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Abstract 

In this paper we introduce tile rotation problems. The instances (or initial configurations) are 
tile assignments on a (n x n) lattice board, and the question to be answered is the following: 
does there exist any configuration obtained horn the initial one by tile rotations only whose 
cost is less than a given bound? (notice that a zero-cost configuration corresponds to a perfect 
tiling). We prove here the NP-completeness for both the zero-cost problem (for a particular set 
of 5 tiles) and the minimization problem (for a particular set of 2 tiles). Finally, by showing 
the polynomiality of some subproblems, we establish complexity border results. 

1. Introduction 

Wang tiles are unit-sized squares with colored (integer) edges. The tiling problem 

was introduced by Hao Wang in [12] and since then, many different versions of it have 

been studied (bounded tiling [Xl, recurring tiling [6], domino snake problem [4]). 

Two rotation problems are introduced in this paper. For both of them the instances 

(or initial configurations) are tile assignments on a (n x n) lattice board, and their 

respective questions are the following: 

(i) Tile rotation problem (TR): Does there exist any configuration obtained from the 

initial one by tile rotations only which corresponds to a perfect tiling? 

(ii) Minimization tile rotation problem (MTR): Does there exist any configuration 

obtained from the initial one by tile rotations only whose cost is less (where the 

cost function is defined as the module of adjacencies tile differences) than a given 

bound? 

In Section 3 we prove the TR NP-completeness for a particular set of 5 tiles. Notice 

that, in a sense, TR is a restricted version of the classical (and known NP-complete) 
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bounded tiling problem [8]. We also introduce a TR generalization denoted by 

TILE-EXT and we establish the following complexity border result: TILE-EXT 

with 3 degrees of freedom is NP-complete while TILE-EXT with 2 degrees of freedom 

is polynomial. 

The minimization problem MTR appears in the context of integrated circuit CAD and 

it turns to be polynomial for a particular (n x 1) lattice board [9]. In Section 4 we prove 

its NP-completeness for a particular set of 2 tiles. We establish a complexity border 

result by showing that MTR is trivial when the set of admissible tiles is a singleton. 

On the other hand, we prove that MTR becomes also polynomial when tile assignments 

are defined on fixed width rectangles or on acyclic regions instead of square boards. 

2. Definitions 

We denote by Y C: Z4 the set of admissible tiles, and by S,, the n x n board of unit 

squares (or cells). For each tile e = (ea,ei,ez,es) E Y we define its usual rotations of 

O”, 90”, ISO”, and 270” (see Fig. 1) as follows: 

e(q) = (e(O+cp)rnod4, e(l+q)mod4, e(2+cp)mod4, e(3+cp)mod4) v = 0, 1,&3. 

The initial tile configuration TO E Y”* associates, to each cell of S,, a tile belonging 

to Y. 

We also say that To is a legal configuration if it is obtained from TO by a rotation 

vector 6 = (0,) E (0, 1,2,3}"* (i.e. (To)ij = (To)ij(O,)). Notice that To=0 is the initial 

tile configuration. 

We consider two tiles e and e’ as adjacents if and only if they have a common side, 

and we define their local cost function c(e,e’) as the module of the difference of the 

adjacent sides (see Fig. 2): 

e= e(0) e(l) 0) 

Fig. 1. Rotations of a tile. 

e 

Fig. 2. c(e,e’) = la - bl. 
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Fig. 3. (a) Initial configuration. (b) Legal configuration with cost function: 15-31+13-31+/2-5(+12-21 =5. 

Fig. 4. Set of admissible tiles .q. 

Given a configuration To in S,, the global cost hmction follows directly: 

c(Tti)= C c((T~)ij,(T~)i~/) 
(i.j),(i’,j’) 
neighbors 

Example 1. In Fig. 3 appears an initial configuration defined on a (2 x 2) lattice board 

and a corresponding legal configuration: 

Definition 1 (Tile rotation problem). 

TR( Y) Instance : TO E F’. 

Question: 38 E (0, 1,2,3}“’ such that c(Tn) = O? 

Definition 2 (Minimization tile rotation problem). 

MTR(7) Instance: kl E N, To E F”‘. 

Question: 30 E (0, 1,2, 3}“2 such that c( To) <k,? 

Comment 1. Notice that, for any particular set of admissible tiles Y*, TR(Y*) is 

a subproblem of MTR (r* ). 

3. Complexity of the tile rotation problem 

Let fl be the set of tiles given in Fig. 4. 

The goal of this section is to prove the next theorem. 

Theorem 1. TR(.s) is NP-complete. 
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Fig. 5. Co~fi~ation of a l-in-3 SAT instance. 

As a corollary we can conclude the weaker but more useful result that follows: 

Corollary 1. TR is ~-complete when the set of admissible tiles is part of the 

stance. 

in- 

The proof of Theorem 1 is based on Robson work related to the tilability of polygonal 
regions by elementary rectangles [ 111. It consists to codify an NP-complete BooIean- 
logic problem known as l-in-3 SAT (see [5]) as a circuit lying on the plane, and then 
to simulate the circuit by a tile assignment. 

Considering a cZause as a subset of Boolean variables and a formula as a collection 
of clauses, the l-in-3 SAT definition is the next one: 

Definition 3. l-in-3 SAT. 

l-in-3 SAT Instance: Set of Boolean variables V, formula C over Y such 
that ‘V’C E C, ICI = 3. 
Question: 3 any truth assignment on V such that each clause 
c E C contains exactly one true value? 

The proof of Theorem 1 is shown in the following. 

3.1. Codification of a l-in-3 SAT instance 

The key of the proof is to codify boolean formulas {which correspond to arbitrary 
instances of l-in-3 SAT) as eEeetric circuits drawn on a lattice board and constituted 
by signal generators (variables), signal conductors, and acceptators which accept as 
input the { 1, 0, 0) set of signals only (clauses). 

Example 2. The Boolean formula C = ({ v1,~2,~g),{ul,y3,214)} can be codified as in 

Fig. 5. 

Comment 2. Notice the existence of four types of cells in the board: null, generator, 
conductor and acceptator. 
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Fig. 6. Refinement of a 2 x 2 original board 

(b) 

Fig. 7. (a) Null cell. (b) Sub-board tile assignment. 

3.2. Reduction 

Given an arbitrary l-in-3 SAT instance codified as in Fig. 5, we must define a board 

and a tile assignment in order to build the TR instance. 

3.2.1. Board 

Refine the original board (in which the circuit is drawn) transforming each cell in 

a (5 x 5) sub-board. Associate colors black and white (as in a chessboard) to each 

generated sub-cell (Fig. 6). 

Notice the existence of white-center and black-center sub-boards. 

3.2.2. Tile assignment 

The type of electric element codified in each sub-board (see Comment 2) determines 

its sub-cells tile assignment. 

In order to simulate the electrical circuit operations of signal conduction (see Figs. 

S-lo), signal generation (see Fig. 11) and signal acceptation (see Fig. 12), we consider 

as reference direction the one that goes from the generator to the acceptator, and we 

use the following key convention: 
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Fig_ 8. (a) Conductor cell. (b) Sub-board tile assignment. (c) Signal 0 transmission. (d) Signal 1 transmission. 

k 
04 

t 

(cl 

Fig. 9. (a) Conductor cell. (b) Signal 1 transmission. (c) Signal 0 transmission. 

Fig. 10. {a) Conductor cell. (b) Signal 1 (vertically) and signal 0 (horizontally) transmissions. (c) Signal 0 

(vertically) and signal 0 (horizontally) transmissions. 
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(a) 

(b) 

Fig. Il. Generator of size 3. (a) Signal 1 generation. (b) Signal 0 generation 

(4 

Fig. 12. (a) Input { l,O, 0) for a black-center acceptator. (b) Input { 1, O,O} for a white-center acceptator. 
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Fig. 13. Codification of the planar formula C = {{VI, 29,w}, {uz,u4, us}}. 

A (conductor) sub-board transmits signal 1 when the no null tiles located on white 
sub-cells point their 1 value to the rzext sub-cell. Otherwise, it transmits signal 0 

(Fig. 7). 
(i) Null 

(ii) Conductor 

(iii) Generator 

(iv) Acceptator 

The effectiveness of the simulation, the NF-completeness of l-in-3 SAT, and the fact 

that previous reduction is polynomially executable allow us to conclude Theorem 1. q 

3.3. Degrees of freedom 

Consider the TR generalization in which each cell has its own set of a~issible 

tiles and rotations are not allowed. This new problem, denoted by TILE-EXT, is an 

extension of the classical tiling problem (where the set of admissible tiles is the same 

for every cell). 

We say that TILE-EXT has m E N degrees of freedom when the number of admis- 

sible tiles for each cell is at most m. 

Lemma 1. TILE-EXT with 3 degrees of freedom is NP-complete. 

Proof. Notice that by Theorem 1 we can only conclude the NP-completeness of TILE- 

EXT for 4 degrees of freedom. However, the planar version of l-in-3 SAT (restricted 

version in which the formulas admit a planar codification as in Fig. 13) is still NP- 

complete (see [7]). That means that, without loss of generality, we can always consider 

electric circuits without conductor intersections. More precisely, we have removed the 

only source of 4 degrees of freedom. 
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t t t t t t t t t t t t t t t 
I 

\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/ 

Fig. 14. Generator of size 3 for TILE-EXT (with at most two possible tiles for each cell) 

The unique difference in this new type of circuit lies in the fact that, in order to 

have planarity, we cannot force the generators and the acceptators to be located on the 

bottom and on the top of the board, respectively. 

Nevertheless, with respect to the acceptators we can maintain previous simulation 

because their up border was always the empty color. 

In the case of the generators, even if they are not located on the bottom of the board, 

the TILE-EXT context allow us to simulate them with at most two possible tiles for 

each cell (as in Fig. 14) by having always the empty color on the bottom border. 0 

Theorem 2. TILE-EXT with 3 degrees of freedom is NP-complete while TILE-EXT 

with 2 degrees of freedom is a polynomial problem. 

Proof. From Lemma 1 we have that TILE-EXT with 3 degrees of freedom is NP- 

complete. On the other hand, it is easy to reduce TILE-EXT with 2 degrees of freedom 

into 2-SAT (polynomial, see [3]) as in Example 3. 0 

Example 3. The tilability of the TILE-EXT instance (with 2 degrees of freedom) that 

appears in Fig. 15 is equivalent to the satisfiability of the following 2-SAT instance: 

C=(x11 VYll)A(XZl VY21)A(XlZVY12)~(X22VY22) 

A(211 V.?,,)A(j,l v-f211 

AGIl V%2)~(Y11 V-f12)A(Y,1 VY,,> 

A (221 v 222) A (Y2, v X22) A (Y2, v Y22) 

A @I2 v Y22) A (Y12 v X22). 
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Fig. 15. TILE-EXT instance with 2 degrees of freedom. 

Fig. 16. Set of admissible tiles 9~ = {s~,s~}. 

4. CompIexity of the mini~zation tile rota~on problem 

In this section we analyze the complexity of the minimization tile rotation problem 

(see Definition 2). More precisely, denoting as 91 the set of admissible tiles of Fig. 16, 

the goal is to prove next theorem. 

Theorem 3. MTR(Y2) is NP-complete. 

As a corollary we can conclude the weaker but more useful result that follows: 

Corollary 2. MTR is NP-complete when the set of a~~i~sibie tiles is part of the 
instants. 

We prove Theorem 3 by reducing a physical problem known as spin glasses (SG) 

into MTR(Yz). In SG the instances are spin interactions (weighted arcs in a bipartite 

graph) and the question is the following: does there exist any spin orientation (as- 

signments of f values of the set of nodes) that maximizes some global energy? The 

spin interactions are, in fact, matrices. Therefore, it is natural to codify them in a two 

dimensional structure. 

The idea of the proof is to represent the spin interactions as tiles in an initial 

configuration Ys that verifies: 

In order to minimize the cost function, we can restrict the process of searching B 

to a feasible set. 
There is a one to one relation between the feasible B’s and the spin orientations. 

It is equivalent to maximize the energy of the spin glasses system and to minimize 

the cost function over the feasible configurations. 
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Fig. 17. Equivalence between C- and c+ 

if (i+j) is odd 

if (i+j) is even 

(ToA 
‘J 

( Tts)i+, j 

It is straightforward that MTR belongs to NP. In fact, if we choose nondeterminis- 

tically a rotation vector 8, the time required to compute c(To) and compare it with kl 

is polynomial in (InI + Ikl I). 

On the other hand, from now on, we will consider the cost function c(e,e’) as the 

module of the sum of the adjacent sides. This approach is justified by next lemma: 

Lemma 2. Let F c {(~O,LZ~,U~,U~) E Z4: a0 = - 4 A al = - uj}. Let ~‘YJ be un initial 

tile con$iyurution. If we consider the costs functions c_ and c+ de$ned with the 

difSrrence and the sum respectively, it holds: 

[!I8 such that c_(TH)<k,] H [30’ such that c+(7i,f)<kl] 

Proof. It suffices to prove that the following rotations verify c_(G) = c+( FJ~): 

0-b = 
4i if (i + j) is odd, 

(Q, + 2)mod4 if (i + j) is even. 

In fact, for tiles horizontally adjacents (see Fig. 17) we have 

c-((G)q, (Tn)i+l,j) = IC - (-u)I 

and 

~t((7;,,)~~,(7i,f)i+l,j)=lU + Cl. 

The argument is identical for tiles vertically adjacents. 0 

Finally, we will represent the positive components of a tile by heads of bold arrows 

and the negative ones by tails of bold arrows. By coding ten bold arrows by a single 

normal one, we have for the set of tiles F2 = {si, ~2) the representation of Fig. 18. 
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Fig. 18. Representation of 4 = {sissy}. 

Fig. 19. Two-layers finite lattice 

4.1. Auxiliar problem 

Considering that a finite bipartite-balanced graph G = (X, Y,E) satisfies E c X x Y 
with /XI = / Y /, the formal definition of the already presented spin glasses problem is 

the following: 

Definition 4 (Spin glasses problem). 
SG Instance: G =(X, Y, E) finite bipartite-balanced graph where degree(i) < 5 Vi EX, 

degree(j) d 5 ‘yfi E Y; (~~)~~~~~ E {- 1, I}~s~ and kz E Z. 

Question: 3xf (-1, l}ixl, YE (-1, l}lyl such that 

a(~, y) = C Wgxiyi B kz? 
(idEE 

Previous problem appears in the framework of the physic model of spin glasses. In 

this context d corresponds to the energy associated to spin o~entations (& 1 for each 

vertex in X U Y). It has been proved that this problem is NP-complete [l, 21. In fact, 

the author proves that the problem is NP-complete for a particular bipartite-balanced 

graph consisting in a two-layers finite lattice (see Fig. 19). 

4.2. ~0lynomiaZ transformation 

The polynomial transformation of an arbitrary SG-instance into a MTR-instance pro- 

posed here is the following (see Fig. 21): 

l Size of the board n=31XI + I =31Y] + 1. 

l Bound k1 = IEl+ 2]X]]Y] - kz = /El + 2((n - 1)/‘3)2 - kz. 

l In order to define the initial tile confi~ration Te we have to take in count the next 

two considerations: 

- Without loss of generality, we assume that the set of vertices X U Y is given by 

X=Y=(l,..., IX1 = IYI =ttn - 1)/3)]. 
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We code a tile configuration i$ in a suitable way by grouping the tiles in blocks 

(BO)([j)E{l,...,(n-l)/3} z as follows: 

i 

(G)3i-1,3j+l (To)3i,3j+l (Te)3i+l,3j+l 

(Bohj = (G)3i-l,3j (G)3i,3, (G)3i+l,3j 

(Gh-l,3j-1 (To)3i,3j-1 (G)3i+l,3j-1 I 

Since the first row and column are outside the blocks, we also define: 

(G)l. = ((7i)hk)k=l,..., n, 

(7il).l = ((&?)kl )k=2 ,..., n. 

So, we have the equivalence Te=((G)i.,(Ts).r,&) (see Fig. 20). 

Now, given the tile set Yz = {si,s2} and an arbitrary SG-instance, we build the initial 

tile configuration G = ((To)t.,(&).r,B~) as follows (see Fig. 21): 

(i) ((&)rk)=((&)rk)=Sr for k=l,...,n. 
(ii) (($,)k,)=((&)k,)=S, for k=2 ,..., n. 

(iii) Three types of blocks (Bo)ii will be built (depending whether (i,j) belongs to E 

and on the value of WV): 

(a) If (i,j)@E: 

Sl s1 Sl 

(Bo)ij = Sl s2 s1 I I =9ZI1. 

Sl St Sl 

(b) If wii = 1: 

Sl s1 s1 

(Bo)ly = s1 s2 Sl 

[ 1 = 592. 

Sl s2 Sl 
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x +1 y 

-1 x +1 

To = 

Fig. 21. Transformation of a finite bipartite-balanced graph into an initial tile configuration. 

s3 4 

Fig. 22. Set of admissible tiles & 

(c) If wij= - 1: 

s1 Sl $1 

(Bo)g = s2 32 % 

[ I 

=B&_ 

fl s2 s1 

4.3. Auxiliar conjgurations 

Let $, = {s~,s~,s~,s~} be the new set of admissible tiles that appears in Fig. 22: 

Consider the following one-to-one relation between a T&initial confi~ation I& and 

a &initial configuration q {see Fig. 23): 

(i) (&)v=& H (Bo)v=%~~ fork= 1,2,3, where 

Remark that, in terms of unit tiles, previous transformation is equivalent to replace 

all the st tiles: the ones located at the comers of a block by ~3 and the others 
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(ii) 

4.4. 

Fig. 23. yz-initial configuration G associated with the .Tz-initial configuration of Fig. 21 

by ~4. With respect to the s2 tiles, the ones not located at the center of a block 

are replaced by sg. 

(G)lk = 
- i 

s4 if k=O(mod3), 

33 otherwise, 

(TOhI = 
- i 

s4 if k=O(mod3), 

s3 otherwise. 

Aligned configurations 

Definition 5. Let % be a pz-configuration. We say that $J is an aligned conJguration 

if and only if there is no arrow in To pointing to a null tile ~3. (Notice that To is not 

an aligned configuration.) 

Lemma 3. Given a Fz-configuration l&, there exists a rotation 02 such that 2, is 

un aligned conjiguration and c( Ton, ) d c( ToI ). 

Proof. We apply to an arbitrary Yz-configuration To, the following procedure (see 

Fig. 24): 

Step 1: Erase every single arrow (r ) which does not lie on a 3i-column or a 3j-row 

for i,jE{l,..., (n- 1)/3}. 

Step 2: For each tile (that after step 1 remains) s2 which is not located at the center 

of a block, erase its single arrow (1‘) and then rotate it in one unit. 

From previous procedure we see that: 

0) 
(ii) 

The output is an aligned configuration denoted by G,. 

With first step the global cost function increases its value at most 20 times the 

number of double arrows of To, which do not lie on a 3i-column or a 3j-row (for 

i, j, E { 1,. . . , (n - 1)/3}). In step 2, however, the cost function decreases at least 

in the same quantity. So, c(%,) d (To, ). 0 
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Fig. 24. Transformation of G, into an aligned configuration Gz 

(a) (b) Esl 
Fig. 25. (a) Feasible block. (b) Representation of a feasible block. 

4.5. Semi-feasible configurations 

Definition 6. Let (&)g be a block of a .$-configuration. We say that it is a feasible 

block if and only if every two non-null adjacent tiles of (&)q have colinear arrows 

pointing to the same direction (see Fig. 25(a)). 
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B # 

Fig. 26. Generic situation for a sq tile before being rotated. 

Comment 3. Notice that, for a feasible block, the orientation of its tiles is fixed by the 

orientation of the central one. So, one may represent a feasible block as in Fig. 25(b): 

Definition 7. Let G be a ?z-configuration. 

ration if and only if: 

(i) 31 is an aligned configuration. 

We say that fo is a semi-feasible configu- 

(ii) (Bo)~ is a feasible block v(i,j)~X x Y. 

Lemma 4. Given an aligned configuration L$, there exists a rotation 62 such that El2 

is a semi-feasible conjiguration and c( G, ) < c( 6, ). 

Proof. The following procedure transforms an aligned configuration $1, into a semi- 

feasible one ?& without increasing the global cost function: 

l Rotate in two units every s4 and sg tile pointing in the opposite direction of its 

adjacent central block tile. 

With respect to previous procedure we see that: 

(i) 
(ii) 

(iii) 

The output is a semi-feasible configuration that we denote $1,. 

For the SJ tiles to which the transformation is applied, we have the generic situ- 

ation of Fig. 26 (where # represents an arbitrary tile). 

When we rotate in two units ~4, the cost function could not increase (due to its 

interaction with tile B) more than it decreases (due to its interaction with tile A) 

(Fig. 27). 

For the s5 tiles to which the transformation is applied, we have the generic situ- 

ation of Fig. 28 (where / represents an arrow pointing up or down). 

When we rotate in two units s5 (Fig. 29), the cost function could not increase 

(due to its interaction with tile B) more than it decreases (due to its interaction 

with tile A). 0 

It is shown in Fig. 30 the way previous procedure works when it is applied to an 

arbitrary aligned configuration To,: 
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A 

$4 

B 

l. ~ 
# 

A 

s4 

L 
B # 

Fig. 27. Generic situation for a $4 tile after being rotated. 

Fig. 28. Generic situation for a SJ tile before being rotated 

A 

$5 

B 
~ 

A 

ss 

B ” 
Fig. 29. Generic situation for a sg tile after being rotated. 

Given a &configuration r~=((i;e),.,(r~).l,iie), we will separate the global cost 

function c into the following quantities: 

~j~~((~~)~) is the total cost inside the block (80)~. 

Cinr((To)t.) is the total cost inside the first column. 

ci”,((Ta),t ) is the total cost inside the first row. 

~,,~,h((&)ij) is the total cost on the bottom-horizontal border of the block (fio)ij. 

Cext,v((Be)ij) is the total cost on the left-vertical border of the block (Be)ij. 
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Fig. 30. Transformation of an aligned configuration into a semi-feasible one. 

Fig. 3 1. Local evaluations of the cost function 

Finally, for a yz;-configuration To, we define the global external cost in the kth row 

and the kth column of blocks (k = 1,. . ,1X( = 1 Y I) as follows: 

In Fig. 31 appears a ,$-configuration which satisfies: 

Ci,t((BO)ll)=23, Cint((~O)1.)=O, Ci”,((G).1)=20, c,,t,h((BB)22)=0> 

Cext,v((~o)21) = 1, c&o) = 12, C2(To) = 30. 
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Fig. 32. 3-feasible configuration. 

4.6.1. k-feasible con$gurations 
Definition 8. Let TO be a semi-feasible configuration. We say that TO is a k-feasible 
configuration if and only if (see Fig. 32): 

(i) Colinear arrows of the kth column of blocks and the arrow of tile (T&i point 

to the same direction. 

(ii) Colinear arrows of the kth row of blocks and the arrow of tile (To)i,sk point to 

the same direction. 

For each kE{l,...,IXI=JYI}, we define the following sets of indexes: 

C(-,k)={iEX: Wik=- l}, 

C(+,k)={jE Y: wkj=+ l}. 

Lemma 5. For a semi-feasible con$guration TO, it holds: 

+ c Icext,h(@dkj) - II 
jK(+,k) 

+ c &xt,v(BB)ik > 

iEO’\C(-_,k)) 

Proof. It suffices to note that: 
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Lemma 6. For a semi-feasible conjiguration To, it holds: 

(i) ck(To)= IC(-,k)l + IC(+,k)l H po is k-Ji?asible. 

(ii) ck(~~)2IC(-,k)l + IC(+,k)l f20 H 70 is not k-feasible. 

Proof. (i) Notice that a semi-feasible configuration ?$ is k-feasible if and only if 

\J(i,j)EX x Y: 

kxt,v((~(r)ik > = 
1 if u+k=- 1, 

0 otherwise, 

kxt,h((~Ohj) = 
1 ifWkj=l, 

0 otherwise. 

From Lemma 5 we conclude that this is true if and only if 

CT&) = ICC-,k)l + IC(+>k>l. 

(ii) (+) Direct consequence of part (i). 

(+) Since Ta is not k-feasible, there exists at least one pair of colinear arrows 

in the kth column or row of blocks pointing in opposite directions. That is to say: 

(3iEX) {(Wik= 1 V (i,k) $E) A (c,,,,v((Be)ik)=20)} 

V {Cwik= - 1) A (Cext,V((Be)ik)=21)}, 

V(g./‘E Y> {(W,= - 1 V (kj) @E) A (Cext,H((Bo)kj) =20)} 

v {Cwkj = - l) A (Gxt,H((~'e>kj> =21 I>. 

If together with this we consider Lemma 5, we conclude: 

c,&)> IC(+,k>l + ICC->k)l + 20. q 

4.6.2. Frustrated blocks 

Definition 9. Let ??o = ((T~)i.,(p;)).i,&) be a semi-feasible configuration. We say that 

(&)i, is a frustrated block (see Fig. 33) if and only if the double arrows of the 

central tile are not colinear with the double arrows of its adjacent tile (which codes 

an arc of the graph G =(X, Y,E)). In other words, (Be)ij satisfies one of the following 

conditions: 

(Bo)~~ = 42 and esi,sj is an odd rotation V 

(Bo)ij = &3 and 0si,sj is an even rotation. 

Obviously, a block of the form $1 is never frustrated. 
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Fig. 33. Frustrated block: (&o)ii =&j and &J, =2. 

It follows from previous definition: 

Lemma 7. For a semi-feasible. configuration pi, it holds: 

( 

2 if (i,j)$E, 

cint((ie)ij) = 3 if (i,j)~E and (Be)ij is frustrated, 

1 if (i, j) E E and (Bd)ij is not frustrated. 

And: %t((rk>l*) = Cint((js)ml> = 0. 

4.6.3. Feasibility 
Definition 10. Let i$ be a &configuration. We say that T, is a feasible configuration 
if and only if every two non-null adjacent tiles of TQ have colinear arrows pointing 

to the same direction. (Notice that if a tile configuration is feasible, then it is semi- 

feasible.) 

The relation between feasible configurations and k-feasible configurations follows 

from the definition: 

Lemma 8. To is feasible if and only if it is k-feasible Qk E { 1,. . . , (n - 1)/3}. 

Comment 4. In order to build a feasible configuration TO, it suffices to fix the orienta- 

tion of the blocks in the diagonal of such configuration (see Fig. 34). It follows that 

the set of feasible configuration has cardinal&y 41xl = 41’1 = 4(“-‘)/3. 

Lemma 9. For a feasible conjiguration PO, it holds: 

1 . 
Proof. For a gz-configuration, one may decompose the global cost as follows: 

c(G)= c c&e)+ c Cint((~O)ij) + Cint((EJ)l.) + Cint((G).l) 

kE{l,...,~} (i,j)EXxY 
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(4 (b) 

Fig. 34. Feasible configurations. (a) Orientation of the diagonal blocks. (b) Orientation of the whole config- 

uration. 

since ~~~ is feasible, we have from Lemma 6: 

c 
kE{ I,....~} 

c,(%)=,,,,~ti, {Ic(+,k)l+ IC(-,k)lI = IEI 
’ ’ 3 

obtaining: 

4%) = IEl + c Cint((@0>ij 1 + Cmt((%)I.) + Cint((G)ml) 
(i,j)EXxY 

considering now Lemma 7: 

cm = IEl + 2 I{(i,j) EX x Y: (i,j) $2 E}I 

+ 3 I{(i,j) E E: (@g)ij is frustrated}/ 

+ 1 l{(i,j)~E: (@o)ij is not frustrated}/ 

simplifying: 

C(%)= /El +2(/X1 . (YI - IEl) + (3 - 1) I{(i,j)~ E: (@e)ij is frustrated}I+IE 

concluding finally the lemma: 

c&)=2 

I 

. 0 

Lemma 10. Given a semi-feasible conjiguration To,, there exists a rotation 02 such 

thut To2 is a jiasible conjiguration and c( TQ, ) d c( TO, ). 

Proof. We proceed by transforming, for each k E { 1,. . , (n - 1)/3}, the original con- 

figuration To, into a k-feasible one without changing the interaction of the kth column 

of blocks and the kth row of blocks with the rest of the configuration (see Fig. 35): 

H=H, 

For each kE{l,...,(n- 1)/3} 
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(a) (b) 

3 

03 0 0 El 3 

2 

(d 

Fig. 35. (a) 4 is not 2-feasible. (b) ?$ is 2-feasible. (c) Rotations applied to the blocks. 

If FQ is not k-feasible 

Preserve the orientation of the diagonal block (&)kk 

Rotate properly (&~~)ik with i EX\{K}, and (&)kj with j E Y\(k) 

Rotate properly T,,jk and Txk, 1 

02 = 0. 

Suppose that we obtain TOI applying step k to the non k-feasible configuration GJ,. 

Then: 

c<%) - c(E)) =ck(%) - ck(%) + c [%t((BfP)ik) - cint((~Q)ik)] 
iEX 

+ c ICint((&‘)kj) - cint((BO)kj)l 
jEY 

by Lemmas 6 and 7: 

c(Tp) - c(T~) d -20 + (3 - 1) I{i EX: (&)ik is frustrated}1 

+(3 - 1) l{j E Y: (&)kj is frustrated}/ 

it is direct that 

c(T&-c&d -20+2I{i~X: (i,k)EE}I+2l{jEY: (k,j)EE}I 

and since each node of graph G =(X, Y, E) has degree less than five, we conclude: 

&)-&)<-20+2(5+5)=0. 

On the other hand, by Lemma 8 we know that at the end of the process we obtain 

a feasible configuration To. 0 

Lemma 11. Given a feasible configuration TO,, there exists a rotation 02 such that 

the &-conjiguration TQ> satisfies c( l& ) = c( To, ). 

Proof. We apply to an arbitrary feasible configuration To, in the following procedure. 

l Step 1: Rotate in three units every s5 tile located in a frustrated block. In other 

words, put the double arrows in parallel and pointing in the same direction of the 

double arrows of its adjacent central block tile (see Fig. 36). 
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(a> 

Fig. 36. (a) Frustrated block (b) Step 1 for a frustrated block. 

(a> (b) 

153 

Fig. 37. (a) Step 2a for an originally frustrated block. (b) Step 2a for an originally non-frustrated block. 

l Step 2a: For each block we add vertical and horizontal arrows (1‘) to the non-central 

tiles in order to obtain st and s2 tiles oriented as the central one (see Fig. 37). 

l Step 2b: Transform the ~3 and s4 tiles of the first column and the first row into .sl 

tiles oriented as their adjacent block tiles (see Fig. 38). 

With respect to previous procedure we see that: 

(i) 
(ii) 

(iii) 

4. 7. 

The output is a S92-configuration denoted by G2. 

With first step the global cost function increases its value 20 times the number 

of frustrated blocks. 

With second step the global cost function decreases its value 20 times the number 

of frustrated blocks originally frustrated. 0 

Equivalence between problems 

Definition 11. We define the following bijection C#J between the orientations of spin 

glasses (asignation of f 1 values to the nodes of graph G = (X, Y,E)) and the set of 

feasible configurations: 

4: ((xi)rEx,(yi)rEr)E (-1, 1}2’X’ H % where 

(0 if x,+ = +l, yk = +l, 

8 1 if xk = -1, yk = +l, 
3k,3k 

= 

2 if xk = -1, Yk = -1, 

(3 ifXk=+l, Yk=-1. 
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Fig. 38. Transformation of a feasible configuration into a Yz-configuration with the same cost. 

Notice that this bijection is well defined. In fact, when we fix the orientations of the 

central tiles of the diagonal blocks, we fix the orientation of the whole configuration 

(see Comments 3 and 4). 

Lemma 12. Between the quadratic product of the spin glasses and the orientations 

of the tiles in the feasible configurations, the following relation holds: 

[3(x,y) E (-1, 1}2’x’ such that xi . yj = Uij] 

H 

[30 E {0,1,2,3}“’ such that !?o is a feasible configuration and ( -1)f’3r.3/ = Mij]. 

Proof. We use bijection 4 and we prove for the case xi = 1 A yj = - 1 (the other three 

are analogous). 
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l For the case i = j we have (by 4) H3i,j,i = 3, and we conclude directly that x, .Vi = 
(_ 1 p. 3,. 

l For the case i # j: 

Xi=lr\yj=-1 

‘2 

hi.31 E (0.3) A fAj,jj E {2,3) (by 4) 

H 

(&J,; = 
H 

(B”,),j = 

H 

i 

H 

H3i,3j = 3. q 

Lemma 13. Between the spin glasses energy and the feasible conjigurations cost, we 

have the following relation: 

3(x,y) E (-1, 1}2’x’ such that 8(x, y) = C (wi,xiX, ) 2 k2 
(L./J E E 1 w 

[3Q E {0,1,2,3}“’ such that po is a feasible configuration and c( ?$) d kl 1. 

Proof. Let F be the set of feasible configurations and let &,i be the rotation Qji.jj. 

By Lemma 12: 

8(x, y)>kz H 38 such that GE F and C wu(-l)i)ii >k2 
(0 E 15 

H 38 such that Fo E F and 
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++ 38 such that Tk E F and 

by definition of kl (see Section 4.2): 

b(x,y)>kze338 such that %EF and 

finally, by Lemma 9: 

is a feasible configuration and c(?e) < kl . 0 

Lemma 14. E~~~z~~~e~ce between problems: 

[3(x,y)E (-1, l}‘2’x’ such that 8(x, y) B k2] H [38 such that c(Z’s) < kl]. 

Proof. (-t=) Let @ belongs to (0, 1,2,3}“” such that c( 7’8) Gkl. 
By Lemma 3, 38 such that pg is an aligned confi~ration and c(G) <kl. 

By Lemma 4, 38 such that po is a semi-feasible configuration and c( r?;B) % kl . 
By Lemma 10, 30 such that 6 is a feasible configuration and c( Fo;B) d k, . 

Finally, by Lemma 12 we conclude. 

(+) Let (x,~)E (-1, l}121xl such that &x,y)>k2. 
By Lemma 12, 38 such that pg is a feasible confi~ration and c( Fe) d kl . 

By Lemma 11, 38 such that c(Te)dkl. cl 

By Lemma 14 (together with the facts that MTR(Yj) E NP, the NP-completeness 

of SG, and the polynomial&y of the reduction) we conclude that MTR(Yz) is NP- 

complete. El 

4.8. Polynomial subproblems 

In the following three theorems we introduce polynomial sub-problems by restrict- 

ing two MTR-parameters: the number of admissible tiles and the region where tile 

assignments are defined on. 

Theorem 4. MTR(Y) is a polynomial problem for any singleton set of admissible 
tiles Y. 
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Fig. 39. Perfect tiling with one tile. 

Fig. 40. Fixed width rectangle. 

Proof. When ]Y] = 1 it is trivial to obtain a perfect tiling (see Fig. 39). C 

Theorem 5. MTR(F) is a polynomial problem when tile assignments are de$ned on 

fixed width rectangles (for any set of admissible tiles F). 

The proof appears in [lo] and, as in the one-dimensional case (see [9]), it simply 

consists to reduce MTR into the shortest path problem (Fig. 40). 

Considering a Z2-region as a graph in which its adjacent cells (or nodes) are con- 

nected by arcs, it follows: 

Theorem 6. MTR(Y) is a polynomial problem when tile assignments are dejined on 

acyclic regions (for any set of admissible tiles 5). 

Proof. The following algorithm solves the problem: 

Initialization: Consider an arbitrary node (of the region where the tile assignment 

is defined on) as a root and visualize the graph as a tree (see Fig. 41). 

Associate to each node v the orientation-cost vector (vg, ~1, ~2, ~3) E N4 and initialize 

it with (O,O,O,O). That means, if we denote vi at instant t as Vi(t), we have for all 

v E V : l&(O) = VI(O) = vz(O) = q(0) = 0. 

Iteration: The idea of the algorithm is to obtain a single node tree by eliminating 

systematically the leaves. 

Let I E Y be a leaf and f E V its father at instant t. Before eliminating 

transfer the information it contains as follows: 

1 we must 

fi(t+ l>=“h(t>+ j,I*2 3j{ lj(t) + Cij(fs I>}, i = 0,1,2,3, 
I 9 1 
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Fig. 41. (a) Region where the tile assignment is defined on. (b) Acyclic graph. (c) Associated tree 

where C,(f) I) is the interaction cost between the tiles located on nodes f and 1 

when their orientations are i and j, respectively. 

Notice that the relevant information is always stored in the leaves. In fact, for a 

leaf 1, the value Zi corresponds to the following: if the orientation of the tile located 

on I is i then the minimal cost of the configuration that only includes its descendants 

(already eliminated) is Zi. 

Previous algorithm stops when it reaches a tree with a single-node r. Therefore, there 

exists a configuration whose cost is less than k if and only if min{rs,ri,r2,rs} Gk. 

Finally, due to the fact that the number of steps required by the algorithm is propor- 

tional to the number of nodes, we conclude that it solves the problem in polynomial 

time. 0 
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