
The Multiple Traveling Salesman
Problem on Spiders ?

Pedro Pérez-Escalona1, Ivan Rapaport1,2, José Soto1,2, and Ian Vidal2

1 Departamento de Ingenieŕıa Matemática, Universidad de Chile
{peperez,rapaport,jsoto}@dim.uchile.cl

2 Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile
ian.vidal@ing.uchile.cl

Abstract. Given (i) a set of N + 1 vertices, that corresponds to N
clients and 1 depot , (ii) the travel time between each pair of vertices and
(iii) a number m of salespersons, the multiple traveling salesman problem
consists in finding m tours such that, starting from the depot, all clients
are visited in such a way that some objective function is minimized.
The objective function we consider in this paper is the makespan. More
precisely, the goal is to find m tours (one for each salesperson) that
minimize the time elapsed from the beginning of the operation until the
last salesman comes back to the depot. We take into account handling
times, i.e., the time spent visiting each client, which we assume to be
the same for all of them. We address the problem in the particular case
where the depot-clients network is a spider, with the depot located at its
center. We show that this case is NP-hard even for 2 salespersons. We
also show structural properties of the optimal solutions. These properties
allow us to devise a PTAS for minimizing the makespan. More precisely,
a (1 + ε)-approximation algorithm with running time NO(m/ε).

Keywords: Multiple traveling salesman problem · Salesperson routing problem
· Approximation algorithms · Polynomial-time approximation schemes

1 Introduction

The Traveling Salesman Problem (TSP) is probably the best-known problem in
combinatorial optimization [12]. It finds countless applications in different fields,
ranging from logistics [13] to electronic circuit manufacturing [8].

The Multiple Traveling Salesman Problem (mTSP [3]) is a natural general-
ization of the TSP. While in the TSP there is one salesman who must visit all
the clients, in the mTSP there are m salespersons, who must jointly visit all the
clients. In turn, the Vehicle Routing Problem (VRP) is a generalization of the
mTSP, where the role of the salespersons is played by (capacitated) vehicles [11].

? Additional support from ANID via FONDEF IDeA I+D ID18I10250, PIA/Apoyo
a Centros Cient́ıficos y Tecnológicos de Excelencia AFB170001, Fondecyt 1170021
and Fondecyt 1181180.

2 P. Pérez-Escalona et al.

In the mTSP there are N clients, 1 depot, and m salespersons that must
visit all the clients starting from the depot. The standard objective function
is to minimize the sum of the length of all m tours. In this work we focus on
the min-max version of the mTSP. More precisely, the goal is to find m tours
(one for each salesperson) that minimize the makespan: the time elapsed from
the beginning of the operation until the last salesperson comes back to the
depot. In the literature this problem is equivalent to the Single-Depot Min-Max
Cycle Cover Problem (SDMMCCP). The aim of SDMMCCP is to cover all the
vertices of a weighted graph with at most m cycles, all of them passing through
one particular vertex D, the depot, such that the weight of the heaviest cycle is
minimized. Frederickson et al. devised a ρ + 1-approximation algorithms in [5],
where ρ is any approximation ratio for TSP (from Christofides [4] we know that
ρ ≤ 3/2).

The mTSP is NP-complete, as it is a generalization of the TSP. One way
to tackle NP-complete problems is to study subproblems and variants. In graph
problems a typical approach consists in restricting the topology of the network.
For instance, in [14], the authors study the mTSP in trees. They devise, for fixed
values of m, a pseudo-polynomial, (1 + ε)-approximation algorithm running in
time O(N2m−1/ε2k−2). Later, Becker and Paul develop, also for trees, a (1 + ε)-

approximation algorithm running in time NO(ε−8) [2].

In [16], Yu and Liu study the variant of mTSP with release times, which are
times fixed by each client before which she/he cannot be visited. They study
graphs as simple as paths, and they show that the problem of minimizing the
makespan is polynomially solvable.

One can also take into account handling times, i.e., the time of visit to
the clients. In fact, when each client has, together with his/her own release
time, his/her own handling time, the problem is called Multi-Vehicle Scheduling
Problem (VSP), and it is NP-complete even in a path [9, 10]. The authors also
give, for every fixed m, a (1 + ε)-approximation algorithm that runs in time
O((1 + 2/ε)m2N2(N + 21+2/ε)(mN3(1 + 2/ε)/ε)m(1+2/ε)). On the other hand,
Gaur et al. [7] give a polynomial-time 5

3 -approximation algorithm.

Bao and Liu study the VSP in cycles and trees [1]. They show, for cycles,
a 12/7-approximation algorithm for minimizing the makespan. In the case of
trees, they give a 9/5-approximation algorithm. In [15], Xu and Xu show a
max{3− 2/m, 2}-aproximation for VSP in arbitrary graphs.

The topology we consider in the present paper is a spider. A spider is a
tree with one distinguished vertex called the center and where every non-center
vertex has degree at most 2. We study the mTSP when the depot is located at
the center of a spider, and we consider uniform handling times (i.e, all clients
have the same handling time). We denote this problem by mTSPHT for spiders.

In this paper we prove that mTSPHT in a spider is strongly NP-hard, even
in a star (the complete bipartite graph K1,N). So we cannot hope to obtain a
fully polynomial time approximation scheme (FPTAS) unless P=NP. Our main
contribution, together with establishing structural properties of the optimal solu-

The Multiple Traveling Salesman Problem on Spiders 3

tions, is to give a polynomial time approximation scheme (PTAS), more precisely,
a (1 + ε)-approximation algorithm running in time NO(m/ε).

Our approach is based on an interesting structural result, namely, the exis-
tence of particular type of solutions, that we call well-structured . Such solutions
have the following very nice property: there is always one salesperson who visits
just blocks of consecutive clients located at the end of some branches; once we
remove such salesperson together with the clients he/she visited, the remaining
(smaller) solution is also well-structured. From this result we can compute the
solution of mTSPHT in the spider through dynamic programming.

As we have already mentioned, Becker and Paul develop, for trees, a (1 + ε)-

approximation running in time NO(ε−8) [2]. In the present work, the PTAS
we develop is devised for spiders (particular types of trees) and runs in time
NO(m/ε). The result of Becker and Paul is more general than ours (although
they do not consider handling times). Nevertheless, we would like to discuss a
little bit the difference when we restrict the two approaches to spiders.

Our algorithm, in the case of only one branch, takes time O(N2) and finds

the optimal solution, while the one of [2] takes time NO(ε−4) and gives a (1+ε)-
approximation. In the case of spiders with more branches, our algorithm gives a
(1 + ε)-approximation that takes time NO(m/ε), while the one of [2] takes time

NO(ε−8). Note that, for fixed values of m, a situation which is already NP-hard
for m = 2, our algorithm takes time NO(ε−1).

2 Definitions and Basic Results

Let G = (V ∪{D}, E) be a simple, connected, undirected graph where V is a set
of N clients and D is a depot. The number of salespersons is m. The function
t : E → R+ represents the travel time between neighboring nodes. We consider
the handling time, the time spent by any salesperson visiting each client, to be a
constant t0 ∈ R+. We assume that the route taken by any salesperson between
two nodes u and v is always the shortest one (in terms of time). Therefore, we
will replace the function t : E → R+ with its metric completion t :

(
V
2

)
→ R+ so

that the travel time between any two nodes is well-defined. We reserve the term
distance between two nodes to refer to the minimum number of edges in a path
from one node to the other.

For any r ∈ N+, we define a route S as a sequence of r+ 1 nodes in V ∪{D},
(sj)

r
j=0, where s0 = D. Nodes s1 and sr are, respectively, the first and last clients

visited in S. We note by C(S) the set of r clients visited in the route S (observe
that C(S) may be a strict subset of V). In other words, C(S) = {s1, . . . , sr}.
When there is no confusion we write S instead of C(S). The travel time of a route
S = (sj)

r
j=0 corresponds to the value T (S) =

∑r
j=1[t(sj−1, sj) + t0] + t(sr, D).

A set of m routes Ŝ = {S1, . . . , Sm} is feasible if C(S1)∪̇ . . . ∪̇C(Sm) = V . We

define the makespan(Ŝ) = max1≤k≤m T (Sk). In the Multiple Traveling Salesman
Problem with Handling Times (mTSPHT) the goal is to find a feasible set of m
routes that minimizes the makespan. In this work we study problem mTSPHT
when the graph G is a spider with the depot D located at its center.

4 P. Pérez-Escalona et al.

A branch B is a maximal path in G starting in the depot D. (Obviously, B
can be seen as a particular route). We denote by M ≥ 1 the number of branches,
and we assume that they are enumerated as B1, . . . , BM . We can encode every
vertex v ∈ V \ {D} with two positive integers: (1) the branch b where v belongs,
with 1 ≤ b ≤ M , and (2) the label j = label(v) defined as the distance from D
to v. We write v = vbj to refer to the unique vertex with label j and branch b.

Let Sk be a route and let Bb be a branch of the spider G. Let vk,b be the
farthest node of the branch Bb visited in Sk. If Sk does not include any node of
branch Bb, then vk,b = D. It is clear that the optimal solution for visiting the
clients of C(Sk) is to go branch by branch (the order of the branches does not
matter for the makespan), visiting all the clients until the farthest one, come
back to the depot, and then start with another branch. Therefore, we are going
to assume that this is indeed the route Sk taken by the k-th salesperson. In
other words, T (Sk) = 2

∑M
b=1 t(D, vk,b) + |Sk|t0.

Proposition 1 mTSPHT for stars (and thus, also for spiders) is strongly NP-
hard. In fact, with m = 2 it is still NP-hard.

Proof. We show a reduction from the Multiprocessor Scheduling Problem (MSP)
to mTSPHT. MSP is a strongly NP-hard problem when m is part of the
input, and remains NP-hard even for 2 available machines [6]. MSP is defined
as follows. There are N jobs J1, . . . , JN , each job Ji requires a processing time ti.
We have to schedule these N jobs in m machines in such a way that the makespan
(the largest completion time) is minimized. The reduction is as follows.

– We construct a star G with a depot D at its center and N leaves connected
to D, each leaf corresponding to a job Ji.

– We define t0, the handling time, as the shortest processing time. Therefore,
t0 = tz for some particular 1 ≤ z ≤ N .

– We define the travel time associated to each edge e = {D,Ji} as t(e) = ti−tz
2 .

– There are m salespersons (corresponding to the m machines).

Observe that the output of any instance of MSP and the output of the corre-
sponding instance of mTSPHT, created through the aforementioned reduction,
are the same. It follows that the total processing time of machine k is exactly
T (Sk). Therefore, minimizing the makespan in MSP is equivalent to minimizing
the makespan in mTSPHT. ut

Recall that we are always assuming that any route Sk goes branch by branch,
visiting all the clients until the farthest one in C(Sk), comes back to the depot,
and then start with another branch. We now explain how to transform any of
these solutions into a more structured one, without increasing the makespan.

Let us define Sk,b as the clients of the k-th route that are in branch b.
Consider first the situation where a branch Bb is visited by only two salespersons,
through routes Si and Sj . Let nb be the size of the branch. Assume, without
loss of generality, that the farthest node of the branch is visited by the i-th
salesperson. More precisely: vi,b = vbnb

∈ Si,b. Now, the i-th salesperson and

The Multiple Traveling Salesman Problem on Spiders 5

the j-th salesperson exchange clients (See Figure 1) in such a way that the
number of clients served by each does not change and, all the clients served by
the j-th salesperson are closer to the depot than the clients served by the i-th
salesperson. Since the time spent by each salesperson in the branch depends
only on the number of clients visited and the distance of the farthest one, the
previous modification does not increase the makespan. If there are more than
two routes in a branch we do exactly the same, shifting clients between pair of
routes (see Figure 2) until the set of clients served by each salesperson on each
branch is a consecutive block. We say that such type of solutions is structured
in intervals. Therefore:

Proposition 2 mTSPHT in the spider admits an optimal solution that is struc-
tured in intervals.

(a) (b)

(c) (d)

Fig. 1. Transforming an arbitrary solution of a branch into a solution structured in
intervals. In this case there are two routes, one represented by grey nodes and the other
by black nodes; the depot is white.

3 Canonical Solutions

We already know that there exists an optimal solution that is structured in
intervals. In this section we will prove the existence of optimal solutions with
even more structure. For this end we need some definitions.

Definition 3 The 4 relation. Let Bb be a branch of a spider G = (V,E). Let
Si and Sj be two routes. We say that Si,b 4 Sj,b if the clients of Si,b are all

6 P. Pérez-Escalona et al.

(a) (b)

Fig. 2. In this example there are three salespersons visiting the clients of the branch.
By shifting the assignment of two clients we get closer to a solution structured in
intervals, without increasing the makespan.

closer to the depot than those of Sj,b. Formally, ∀u ∈ C(Si,b),∀v ∈ C(Sj,b) :
label(u) < label(v). We also write Si 4 Sj if Si,b 4 Sj,b holds for every branch
Bb with 1 ≤ b ≤M .

Definition 4 Concurrent routes. Let G = (V,E) be a spider. Let Si and Sj

be two routes. We say that Si and Sj are concurrent if there exists at least one
branch that they both visit (see Figure 3).

Fig. 3. There are three routes: black, dark gray and light gray. The depot is white.
The black route is concurrent with the two others. But the light gray route and the
dark gray route are not.

Definition 5 Antisymmetric solutions. Let G = (V,E) be a spider. We
say that a solution (a collection of m routes) is antisymmetric if, for every two
concurrent routes Si and Sj, either Si 4 Sj or Sj 4 Si.

Proposition 6 The mTSPHT problem for spiders admits an optimal solution
that is antisymmetric.

Proof. Let us suppose that there is no optimal antisymmetric solution. Let us
define an obstruction as a 4-tuple (Bx, By, S

i, Sj) such that Si and Sj visit both
Bx and By, Si,x 4 Sj,x and Sj,y 4 Si,y. Clearly, a solution is antisymmetric
iff there are no obstructions. Consider an optimal solution with a minimum
number of obstructions. Let (Bx, By, S

i, Sj) be an obstruction for such solution
(in Figure 4(a) these are the black and dark gray routes). In order to get a

The Multiple Traveling Salesman Problem on Spiders 7

contradiction we perform local changes in such a way that: (1) we do not create
new obstructions, (2) we do not increase the makespan, (3) (Bx, By, S

i, Sj) is
not an obstruction anymore.

The local changes are defined as follows. First, consider the branch Bx. If Si,x

and Sj,x are consecutive intervals (this happens in the right branch of Figure
4(a)), then assign the last client (the one with largest label) visited by the route
Si,x to the route Sj,x (right branch of Figure 4(b)).

If Si,x and Sj,x are not consecutive intervals, we shift the assignment of all
nodes between Si,x and Sj,x one step towards the depot. With this movement,
Si looses the farthest client visited (by the i-th salesperson) in Bx. On the other
hand, one client is left unassigned: the client with smallest label in Sj,x (because
such assignment was shifted towards the depot). We simply assign this client to
Sj . Now, in the branch Bx, there is one more client visited by Sj and one less
client visited by Si.

We do the same in By, changing the roles of Si and Sj (see the development
of the left branch in Figure 4). We iterate these local changes until the 4-tuple
(Bx, By, S

i, Sj) is not an obstruction anymore. This will end up happening be-
cause at every step both |Si,x| and |Sj,y| decrease by one: at some point, one of
them will be zero (see Figure 4(d)). ut

(a) (b)

(c) (d)

Fig. 4. Eliminating an obstruction.

Definition 7 Transitive solutions. Let G = (V,E) be a spider. We say that a
solution (a collection of m routes) is transitive if, for every three routes Si, Sj , Sk

such that Si 4 Sj and Sj 4 Sk, it follows that, if Si and Sk are concurrent,
then Si 4 Sk.

8 P. Pérez-Escalona et al.

Definition 8 Well-structured solutions. Let G = (V,E) be a spider. We say
that a solution (a collection of m routes) is well-structured if it is antisymmetric
and transitive.

Proposition 9 The mTSPHT problem for spiders admits an optimal solution
that is well-structured.

Proof. The existence of an optimal antisymmetric solution has already been
proven. Of these solutions, consider the one with the fewest number of 6-tuples
(Bx, By, Bz, S

i, Sj , Sk) such that Si 4 Sj , Sj 4 Sk and Sk 4 Si, Bx is visited
by (at least) Si and Sj , By is visited by Sj and Sk and Bz is visited by Si and
Sk. We call these 6-tuples obstructions. Consider the following local change: if
Si and Sj are not consecutive in Bx, in the same way as we did in the proof
of Proposition 6, we shift each route between Si,x and Sj,x towards the depot.
If there are no routes between Si,x and Sj,x (they are consecutive) we just
unassign the client of largest label in Sj,x. In both cases, only the last client
of Sj,x is left unassigned. We do the same in the other two branches (cyclically
exchanging roles). Note that Si,x, Sj,y and Sk,z all lose a client. We then assign
the unassigned client of Bx to Sj , the unassigned client of By to Sk, and the
unassigned client of Bz to Si. The number of clients that each salesperson visits
is the same and the distance from the depot to the last client of each route (in
each branch) does not increase. Then, this new solution is still optimal. The idea
is to repeat this local change in the 6-tuple (Bx, By, Bz, S

i, Sj , Sk) as long as
possible. The process ends since all |Si,x|, |Sj,y| and |Sk,z| decrease by one and, at
the end, an optimal antisymmetric solution is obtained with one less obstruction,
a contradiction. Hence, the minimum number of obstructions is zero. ut
A polynomial Dynamic Programming algorithm for a fixed number of
branches. A well-structured solution has the following property: there is always
one salesperson who visits just blocks of consecutive clients located at the end of
some branches; once we remove such salesperson together with the clients he/she
visited, the remaining (smaller) solution is also well-structured. Every instance
I can be characterized by the travel time t, the handling time t0, the number of
salespersons m and the (ordered) set of M branches B̂. Let FI(k1, . . . , kM ,m

′)
be the optimum makespan for the subinstance in which m′ salespersons must
collectively visit only the first ki clients of branch Bi. The solution of mTSPHT,
FI(|B1|, . . . , |BM |,m), can be computed by dynammic programming (DP) as
follows:

• For all m′ ≥ 1 FI(0, . . . , 0,m′) = 0.
• if the ki are not all zero, FI(k1, . . . , kM , 1) =

∑M
b=1(2t(D, vbkb

) + t0kb).
• if the ki are not all zero and m′ > 1, FI(k1, . . . , kM ,m

′) is the minimum, for
all possible values of 0 ≤ i1 ≤ k1, . . . , 0 ≤ iM ≤ kM of

max

{
FI(k1 − i1, . . . , kM − iM ,m′ − 1),

M∑
b=1

(2t(D, vbkb
) + t0ib)1{ib>0}

}
.

Since the DP table has size at most mNM , and each value is the minimum
among at most NM values, the time complexity of this DP is at most O(mN2M).

The Multiple Traveling Salesman Problem on Spiders 9

4 PTAS for a fixed number m of salespersons

We start by defining the weight of a branch Bb of the spider as the time it
would take a single salesman to process it alone: weight(Bb) = 2d(D, vb|Bb|) +

t0|Bb|. Also, for a set of branches B̂, define weight(B̂) =
∑

B∈B̂ weight(Bb).

Define Hm = 1
m

∑M
b=1 weight(Bb) = 1

m (Nt0 + 2
∑

B∈B̂ d(D, vb|Bb|)). Any feasible

solution Ŝ = {S1, . . . , Sm} has to cover the distance from the depot to the
client of largest label in each branch twice, and each client has to be visited.
Therefore,

∑m
k=1 T (Sk) ≥ mHm and makespan(Ŝ) = maxk∈{1,...,m} T (Sk) ≥

Hm. In particular, Hm is a lower bound for the makespan (i.e. for mTSPHT),
Our goal is to solve mTSPHT through binary search, using the DP defined

at the end of previous section.

Theorem 10 There exists a PTAS for problem mTSPHT that finds a (1 + ε)-
approximation and takes time NO(m/ε).

In what remains we prove previous theorem. We divide this proof in three
parts: the algorithm, the complexity analysis, and the proof of correctness.

4.1 The Algorithm

Consider an instance I and a tolerance ε > 0. Sort the branches according to
their weight in decreasing order, define a threshold K = dm/εe, and build a new
instance I ′ as follows. The first K branches are not modified. The remaining
branches are grouped so that the sum of the weights on each group does not
exceed mHm/K. Each of these groups is identified with a new branch consisting
of a single client. The new instance has at most 3K branches, and it is solved
using the DP of last section. We transform the output into a solution of the
original instance, with a small “price” to pay. Such price explains the (1 + ε)
term of the approximation algorithm. Formally:

1. Initialization

– Compute the weight of each branch in I and compute Hm.
– Sort the branches in decreasing order according to their weights.
– Define the threshold K = dm/εe.

2. The Simple Case

– If M ≤ K, solve FI(|B1|, . . . , |BM |,m) using the DP.
– If M > K continue with next step.

3. Grouping the Branches

– From the (K + 1)-th branch on, i.e., from BK+1, group the branches in
a greedy way so that the weight of each group is at most mHm/K.

– Replace each group of branches C by a branch with a single client vC ,
and set t(D, vC) = (weight(C)− t0)/2.

– Denote by I ′ the new instance with branches B′1, . . . , B
′
M ′ (the K first

ones of I, together with the new, singleton branches).

10 P. Pérez-Escalona et al.

4. Solving the Problem for the Modified Instance

– Solve FI′(|B′1|, . . . , |B′M ′ |,m) through the DP.

– Call R̂ = {R1, . . . Rm} the set of routes corresponding to the solution.

5. Solving the Problem for the Original Instance
For each branch B′b of instance I ′ and each salesperson k:

– If b ≤ K, then Sk,b = Rk,b.
– If b > K, then the branch is a singleton vC . If, according to the solution
R̂, the k-th salesperson serves vC , then we assign to Sk all the clients of
all the branches grouped in vC .

4.2 Complexity

Computing weights and sorting the branches takes time O(N) +O(M logM) =
O(N logN). If M ≤ K, then solving the DP takes time O(mN2K). Since m ≤ N ,
this can be written as O(N2K+1).

If M > K, then we need first to group the branches. There can be at most
2K new groups. Therefore, since M ≤ N , generating the modified instance takes
time O(N2). Note that the new number of branches M ′ ≤ 3K. Hence, solving
the new instance’s DP takes time O(mN2(3K)) = O(mN6K) = O(N6K+1).

Finally, since there are at most 3K branches in the modified instance, ob-
taining the approximate solution in step 5 takes time O(mN3K).

Overall, the time complexity of the whole algorithm is dominated by the
term O(N6K+1) = O(N6(m/ε)+7) = NO(m/ε).

4.3 Correctness

If the number of branches M is less or equal than K we are in The Simple Case
and the problem is solved to optimality. We may therefore assume that M > K,
and the algorithm creates a new instance I ′ by Grouping the Branches. Since
the branches of the original instance are sorted by weight and since the total
weight is mHm, the K-th branch (and each of the following branches) weights
at most mHm/K. This implies that at most 2K groups are formed. In fact, if
there were 2K + 1 groups (or more), the weight of at least two groups C1 and
C2 should be smaller than mHm/2K. This is not possible, because if we created
C1 before C2, then the weight of any branch sorted after those in C1 is smaller
than mHm/2K, and at least one could be added to C1 without exceeding the
threshold. Therefore, the number M ′ of branches of the modified instance is at
most K + 2K = 3K. The travel time from the depot D to any “new” client vC
is chosen so that the weight of the new branch associated with vC is equal to
the original weight of the branches in C.

After Grouping the branches, we Solve the Problem for the Modified Instance,
and we obtain the optimal solution R̂ of this modified instance. Finally, we Solve
the Problem for the Original Instance in order to obtain a solution Ŝ of the
original instance.

The Multiple Traveling Salesman Problem on Spiders 11

Claim. If ŜOPT = (S1
OPT, . . . , S

m
OPT) is an optimal solution of the original in-

stance, then there exists a solution R̂mod = (R1
mod, . . . , R

m
mod) of the modified

instance such that, for each saleperson k, T (Rk
mod) ≤ T (Sk

OPT) +mHm/K.

Proof. Let B̂ = {BK+1, BK+2, . . . , BM} be the branches of the original instance

that were grouped into new branches B̂′ = {B′K+1, . . . , B
′
M ′} of the modified

instance. Let T (Sk,b
OPT) = 2t(D, vk,b) + |Bb|t0 be the time spent by the k-th

salesperson of the optimal at Bb. Let Ak =
∑M

b=K+1 T (Sk,b
OPT).

Consider any partition Q = {Q1, . . . , Qm} of the branches of B̂′ into m
parts (allowing empty parts). For k ∈ {1, . . . ,m} we define the utility of k as

UQ(k) =
(∑

B′∈Qk
weight(B′)

)
−Ak. We can use Q to create a solution R̂mod of

the modified instance. In this solution, the k-th salesperson serves the clients of
{B1, . . . , BK} according to ŜOPT and, in addition, he/she also serves all branches
of Qk. With this, the total time used by the k-th salesperson is T (Rk

mod) =
T (Sk

OPT)−Ak +
∑

B′∈Qk
weight(B′) = T (Sk

OPT)+UQ(k). To conclude we prove
the existence of a partition Q such that UQ(k) ≤ mHm/K for all k.

Of all the possible partitions Q consider the one that (1) minimizes the
maximum utility ηQ = maxk∈{1,...,m} UQ(k) and, subject to this, (2) minimizes
the number of indexes k with maximum utility (i.e, such that UQ(k) = ηQ).

Define A :=
∑

B∈B̂ weight(B), and note that A ≤
∑m

k=1Ak, since in the sum

on the right, each edge of the branches of B̂ can be counted more than twice,
while, in A, each edge is counted only 2 times. On the other hand, A can also
be computed as A =

∑m
k=1

∑
B′∈Qk

weight(B′).

It follows that
∑m

k=1 UQ(k) =
∑m

k=1

(∑
B′∈Qk

weight(B′)
)
− Ak ≤ 0. There-

fore, there is an index j such that UQ(j) ≤ 0. Let us then consider an index i
such that ηQ = UQ(i) and suppose, by contradiction, that UQ(i) > mHm/K.

We could create a new partition Q′, starting from Q, reassigning the branch
B′ ∈ Qi of greater weight to the set Qj . With this, the utility of i decreases
by weight(B′) > 0, and the utility of j increases by weight(B′). Recalling that
weight(B′) < mHm/K (in this way the branches of the modified instance were
built), we conclude that either the maximum utility ηQ′ of the new partition is
less than ηQ′ , or the maximum utility remains, but in Q′, the number of indexes
of maximum utility decreases (since i does not have maximum utility anymore).
In any case we come to a contradiction with the choice of Q. ut

Since R̂ is the optimal solution of the modified instance it follows that
makespan(R̂) ≤ makespan(R̂mod). Therefore, using previous claim, we have that

makespan(R̂) ≤ makespan(ŜOPT) +mHm/K.

But, as explained in the beginning of this section, Hm is a lower bound for
the makespan of every feasible solution. Hence,

makespan(R̂) ≤ makespan(ŜOPT)
(

1 +
m

K

)
.

12 P. Pérez-Escalona et al.

Note that, by construction, the makespan of the solution Ŝ given by the
algorithm is exactly the makespan of R̂. Therefore,

makespan(Ŝ) = makespan(R̂) ≤ makespan(ŜOPT)
(

1 +
m

K

)
.

By recalling thatK = dmε e, we conclude that Ŝ is indeed a (1+ε)-appoximation.

References

1. Xiaoguang Bao and Zhaohui Liu. Approximation algorithms for single vehicle
scheduling problems with release and service times on a tree or cycle. Theor.
Comput. Sci., 434:1–10, 2012.

2. Amariah Becker and Alice Paul. A framework for vehicle routing approximation
schemes in trees. In Workshop on Algorithms and Data Structures, pages 112–125.
Springer, 2019.

3. Tolga Bektas. The multiple traveling salesman problem: an overview of formula-
tions and solution procedures. Omega, 34(3):209–219, 2006.

4. Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, 1976.

5. Greg N Frederickson, Matthew S Hecht, and Chul E Kim. Approximation algo-
rithms for some routing problems. SIAM Journal on Computing, 7(2):178–193,
1978.

6. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

7. Daya Gaur, Arvind Gupta, and Ramesh Krishnamurti. A 5/3-approximation al-
gorithm for scheduling vehicles on a path with release and handling times. Inf.
Process. Lett., 86:87–91, 04 2003.

8. Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Optimal control of plot-
ting and drilling machines: a case study. Zeitschrift für Operations Research,
35(1):61–84, 1991.

9. Yoshiyuki Karuno and Hiroshi Nagamochi. A 2-approximation algorithm for the
multi-vehicle scheduling problem on a path with release and handling times. In
Friedhelm Meyer auf der Heide, editor, Algorithms — ESA 2001, pages 218–229,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

10. Yoshiyuki Karuno and Hiroshi Nagamochi. An approximability result of the multi-
vehicle scheduling problem on a path with release and handling times. Theoretical
Computer Science, 312:267–280, 01 2004.

11. Gilbert Laporte. The vehicle routing problem: An overview of exact and approxi-
mate algorithms. European journal of operational research, 59(3):345–358, 1992.

12. Eugene L Lawler. The traveling salesman problem: a guided tour of combinatorial
optimization. Wiley-Interscience Series in Discrete Mathematics, 1985.

13. H Donald Ratliff and Arnon S Rosenthal. Order-picking in a rectangular ware-
house: a solvable case of the traveling salesman problem. Operations Research,
31(3):507–521, 1983.

14. Liang Xu, Zhou Xu, and Dongsheng Xu. Exact and approximation algorithms
for the minmax k-traveling salesmen problem on a tree. European Journal of
Operational Research, 227(2):284–292, 2013.

The Multiple Traveling Salesman Problem on Spiders 13

15. Zhou Xu and Liang Xu. Approximation algorithms for min-max path cover prob-
lems with service handling time. In Yingfei Dong, Ding-Zhu Du, and Oscar Ibarra,
editors, Algorithms and Computation, pages 383–392, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

16. Wei Yu and Zhaohui Liu. Vehicle routing problems on a line-shaped network with
release time constraints. Oper. Res. Lett., 37:85–88, 03 2009.

