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Abstract. We define a “rotating board” as a finite square with one tile fixed in
each cell. These fized tiles can only be rotated and, in addition, they belong to a
particular set of four tiles constructed with two colors. In this paper we show that
any set of tiles T may be coded in linear time into a “rotating board” B in the
following sense:

i. There exists an injection from the colors of the tiles of T into the set of
border conditions of the board B.

1. There is a one-to-one relation between the set T and the set of tilings of B
(obtained by rotating its tiles) satisfying that each t € T is associated to a
tiling By in such a way that the (north, south, east and west) colors of t are
related to the (north, south, east and west) border conditions of By by the
injection of i.

The existence of this coding means that we can efficiently transform an ar-
bitrary degrees of freedom tiling problem (in which to each cell is assigned an
arbitrary set of admissible tiles) into a restricted four degrees of freedom problem
(in which the tiles, fized in each cell, can only be rotated). Considering the clas-
sical tiling results, we conclude the NP-completeness (resp. undecidability) of the
natural bounded (resp. unbounded) version of the rotation tiling problem.

1. Introduction

Wang tiles, or simply tiles, are unit-sized squares with colored edges. The classi-
cal translation tiling problem, denoted here by TRANS, was introduced in [Wan61] and
since then many different versions of it have been studied: bounded tiling [Lew78,vEB83],
recurring tiling [Har86], domino snake [EPH94], rotation tiling [GR97].

* This work was partially supported by FONDECYT 1940520 (E.G) and EC0S-97 (E.G and LR).
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TRANS consists of deciding whether an arbitrary region R C Z?2 is tilable by a given
set of tiles allowing translations only. It is widely known that TRANS is undecidable when
R = 72 [Be66] and NP-complete when the regions R are finite squares [Lew78].

The rotation tiling problem ROT was used in [Mat91] as a model for the study of
some integrated circuit CAD and its complexity was partially studied in [GR97]. In ROT
one admissible tile is fixed in each cell of some region R and it is asked whether there exists
a tiling when only rotations are allowed (see Figure 1).
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Figure 1. (a) ROT instance or rotating board. (b) A tiling obtained by rotations.

Notice that both TRANS and ROT are subproblems of the generalized translation
problem GEN-TRANS in which each cell has its own set of admissible tiles (the same
for all in TRANS and the four rotations of a given tile in ROT). In this context, if we
define the degrees of freedom of a cell as the number of admissible tiles associated with it,
it follows that TRANS is an arbitrary degrees of freedom problem while ROT is a four
degrees of freedom problem.

In [GRI7] it is proved that for a particular set of 5 admissible tiles and for square
regions, ROT is NP-complete. In this paper we improve and generalize this result by
coding arbitrary tile sets in Tp-rotating boards (where 7y is the set of admissible tiles of
Figure 2). For this purpose we represent arbitrary tile sets in the border conditions of
the tilings of a Tg-rotating board. In other words, we reduce GEN-TRANS (and therefore
TRANS) to ROT.

Figure 2. The set of admissible tiles 7Ty

As a corollary, considering the classical tiling results, one may conclude that:

- ROT is undecidable when the assignments are periodic on the whole plane (using just
the set of tiles 7).

- ROT is NP-complete when the assignments are done on finite squares (using just the
set of tiles 7p).



Moreover, ROT inherits any undecidability or complexity result from GEN-TRANS
(and therefore also from TRANS).

Definition. Let R C Z? be a region. Let 7 be a finite set of tiles. We denote by
To € T an assignment to the region R of tiles belonging to 7. Tj is called a rotating
region (rotating board when R = S,, = {1,---,n}?, and rotating plane when R = Z?). We
say that T € T2 is a periodic tile assignment if there exists n > 0 such that Vi,j € Z,
To(i,7) = To(t +mn,5) = To(i,j + n). We denote by Ty the configuration obtained from T
by tile rotations only (6 € {0°,90°,180°,270°}%).

Definition. PERIOD-ROT(Ty).

INSTANCE: T, € TZ" periodic tile assignment.
QUESTION: 46 such that Ty is a tiling?

Definition. BOUND-ROT(T;).

INSTANCE: Ty € 7[)3", where S, is the n X n square.
QUESTION: 46 such that Ty is a tiling?

2. Arbitrary Sets of Tiles and 7, - Rotating Boards
Definition. We say that a rotating board By € To°* codes an arbitrary set of tiles 7~ if:

i. There exists an injection from the colors of 7 to the set of border conditions {#, 1}*
(where # represents the blank color of the set of tiles o).

ii. There is a one-to-one relation between the set of tiles 7 and the set of tilings of By
satisfying that each ¢ € T is associated to a tiling By in such a way that the (north,
south, east and west) colors of ¢ are related to the (north, south, east and west) border
conditions of By by the injection of i.

The key result of the paper is the following:

Theorem. For every finite set of tiles 7 we can construct in linear time a Tp-rotating
board B, that codes it.

The proof of this theorem will be developed in the next two sections. As in [Ro91], it
associates logical circuits to tiling problems. Roughly we code an arbitrary set of tiles 7
as a logical circuit lying on a m x m lattice square (m even), and then we generate By by
replacing each circuit cell by a 5 x 5 Ty-rotating subboard.

As a result of this simulation we obtain a one-to-one relation between 7 and the tilings
of By. More precisely, the idea is to have, for each tiling of By, a unique color 1 in each
border (in the positions of the colors of some tile in 7). Notice that the fact that the size
of By is even (5m x 5m) allows us to view the square colored like a chessboard (see Figure
3).
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Figure 3. Tiles coded in the border conditions of By.

3. Circuit Coding

Given an arbitrary set of tiles 7, it can be coded in linear time (on |7|) as a circuit
lying on a m x m lattice square (m even). The idea is to represent each tile as a signal
generator, to force the system to have only one of them in on state (the others off), and
to join the generators (by conductors) with the corresponding border colors. Notice that,
considering the square lattice as a chessboard (m even), we may assume the conductors
arriving at black cells on the bottom and left borders.

Example. To the set of admissible tiles

we associate the following circuit
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Figure 4. Circuit simulating the tile set {4, B}.
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In this diagram we distinguish several units to be modeled in a 7p-rotating board:
conductors, empty cells, filters (two horizontal conductors with a left origin and a right
end represented by semi-circles). Finally, two conductors may converge in merge units
(arrow heads pointing in the sense of the signal conduction).

4. 7y - Rotating Subboard Assignment

First of all we refine the square in which the circuit has been drawn by transforming
each cell into a 5 X 5 square S5«5. On the other hand, we associate colors black and white
(as in a chessboard) to each cell of this new (5m) x (5m) square. In order to generate the
To-rotating board By of size (5m) x (5m) we assign to each Ssx5 a Tp-rotating subboard.
This assignment, which is explained in the following, depends on the circuit function of
the cell represented by Ssxs:

i. Empty cell: The assignment appears in Figure 5.

D%

Figure 5. 7y-rotating subboard assignment for an empty cell.

ii. Conductor: In order to simulate the circuit operation of signal conduction we
consider as reference direction the one that goes from the generator to the borders, we
assign to each circuit cell a 7p-rotating subboard with only two possible tilings and we
use the following key convention: a (conductor) subboard transmits signal 1 when the non
null tiles located on white cells point their 1 value to the next cell. Otherwise, it transmits
signal 0 (see Figures 6, 7 and 8).
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Figure 6. (a) Conductor cell. (b) Subboard assignment. (c) Signal 1 transmission. (d)
Signal 0 transmission.
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Figure 7. (a) Conductor cell. (b) Signal 1 transmission. (c) Signal 0 transmission.
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Figure 8 (a) Conductor crossing cell. (b) Signal 1 (vertically) and signal 0 (horizontally)
transmission. (c) Signal 0 (vertically) and signal 0 (horizontally) transmission.

Notice that previous assignments are independent of the S5«s5 alternation of colors.
More precisely: no matter what the Ssx5 center cell color is (black or white), the tilings
will always correspond to one of the possible signal transmissions.

ili. Generator: The generator is simulated in two consecutive Ss«5’s (see Figure 9).
It produces six signals: four to establish the border colors and other two to inhibit other
generators.
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Figure 9. The two consecutive 7p-rotating subboards that simulate a generator.
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As in the conductors case, it doesn’t matter what is the alternation of colors in which
these subboards lie. More precisely, in order to obtain a tiling we have, in terms of signals,
the only two possibilities of Figure 10.

Signal 1 Signal 0 Signal 0 Signal 1

t t t t

Signal 0 <+ —= Signal 1 Signal 1 < —= Signal 0

{ { { {
Signal 1 Signal 0 Signal 0 Signal 1
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On Off

Figure 10.

Example. If the left center cell is black and the right one is white the on state (i.e.
activation) is given in Figure 11.

Signal 1 Signal 0
1 1
1 1
Signal 0 <q1 11111 1|1 1/1<1)1 1= Signa 1
1 1
1 1
Signa 1 Signa 0

Figure 11. A generator in the on state.

iv. Filter: Both the up and bottom filters contain conductor cells (assignment already
shown in (ii)), merge units (to be explained in (v)), an origin cell and an end cell.

The up-origin is forced to generate signal 1 and the up-end is forced to receive signal 0
(these units are not simple conductors because they must interact with just one neighbor
cell). For both the up-origin and the up-end there are two 7g-rotating subboards possible
assignment depending if the center cell of the S5«5 in which the 7y-rotating subboard lies
is white or if it is black (see Figures 12 and 13). Notice that the assignment is dependent
on the alternation of colors.
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Figure 12. Up-origin. (i) White center cell. (ii) Black center cell.

(i) (i)
Figure 13. Up-end. (i) White center cell. (ii) Black center cell.

The bottom-origin generates signal 0 and the bottom-end receives signal 1. Their
constructions are similar.

Comment. The analysis of two different cases depending on whether the center cell is
black or white could be avoided by drawing the circuit in a more particular way (for instance
by fixing the appearance of the up-origin in a black cell). This approach is equivalent: it
simplifies the assignment but it complicates de circuit design.

v. Merge units: These are the elements which force the system to have only one
generator in the on state. More precisely, they simulate one of the two logical gates:

a) input signals  output signal b) input signals output signal
00 0 00 )
01 1 01 0
10 1 10 0
11 ) 11 1

where ¢ is non defined because this situation can not appear.
The assignment, as in the filter case, depends on the color alternation. In Figure 14
we describe the simulation of the logical gate (a):
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Figure 14. Merge unit of type a. (i) Black center cell. (ii) White center cell.

Clearly, for this simulation the input {1,1} does not give a tiling. The impossibility
for the black center case appears in Figure 15:

)

Figure 15. No tiling for the {1,1} input.
The case (b) is similar.

In our construction, in order to obtain a tiling, there must be a unique generator in
on state. It is going to send a color 1 to each of the borders (corresponding to signals 1
sent to the right and up borders and to signals 0 sent to the left and bottom borders).
Finally, by the fact that the reduction is linear, we conclude the theorem.

5. Undecidability and Complexity Results

We have already shown how to code a set of Wang tiles 7 by a 7Tp-rotating board in
linear time. Therefore, any result concerning the tilability of regions of the plane by 7
may be restated in the tile rotational context. More precisely,

Corollary. Let R be an arbitrary region and let 7 be an arbitrary finite set of tiles. We
can build in linear time on (|7| + |R|) a rotating region Ty € 7 (with R being a simple
refinement of R) such that the existence of a tiling Ty is equivalent to the tilability of R
by T.



Proof. It suffices to replace each cell of the region R by the 7qp-rotating board By that

codes 7. Therefore, this rotating region Ty € T¢® (where |R| = | By| x | R|) admits a tiling
Ty if and only if R is tilable by 7. ]

Corollary. PERIODIC-ROT (7p) is undecidable and BOUND-ROT(7p) is NP-complete.

Proof. By previous corollary and by the fact that the tiling problem is undecidable in its
unbounded version [Be66] and NP-complete in its bounded one [Lew78]. []

Comment. Notice that the set 7y does not depend on 7. On the other hand, the number
of colors of 7y is minimal (with one color we can code nothing).

Comment. A set of tiles is said to be aperiodic if it admits only non periodic tilings of
the plane. In [Ber66,Rob71] it was proved that this kind of set effectively exists. Let us
code a given aperodic set of tiles 7 by a 7p-rotating board By. Let us now define the
To-rotating plane T as the (periodic) repetition of By. It follows that the non-periodicity
of the tilings of the plane by T is reflected in the non-periodicity of the bi-sequences 6’s
for which Ty is a tiling. Notice finally that there is no periodic 6 for which Ty is a tiling.

Acknoledgments. We wish to thank the anonymous referees for many helpful sugges-
tions.
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