Then, if we pick T ∈ (Fp)n+k uniformly at random
we have, from Lemma 1:

Pr(FP (C(G), T) = FP (C(H), T)) <

(
n+ k

p

)k
.

Then, by the union bound

Pr(∃G,H ∈ Gn s.t. G 6= H and FP (C(G), T) = FP (C(H), T))

<
(
n+k
p

)k
· |Gn|2 ≤ 1.

The last inequality follows from the choice of p. Therefore, there must exist
a T ∈ (Fp)n+k such that FP (C(G), T) 6= FP (C(H), T), for all different G,H ∈
Gn. ut

Theorem 2. Let G be a set of graphs. The following holds:

1) There exists a two-round deterministic algorithm in the congested clique
model that solves G-Weak-Rec with bandwidth O(log |Gn|/n+ log n).

2) There exists a three-round deterministic algorithm in the congested clique
model that solves G-Strong-Rec with bandwidth O(log |Gn|/n+ log n).

3) There exists a two-round private-coin algorithm in the congested clique model
that solves G-Strong-Rec with bandwidth O(log |Gn|/n+ log n) whp.

Proof.

1) Let p be the first prime greater than 2n · |Gn|2/n (then p ≤ 4n · |Gn|2/n),
and let q be the smallest prime number greater than 2n. In the algorithm, node
i first computes C(xi), where C is the error correcting code with parameters
(n, n). Then, for each j ∈ [n] node i communicates C(xi)j+n to node j. This
communication round requires bandwidth dlog qe = O(log n). After the first
communication round, node i knows C(xi) and (C(x1)i+n, . . . , C(xn)i+n), i.e., it
knows rows i and i+n of matrix C(G). Each node computes a vector T ∈ (Fp)2n
such that FP (C(G), T) 6= FP (C(H), T), for all different G,H ∈ Gn (each node
computes the same T). The existence of T is given by Lemma 2. Then, node i
communicates (broadcasts) FP (C(G)i, Ti) and FP (C(G)i+n, Ti+n). This com-
munication round requires bandwidth 2dlog pe = O((log |Gn|)/n + log n). After
the second communication round, each node knows FP (C(G), T). Then, they
locally compute the unique H ∈ Gn such that FP (C(H), T) = FP (C(G), T).
Since G belongs to Gn, then necessarily G = H.

2) Suppose now that we are solving G-Strong-Rec. In this case G does not
necessarily belong to Gn. After receiving the fingerprints of C(G), nodes look for
a graph H in Gn that satisfies FP (C(G), T) = FP (C(H), T). If such a graph
exists, we call it a candidate. Otherwise, every node decides that G is not in
Gn, so they reject. Note that, if the candidate exists, then it is unique, since

12 P. Montealegre et al.

FP (C(H1), T) 6= FP (C(H2), T) for all different H1, H2 in Gn. So, if the candi-
date H exists, each node i checks whether the neighborhood of vertex i on G and
H are equal, and announces the answer in the third round (communicating one
bit). If every node announces affirmatively, then they output G = H. Otherwise,
it means that G is not in Gn, so every node rejects.

3) We now show that, if we allow the algorithm to be randomized, then we can
spare the third round. Let p′ ∈ [n2, 2n2] be a prime number. In the second round,
node i picks Si ∈ Fp, and it communicates, together with FP (C(G)i, Ti) and
FP (C(G)i+n, Ti+n), also FP (xi, Si). After the second round of communication,
if a candidate H ∈ Gn exists, each node computes S = (S1, . . . , Sn), FP (G,S) =
(FP (x1, S1), . . . , FP (xn, Sn). If FP (G,S) = FP (H,S), then nodes deduce that
G = H. Otherwise, they deduce that G /∈ Gn and rejects. Note that if G belongs
to Gn, then the algorithm always give the correct answer. Otherwise, it rejects
whp. Indeed, if G /∈ Gn, then H 6= G, and from Lemma 1, Pr(FP (G,T) =
FP (H,T)) ≤ 1/n. ut

Our private-coin algorithm for G-Strong-Rec has one-sided error. In fact, if
the input graph belongs to G, then our algorithm reconstructs it with probability
1. On the other hand, if G does not belong to G, then our algorithm fails to
discard the candidate with probability at most 1/n.

5 Revisiting the One Round Case

In this section we revisit the one-round case (and therefore the broadcast con-
gested clique model). But, instead of studying hereditary graph classes, we study
arbitrary graph classes, and we show that for this general case we need a larger
bandwith. Our results, in terms of the bandwidth, are tight.

Theorem 3. Let G be a set of graphs. The following holds:

1) There exists a one-round deterministic algorithm in the congested clique
model that solves G-Weak-Rec with bandwidth O(

√
log |Gn| log n+ log n).

2) There exists a one-round private-coin algorithm in the congested clique model
that solves G-Strong-Rec with bandwidth O(

√
log |Gn| log n+ log n) whp.

Proof. The algorithm in this case are very similar to the algorithms we provided
in the proof of Theorem 2. Let k be a parameter whose value will be chosen
at the end of the proof, and let C be the error-correcting-code with parameters
(n, k). Let p be the smallest prime number greater than 2n · |G|2/k. Let T ∈
(Fp)n+k be the vector given by Lemma 2, corresponding to G. In the algorithm,
every node i computes C(xi), and communicates FP (C(xi), Ti) together with
C(xi)n+1, . . . , C(xi)n+k ∈ (Fq)k, where q is the smallest prime greater than k+n.
Note that the communication round requires bandwidth

O(log p+ k · log(n+ k)) = O(log |Gn|/k + (k + 1) · log n).

Graph Reconstruction in the Congested Clique 13

After the communication round, every node knows FP (C(xi), Ti), for all

i ∈ [n], and also knows the matrix ˜A(G). Therefore, every node can com-
pute FP (C(xi), Ti), for all i ∈ {n + 1, . . . , n + k}, and, moreover, compute
FP (C(G), T).

From the construction of T , there is at most one graph H ∈ Gn such that
FP (C(G), T) = FP (C(H), T). Therefore, if G belongs to G, every node can
reconstruct it.

On the other hand, if we are solving G-Strong-Rec, then we proceed as
in the algorithm of Theorem 2, either testing whether H = G in one more
round, or sending a fingerprint of G to check with high probability if a candidate
H ∈ Gn such that FP (C(G), T) = FP (C(H), T) is indeed equal to G. This
verification requires to send O(log n) more bits, which fits in the asymptotic
bound of the bandwidth. The optimal value of k, that is, the one which minimizes

the expression O(log |Gn|/k + (k + 1) · log n), is such that k = O
(√

log |Gn|
logn

)
.

Therefore, the bandwidth is O(
√

log |Gn| log n+ log n). ut

Now we are going to show that previous algorithms for solving G-Weak-Rec
and G-Strong-Rec are in fact tight. For proving this, we are going to exhibit a
class of graphs G satisfying |Gn| ≤ 2O(n) such that every algorithm (deterministic
or randomized) solving G-Weak-Rec in the broadcast congested clique model
has cost Rb = Ω(

√
log |Gn|). This lower bound matches the upper one-round

bound given in Theorem 3 (up to logarithmic factors).

Theorem 4. There exists a class of graphs G+ satisfying |G+n | ≤ 2O(n) such
that, any ε-error public-coin algorithm in the broadcast congested clique model

that solves G+-Weak-Rec, has cost Rb = Ω(
√
n) = Ω(

√
log |G+n |).

Proof. Let G+ be the class of graphs defined as follows: G belongs to G+n if
and only if G is the disjoint union of a graph H of d

√
ne nodes and n − |H|

isolated nodes. Note that |G+n | =
(

n
d
√
ne
)
· 2(d

√
ne
2) ≤ 2O(n). Indeed, there are

2(d
√

ne
2) = 2O(n) labeled graphs of size d

√
ne, and at most

(
n
d
√
ne
)

= 2O(
√
n logn)

different labelings of a graph of
√
n nodes using n labels (so G+ is closed under

isomorphisms).
Let A be an ε-error public-coin algorithm solving G+-Weak-Rec in R(n)

rounds and bandwidth b(n), on input graphs of size n.
Consider now the following algorithm B that solves U-Weak-Rec, where U

is the set of all graphs: on input graph G of size n, each node i ∈ [n] supposes
that it is contained in a graph G+ formed by G plus n2−n isolated vertices with
identifiers (n+ 1), . . . , n2. Note that G+ belongs to G+. Then, node i simulates
A as follows: at each round, node i ∈ [n] produces the message of node i in G+

according to A. Note that the messages produced by nodes labeled (n+1), . . . , n2

do not depend on G, so they can be produced by any node of G without any
extra communication. Since A solves G+-Weak-Rec, when the algorithm halts

14 P. Montealegre et al.

every node knows all the edges of G+, so they reconstruct G ignoring vertices
labeled (n+ 1), . . . , n2.

We deduce that algorithm B solves U-Weak-Rec. Note that the cost of B is
R(n2)b(n2) on input graphs of size n. We deduce that R(n2)b(n2) = Ω(n), i.e.,
the cost of A is Ω(

√
n).

ut

6 Discussion

Our result gives a straightforward, general strategy to solve arbitrary problems
when the input graph belongs to some particular class of graphs. Hence, instead
of designing ad-hoc algorithms to solve specific problems, we can reconstruct the
input graph G and solve locally any question concerning G.

Even though in the congested clique model, by definition, the only complexity
measure taken into account is communication, it is important to point out that
the general algorithms we presented in this paper run in exponential local time.

However, note that, unless P = NP (or even if stronger conjectures in com-
putational complexity are false), this difficulty can not be overcome. In fact,
for many graph classes G, solving G-Strong-Rec in polynomial local time is
impossible.

Let us illustrate this with an example. Consider the hereditary, sparse class
of 3-colorable planar graphs, that we denote 3-col-plan. It is NP -complete to
decide whether an arbitrary graph belongs to 3-col-plan [7]. Any algorithm in
the congested clique model that runs in polynomial local time can be simulated
by a sequential algorithm that also runs in polynomial time: simply run the
computation of each node one by one at each round. Therefore, unless P = NP ,
there is no algorithm running in polynomial local time solving 3-col-planar-
Strong-Rec.

References

1. P Beame, P Koutris, and D Suciu. Communication steps for parallel query process-
ing. Journal of the ACM 64(6), Article 40, 2017.

2. F Becker, M Matamala, N Nisse, I Rapaport, K Suchan, and I Todinca. Adding a
referee to an interconnection network: What can(not) be computed in one round.
In IPDPS ’11, 508–514, 2011.

3. A Brandstädt, V B Le, and J P Spinrad. Graph classes: a survey. SIAM, 1999.

4. K Censor-Hillel, P Kaski, J H Korhonen, C Lenzen, A Paz, and J Suomela. Algebraic
methods in the congested clique. In PODC ’15, 143–152, 2015.

5. J Dean and S Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113, 2008.

6. A Drucker, F Kuhn, and R Oshman. On the power of the congested clique model.
In PODC ’14, 367–376, 2014.

7. M R Garey and D S Johnson. Computers and Intractability. W H Freeman, New
York, 2002.

Graph Reconstruction in the Congested Clique 15

8. M Ghaffari. An improved distributed algorithm for maximal independent set. In
SODA ’16, 270–277, 2016.

9. M Ghaffari and M Parter. MST in log-star rounds of congested clique. In PODC ’16,
19–28, 2016.

10. M Ghaffari. Distributed MIS via All-to-All Communication. In PODC ’17, 141–
149, 2017.

11. J W Hegeman, G Pandurangan, S V Pemmaraju, V Sardeshmukh, and M Scquiz-
zato. Toward optimal bounds in the congested clique: Graph connectivity and MST.
In PODC ’15, 91–100, 2015.

12. J W Hegeman and S V Pemmaraju. Lessons from the congested clique applied to
MapReduce. In SIROCCO ’14, 149–164, 2014.

13. J W Hegeman, S V Pemmaraju, and V Sardeshmukh. Near-constant-time dis-
tributed algorithms on a congested clique. In DISC ’14, 514–530, 2014.

14. T Jurdzinski and K Nowicki. MST in O(1) rounds of the congested clique. In
SODA ’18, 2620–2632, 2018.

15. J Kari, M Matamala, I Rapaport, and V Salo. Solving the induced subgraph prob-
lem in the randomized multiparty simultaneous messages model. In SIROCCO ’15,
370–384, 2015.

16. H Karloff, S Suri, and S Vassilvitskii. A model of computation for MapReduce. In
SODA ’10, 938–948, 2010.

17. H Klauck, D Nanongkai, G Pandurangan, and P Robinson. Distributed computa-
tion of large-scale graph problems. In SODA ’15, 391–410, 2015.

18. C Lenzen. Optimal deterministic routing and sorting on the congested clique. In
PODC ’13, 42–50, 2013.

19. R Lidl and H Niederreiter. Introduction to finite fields and their applications.
Cambridge University Press, 1994.

20. Z Lotker, B Patt-Shamir, E Pavlov, and D Peleg. Minimum-weight spanning tree
construction in O (log logn) communication rounds. SIAM J. Comput., 35(1):120–
131, 2005.

21. G Malewicz, M H Austern, A J C Bik, J C Dehnert, I Horn, N Leiser, and G
Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD ’10,
135–146, 2010.

22. P Montealegre and I Todinca. Brief announcement: Deterministic graph connec-
tivity in the broadcast congested clique. In PODC ’16, 245–247, 2016.

23. I S Reed and G Solomon. Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math., 8(2):300–304, 1960.

24. E R Scheinerman and J Zito. On the size of hereditary classes of graphs. Journal
of Combinatorial Theory, Series B, 61(1):16–39, 1994.

25. J T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. of the ACM, 27(4):701–717, 1980.

26. T White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

