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ABSTRACT
We establish that every monadic second-order logic (MSO) formula
on graphswith bounded treedepth is decidable in a constant number
of rounds within the CONGEST model. To our knowledge, this
marks the first meta-theorem regarding distributed model-checking.
Various optimization problems on graphs are expressible in MSO.
Examples include determining whether a graph 𝐺 has a clique
of size 𝑘 , whether it admits a coloring with 𝑘 colors, whether it
contains a graph 𝐻 as a subgraph or minor, or whether terminal
vertices in 𝐺 could be connected via vertex-disjoint paths. Our
meta-theorem significantly enhances the work of Bousquet et al.
[PODC 2022], which was focused on distributed certification of
MSO on graphs with bounded treedepth. Moreover, our results
can be extended to solving optimization and counting problems
expressible in MSO, in graphs of bounded treedepth.

CCS CONCEPTS
• Theory of computation → Distributed algorithms; Verifica-
tion by model checking.
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1 INTRODUCTION
Distributed decision and distributed certification are two comple-
mentary fields of distributed computing, closely associated with
distributed fault-tolerant computing. Both fields are addressing the
problem of checking whether a distributed system is in a legal state
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with respect to a given specification, or not. We examine this prob-
lem in the classical context of distributed computing in networks,
under the standard CONGEST model. Recall that this model as-
sumes networks modeled as simple connected 𝑛-node graphs, in
which every node is provided with an identifier on𝑂 (log𝑛) bits that
is unique in the network. Computation proceeds synchronously as
a sequence of rounds. At each round, every node sends a message
to each of its neighbors in the graph, receives the messages sent by
its neighbors, and performs some individual computation. A crucial
point is that messages are restricted to be of size 𝑂 (log𝑛) bits.

Distributed Decision. Given a boolean predicate Π on graphs,
e.g., whether the graph is 𝐻 -free for some fixed graph 𝐻 , a decision
algorithm for Π takes as input a graph 𝐺 = (𝑉 , 𝐸), and outputs
whether 𝐺 satisfies Π or not. Specifically, every node 𝑣 receives as
input its identifier id(𝑣), and, after a certain number of rounds of
communication with its neighbors, it outputs accept or reject, under
the constraint that 𝐺 satisfies Π if and only if the output of each of
the nodes 𝑣 ∈ 𝑉 is accept. In other words,

𝐺 |= Π ⇐⇒ ∀𝑣 ∈ 𝑉 (𝐺), out(𝑣) = accept.

Some predicates are easy to decide locally, i.e., in a constant num-
ber of rounds. A canonical example is checking whether the (con-
nected) graph 𝐺 is regular, for which one round suffices. However,
other predicates cannot be checked locally, with canonical example
checking whether there is a unique node of degree 3 in the network.
Indeed, checking this property requires Ω(𝑛) rounds in networks
of diameter Θ(𝑛), as two nodes of degree 3 may be at arbitrarily
large distances in the graph. Another example of a difficult problem
is checking whether the graph is 𝐶4-free, i.e., does not contain a 4-
cycle as a subgraph, which requires Ω̃(

√
𝑛) rounds [4]. One way to

circumvent the difficulty of local checkability, i.e., to address graph
predicates requiring a large number of rounds for being decided, is
to consider distributed certification.

Distributed Certification. A certification scheme for a boolean
predicate Π is a pair prover-verifier. The prover is a centralized, com-
putationally unbounded, non-trustable oracle. Given a graph 𝐺 =

(𝑉 , 𝐸), the prover assigns a certificate 𝑐 (𝑣) ∈ {0, 1}★ to each node
𝑣 ∈ 𝑉 . These certificates are forged by the prover using the com-
plete knowledge of the graph𝐺 . The verifier is a distributed 1-round
algorithm. Each node 𝑣 takes as sole input its identifier id(𝑣) and its
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certificate 𝑐 (𝑣). In particular, for distributed decisions, 𝑣 is unaware
of the graph 𝐺 . Every node 𝑣 just exchanges once its identifier and
certificate with its neighbors, and then it must output accept or
reject.

The certification scheme is correct if the following two conditions
hold. The completeness condition states that if𝐺 satisfies Π, then the
oracle can provide the nodes with certificates that they all accept.
The soundness condition says that if 𝐺 does not satisfy Π, then no
matter the certificates assigned by the oracle to the nodes, at least
one of them rejects. That is, the role of the verifier is to check that
the collection of certificates assigned to the nodes by the prover is
indeed a global proof that the graph satisfies the predicate. In other
words,

𝐺 |= Π ⇐⇒ ∃𝑐 : 𝑉 (𝐺) → {0, 1}★ : ∀𝑣 ∈ 𝑉 (𝐺), out(𝑣) = accept.

The main measure of complexity of a certification scheme is the
maximum size of the certificates assigned by the prover to the nodes
on legal instances, i.e., for graphs 𝐺 satisfying the given predicate.
Ideally, to be implemented in a single round under the CONGEST
model, the certificates should be of size 𝑂 (log𝑛) bits. Interestingly,
many graph properties can be certified with such short certificates,
including acyclicity [15], planarity [8], bounded genus [6, 9], etc.
On the other hand, basic graph properties require large certificates,
including diameter 2 vs. 3 (requiring Ω̃(𝑛)-bit certificates [2]), non-
3-colorability (requiring Ω̃(𝑛2)-bit certificates [13]),𝐶4-freeness (re-
quiring Ω̃(

√
𝑛)-bit certificates [4]), etc. The following question was

thus raised, under different formulations (see, e.g., [7]):What are
the graph properties that admit certification schemes with 𝑂 (log𝑛)-
bit certificates, or, to the least, certificates of polylogarithmic size?
Answering this question requires formalizing the notion of “graph
predicate”.

Monadic Second-Order Logic. Recall that, in the first-order logic
(FO) of graphs, a graph property is expressed as a quantified log-
ical sentence whose variables represent vertices, with predicates
for equality (=) and adjacency (adj). An FO formula is therefore
constructed according to the following set of rules, where 𝑥 and 𝑦
are vertices, and 𝜑 and𝜓 are FO formulas:

𝑥 = 𝑦 | adj(𝑥,𝑦) | 𝜑 ∨𝜓 | 𝜑 ∧𝜓 | ¬𝜑 | ∃𝑥𝜑 | ∀𝑥𝜑.

Themonadic second-order logic (MSO) extends FO by allowing quan-
tification on sets of vertices and edges, with the incidence predicate
inc(𝑣, 𝑒) indicating whether vertex 𝑣 is incident to edge 𝑒 , and the
membership (∈) predicate. Since FO can express properties such as
𝐶4-freeness, which, as mentioned before, requires certificates on
Ω̃(

√
𝑛) bits, there is no hope of establishing a meta-theorem about

FO regarding compact certification in all graphs. Nevertheless, a
breakthrough in the theory of distributed certification was recently
obtained by Bousquet, Feuilloley, and Pierron [7], who showed
that every MSO predicate admits a distributed certification scheme
with 𝑂 (log𝑛)-bit certificates in the family of graphs with bounded
treedepth.

Algorithmic Meta-Theorems. A vibrant line of research in sequen-
tial computing is the development of algorithmic meta-theorems.
According to Grohe and Kreutzer [14], algorithmic meta-theorems
assert that certain families of algorithmic problems, typically de-
fined by some logical and combinatorial conditions, can be solved

efficiently under some suitable definition of this term. Such the-
orems play an essential role in the theory of algorithms as they
reveal a profound interplay between algorithms, logic, and combi-
natorics. One of the most celebrated examples of a meta-theorem is
Courcelle’s theorem, which asserts that graph properties definable
in MSO are decidable in linear time on graphs of bounded treewidth
[3].

Bousquet, Feuilloley, and Pierron in [7] introduced the explo-
ration of algorithmicmeta-theorems in distributed computing. Their
primary result in this direction is that any MSO formula can be
locally certified on graphs with bounded treedepth using a logarith-
mic number of bits per node, which represents the golden standard
in certification. This theorem has numerous consequences for certi-
fication — for more details, we refer to [7]. Notably, the FO property
𝐶4-freeness, and the MSO property non-3-colorability, which both
necessitate certificates of polynomial size in general, can be certified
with just 𝑂 (log𝑛)-bit certificates in graphs of bounded treedepth.
Bousquet et al.’s result has been extended to more comprehensive
classes of graphs, including graphs excluding a small minor [1],
as well as graphs of bounded treewidth, and graphs of bounded
cliquewidth. However, the last two extensions come both at the cost
of slightly larger certificates, of 𝑂 (log2 𝑛) bits, as seen in [11] and
[10], respectively.

With significant advances in developing meta-theorems for dis-
tributed certification, there’s a notable absence of similar results
for distributed decision. It prompts a natural question: could such
results be obtained for the round-complexity of CONGEST? More
concretely, the fundamental inquiry that remains unaddressed by
Bousquet et al.’s paper, and by the subsequent works regarding
distributed certification of MSO predicates is:

Question.What is the round-complexity in CONGEST of
deciding MSO formulas in graphs of bounded treedepth?

A first step in answering this question was proposed in [17]
where it is stated that, in any graph class of treedepth at most 𝑑 ,
for every fixed connected graph 𝐻 , 𝐻 -freeness can be decided in
𝑂 (1) rounds in CONGEST. In this paper, we offer a comprehensive
answer to the question. To elucidate our results, we first need to
define the treedepth of a graph.

Treedepth. For any non-negative integer𝑑 , a (connected) graph𝐺
has treedepth at most 𝑑 if there exists a rooted tree 𝑇 spanning
the vertices of 𝐺 , with depth at most 𝑑 , such that, for every edge
{𝑢, 𝑣} in 𝐺 , 𝑢 is an ancestor of 𝑣 in 𝑇 , or 𝑣 is an ancestor of 𝑢 in 𝑇 .
The treedepth of a graph 𝐺 , denoted by td(𝐺), is the smallest 𝑑 for
which such a tree exists.

The class of graphs with bounded treedepth, i.e., of treedepth 𝑑
for some fixed𝑑 ≥ 0, has strong connections withminor-closed fam-
ilies of graphs. Specifically, for any family F of graphs closed under
taking graphminors, the graphs in F have bounded treedepth if and
only if F does not include all the paths [16]. Similarly, the graphs
with bounded treedepth have a finite set of forbidden induced sub-
graphs, and any property of graphs monotonic with respect to
induced subgraphs can be tested in polynomial time on graphs of
bounded treedepth [16]. Computing the treedepth of a graph is
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NP-hard, but since treedepth is monotonic under graph minors, it
is fixed-parameter tractable (FPT) [12]. Last but not least, MSO and
FO have the same expressive power in graph classes of bounded
treedepth [5].

2 OUR RESULTS
Distributed Model Checking. We prove that, for every MSO for-

mula 𝜑 , there is an algorithm A that, for every 𝑛-node graph 𝐺 ,
decides whether 𝐺 |= 𝜑 in 𝑂 (22td(𝐺 ) ) rounds in the CONGEST
model. That is, the round-complexity of A depends only on the
treedepth of the input graph, and on the MSO formula, i.e., it does
not depend on the size 𝑛 of the graph. Thus A performs a constant
number of rounds in any class of graphs with bounded treedepth. In
particular, deciding non-3-colorability can be done in 𝑂 (1) rounds
in graphs of bounded treedepth, in contrast to general graphs, for
which deciding non-3-colorability requires a polynomial number of
rounds by [13]. Our meta-theorem is essentially the best that one
may hope regarding distributed model checking MSO formulas in a
constant number of rounds in CONGEST. Indeed, the FO predicate
“there is at least one vertex of degree > 2” requires Ω(𝑛) rounds to
be checked in this class. Hence our theorem cannot be extended to
graphs of bounded treewidth or bounded cliquewith, actually not
even to bounded pathwith, and not even to the class P ∪ B where
P is the set of all paths, and B is the set of all graphs composed of
a path to which is attached a claw at one of its endpoints.

Labeled Graphs. We also consider distributed model checking of
labeled graphs. For instance, one can check whether a given set of
vertices is a feedback vertex set, i.e., whether the graph obtained
by removing this set of vertices is acyclic. For such a predicate, it
is sufficient to add a unary predicate to the logical structure used
to mark the nodes, say mark(𝑥) = 𝑡𝑟𝑢𝑒 means that vertex 𝑥 is
in the set. Using this unary predicate, 𝜑 can express the fact that
there are no cycles in 𝐺 passing only trough nodes 𝑥 for which
mark(𝑥) = 𝑓 𝑎𝑙𝑠𝑒 . Since we also deal with MSO, we can also label
edges. For instance, one can check whether a given set of edges
forms a spanning tree. Indeed, it is sufficient to introduce a unary
predicate used to mark the edges:mark(𝑒) = 𝑡𝑟𝑢𝑒 means that edge 𝑒
is in the set. As for feedback vertex set, using this unary predicate,
𝜑 can express the fact that the set of marked edges is a spanning
tree (i.e., every node is incident to at least one marked edge, and
any two vertices are connected by a path of marked edges). We
show that deciding MSO formulas on labeled graphs of bounded
treedepth can be done in 𝑂 (1) rounds in the CONGEST model.

Optimization. More generally, we also consider the optimiza-
tion variants of decision problems expressible in MSO on graphs
of bounded treedepth. For instance, an independent set can be ex-
pressed as an MSO formula with a free variable 𝑆 , such as 𝜑 (𝑆) =
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ¬adj(𝑥,𝑦). Then,𝑚𝑎𝑥𝜑 , i.e., maximum independent
set, consists in, given any graph 𝐺 = (𝑉 , 𝐸), finding the largest set
𝑆 ⊆ 𝑉 such that 𝐺 |= 𝜑 (𝑆). We show that, for every MSO formula
𝜑 (𝑆) with free variable 𝑆 ⊆ 𝑉 or 𝑆 ⊆ 𝐸, there is an algorithm for
graphs of bounded treedepth solving𝑚𝑎𝑥𝜑 (and𝑚𝑖𝑛𝜑) in a con-
stant number of rounds in the CONGESTmodel. This constant is of
the form𝑂 (𝑔(td(𝐺), 𝜑)) for some function 𝑔. Due to the expressive
power of MSO, our results yield algorithms with a constant number

of rounds in the CONGEST model on graphs of bounded treedepth
for numerous popular optimization problems including minimum
vertex cover, minimum feedback vertex set, minimum dominating
set, maximum independent set, maximum induced forest, maximum
clique, maximum matching, minimum spanning tree, Hamiltonian
cycle, cubic subgraph, planar subgraph, Eulerian subgraph, Steiner
tree, disjoint paths, min-cut, minor and topological minor contain-
ment, rural postman, 𝑘-colorability, edge 𝑘-colorability, partition
into 𝑘 cliques, and covering by 𝑘 cliques. Importantly, we also ex-
tend our results to counting problems, such as counting triangles
or perfect matchings.

Graphs with Bounded Expansion. Finally, we obtained some ap-
plications of our results to much larger classes of graphs, namely
graphs of bounded expansion (see [16] for an extended introduc-
tion). Graphs of bounded expansion include planar graphs, and
more generally, all classes of graphs defined from excluding minor.
It was shown [17] that, for every class G of graphs with bounded
expansion, and every positive integer 𝑝 , there is an algorithms
performing in 𝑂 (log𝑛) rounds under the CONGEST model that
partitions the vertex set 𝑉 of any graph 𝐺 = (𝑉 , 𝐸) ∈ G into 𝑓 (𝑝)
parts𝑉1, . . . ,𝑉𝑓 (𝑝 ) such that every collection𝑉𝑖1 , . . . ,𝑉𝑖𝑞 of at most
𝑝 parts, 1 ≤ 𝑞 ≤ 𝑝 , {𝑖1, . . . , 𝑖𝑞} ⊆ {1, . . . , 𝑓 (𝑝)}, induces a (not nec-
essarily connected) subgraph of 𝐺 with treedepth at most 𝑝 . The
function 𝑓 solely depends on the considered class G of bounded
expansion. The vertex partitioning 𝑉1, . . . ,𝑉𝑓 (𝑝 ) is called a low
treedepth decomposition with parameter 𝑝 . Plugging in our tech-
niques into this framework, we show that, for every connected
graph 𝐻 , 𝐻 -freeness can be decided in 𝑂 (log𝑛) rounds under the
CONGEST model in any class of graphs with bounded expansion.
This result was claimed in [17] with no proofs. We provide that
claim with a complete formal proof.

3 OPEN PROBLEM
There might exist some fragments of FO that could be tractable on
graphs of bounded expansion in the distributed setting. It would
be interesting to identify the exact boundaries of intractability in
this context, regarding both distributed decision, and distributed
certification. An initial step in this direction was taken in [17], re-
sulting in a distributed algorithm for computing a low treedepth
decomposition of graphs of bounded expansion, running in𝑂 (log𝑛)
rounds under CONGEST. As we pointed out, this result enables
to efficiently decide FO-expressible decision problems (such as 𝐻 -
freeness, for 𝐻 connected) in classes of graphs with bounded ex-
pansion, in 𝑂 (log𝑛) rounds. We restate a question stated in [17]:
Given a local FO formula 𝜑 (𝑥), i.e., a formula where 𝜑 (𝑥) depends
on a fixed-radius neighborhood of vertex 𝑥 only, can we mark all
vertices satisfying 𝜑 in 𝑂 (log𝑛) rounds?

ACKNOWLEDGMENTS
Fedor Fomin received funding from the Research Council of Nor-
way via the project BWCA (grant no. 314528); Pierre Fraigniaud
received additional supports from ANR projects DUCAT (ANR-20-
CE48-0006) and QuDATA (ANR-18-CE47-0010); Pedro Montealegre
received funding from FONDECYT 1230599, and Ivan Rapaport
from FB210005, BASAL funds for centers of excellence from ANID-
Chile, and FONDECYT 1220142.



PODC ’24, June 17–21, 2024, Nantes, France Fedor Fomin, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca

REFERENCES
[1] Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. 2021. Local Certification

of Graph Decompositions and Applications to Minor-Free Classes. In 25th Inter-
national Conference on Principles of Distributed Systems (OPODIS) (LIPIcs, Vol. 217).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:17.

[2] Keren Censor-Hillel, Ami Paz, and Mor Perry. 2020. Approximate proof-labeling
schemes. Theor. Comput. Sci. 811 (2020), 112–124.

[3] Bruno Courcelle. 1990. The Monadic Second-Order Logic of Graphs. I. Rec-
ognizable Sets of Finite Graphs. Inf. Comput. 85, 1 (1990), 12–75. https:
//doi.org/10.1016/0890-5401(90)90043-H

[4] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the power of the
congested clique model. In 33rd ACM Symposium on Principles of Distributed
Computing (PODC). 367–376.

[5] Michael Elberfeld, Martin Grohe, and Till Tantau. 2016. Where First-Order and
Monadic Second-Order Logic Coincide. ACM Trans. Comput. Log. 17, 4 (2016),
25.

[6] Louis Esperet and Benjamin Lévêque. 2022. Local certification of graphs on
surfaces. Theor. Comput. Sci. 909 (2022), 68–75.

[7] Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. 2022. What Can Be
Certified Compactly? Compact local certification of MSO properties in tree-like
graphs. In 41st ACM Symposium on Principles of Distributed Computing (PODC).
131–140.

[8] Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric
Rémila, and Ioan Todinca. 2021. Compact Distributed Certification of Planar
Graphs. Algorithmica 83, 7 (2021), 2215–2244.

[9] Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric
Rémila, and Ioan Todinca. 2023. Local certification of graphs with bounded genus.
Discret. Appl. Math. 325 (2023), 9–36.

[10] Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan
Todinca. 2023. Distributed Certification for Classes of Dense Graphs. In 37th In-
ternational Symposium on Distributed Computing (DISC) (LIPIcs, Vol. 281). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:17.

[11] Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. 2024. A
Meta-Theorem for Distributed Certification. Algorithmica 86, 2 (2024), 585–612.
https://doi.org/10.1007/S00453-023-01185-1

[12] Jakub Gajarský and Petr Hlinený. 2015. Kernelizing MSO Properties of Trees of
Fixed Height, and Some Consequences. Log. Methods Comput. Sci. 11, 1 (2015),
1–26.

[13] Mika Göös and Jukka Suomela. 2016. Locally Checkable Proofs in Distributed
Computing. Theory Comput. 12, 1 (2016), 1–33.

[14] Martin Grohe and Stephan Kreutzer. 2009. Methods for Algorithmic Meta Theo-
rems. In Model Theoretic Methods in Finite Combinatorics - AMS-ASL Joint Special
Session, Vol. 558. AMS, 181–206. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.395.8282&rep=rep1&type=pdf

[15] Amos Korman, Shay Kutten, and David Peleg. 2010. Proof labeling schemes.
Distributed Comput. 22, 4 (2010), 215–233.

[16] JaroslavNešetřil and Patrice Ossona deMendez. 2012. Sparsity - Graphs, Structures,
and Algorithms. Algorithms and combinatorics, Vol. 28. Springer. https://doi.
org/10.1007/978-3-642-27875-4

[17] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2016. A distributed low tree-
depth decomposition algorithm for bounded expansion classes. Distributed
Comput. 29, 1 (2016), 39–49.

https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/S00453-023-01185-1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.8282&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.8282&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

	Abstract
	1 Introduction
	2 Our Results
	3 Open Problem
	Acknowledgments
	References

