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Abstract

In a distributed locally-checkable proof, we are interested in checking the legality of a
given network configuration with respect to some Boolean predicate. To do so, the network
enlists the help of a prover — a computationally-unbounded oracle that aims at convincing the
network that its state is legal, by providing the nodes with certificates that form a distributed
proof of legality. The nodes then verify the proof by examining their certificate, their local
neighborhood and the certificates of their neighbors.

In this paper we examine the power of a randomized form of locally-checkable proof,
called distributed Merlin-Arthur protocols, or dMA for short. In a dMA protocol, the prover
assigns each node a short certificate, and the nodes then exchange random messages with
their neighbors. We show that while there exist problems for which dMA protocols are more
efficient than protocols that do not use randomness, for several natural problems, including
Leader Election, Diameter, Symmetry, and Counting Distinct Elements, dMA protocols are
no more efficient than standard nondeterministic protocols. This is in contrast with Arthur-
Merlin (dAM) protocols and Randomized Proof Labeling Schemes (RPLS), which are known
to provide improvements in certificate size, at least for some of the aforementioned properties.

Keywords: Distributed verification; Nondeterminism; Interactive computation; Interactive proof
systems

1 Introduction

Nondeterminism is a fundamental concept in computer science. In particular, the class NP, intro-
duced almost half a century ago [6], lies at the heart of computational complexity theory. More-
over, the P versus NP question is the largest unsolved problem in theoretical computer science.

One way to define the class NP is as a computationally-efficient proof system: a language L is
in NP if for any input x, a powerful but untrusted prover can convince a polynomial time verifier to
accept whenever z € L, by providing the verifier with a certificate (a proof). However, if x & L,
not certificate will cause the verifier to accept.

This fundamental notion of nondeterminism (or polynomial time verification) was extended
in the 90s to interactive proof systems [10, 11], a model that allows back-and-forth interaction



between the prover (Merlin) and the verifier (Arthur). This interaction gave the model tremendous
power, equivalent to PSPACE [18, 22].

Different distributed counterparts of the class NP have been introduced: locally checkable
labelings [20], proof labeling schemes [16], non-deterministic local decision [8], and others. In all
these models, roughly speaking, a powerful prover gives to every node v € V a certificate c(v).
This provides G = (V, E) with a global distributed certificate. Then, every node v performs a
local verification using its local information together with ¢(v). Typically, the goal is to verify
whether GG belongs to a particular class of graphs (planar, bipartite, connected, k-colorable, etc.).

Very recently, these distributed NP models evolved — as already happened in the centralized
setting almost thirty years ago — towards the study of distributed interactive proofs [14, 19]. To
state our results, let us recall some basic notions.

Distributed Languages. Let G be a simple connected n-node graph, let z : V(G) — {0,1}*
be a function assigning a label to every node of GG, and let id : V(G) — {1,...,poly(n)} be
a one-to-one function assigning identifiers to the nodes. (The identifiers are O(logn)-bit natural
numbers.)

A distributed language is a Turing-Machine-decidable collection of triples (G, z,id), called
configurations. In this paper, we are interested in the following distributed languages:

e LEADER = {(G,z,id) | z : V(G) — {0,1} and [{v € V(G) : z(v) = 1}| = 1}, the
language of graphs where every node is marked with a bit z € {0, 1}, and we require that
exactly one node be marked 1.

e AMOS = {(G,z,id)) | z : V(G) — {0,1} and |{v € V(G) : z(v) = 1}| < 1}, the
language of graphs where nodes are marked with a bit, and we require that at most one node
be marked (AMOS stands for “at most one selected”, and was introduced in [8]).

e DIAMETER<; = {(G, z,id) | diam(G) < k}, the language of graphs with diameter at most
k.

e SYMMETRY = {(G,x,id) | G has a non-trivial automorphism}. (An automorphism of a
graph G is a one-to-one mapping ¢ : V(G) — V(G) such that {u,v} € E(G) <~
{d(u), p(v)} € E(G). 1t is not-trivial if it is not the identity function.)

e COUNT; = {(G,z,id) | : V(G) — {0,1}* and |{z(u) : w € V'} | = k}, the language of
graphs where every node has an input z(v) € {0,1}", and there are exactly k distinct inputs.

None of these languages refer to the node identifiers, but languages like
SPANNING TREE = {(G, z,id)) | {{id(v), z(v)},v € V(G)} forms a spanning tree of G}

do refer to the identifiers (here, x(v) refers to the id of the parent of v in the tree).

In a locally-checkable proof, we ask a prover to provide the network nodes with a certificate
that should convince them that (G, z,id) € L. The certificate is a function ¢ : V' — {0,1}"
assigning to each v € V a label ¢(v). The nodes exchange their certificates with their neighbors,
examine their own input, and then decide whether to accept or reject; we require that (G, z,id) €
L iff there is some certificate c that causes all nodes to accept.



Formally, a deterministic distributed verification algorithm is specified as a collection of deci-
sion functions, A = {acc, },, where each function acc, takes the ids, inputs and certificates of v
and its neighbors, and outputs a decision whether to accept (1) or reject (0). We say that a (G =
(V, E),z,id, ¢) is accepted by A if for all v € V we have acc, ({(id(u), c(u), z(v))|u € N[v]}) =
1.

A decision algorithm A verifies a distributed language L if, for every configuration (G, z, id),

(G,x,id) € L < Jc:V(G) —{0,1}" | (G,x,id,c) is accepted by A.

The cost of the algorithm A is the maximum number of bits assigned to any node in a certificate
accepted by A, that is,
max max |c(v)].
(G,z,id,c) accepted by A veV

The class LCP(k), defined in [12], is the class of all distributed languages that have a dis-
tributed verification protocol with cost k. Other variants exist in the literature: proof labeling
schemes [16] are defined similarly, except that at every node v, the verification algorithm does
not take as input the data x(u) of neighbors u € N(v), only the neighbors’ certificates; non-
deterministic local decision, defined in [8], is also similar, but the certificate ¢ may not depend on
the identifiers of the nodes (i.e., it is not used by the decision function).

Merlin-Arthur Protocols. Merlin-Arthur (MA) protocols extend locally-checkable proofs by
allowing the nodes to use randomness when deciding whether to accept or reject. The prover
remains nondeterministic, and it does not see the randomness of the nodes when choosing a cer-
tificate. After the prover assigns certificates to the nodes, each node randomly chooses a message,
from a distribution specified by the protocol. This message is broadcast to all neighbors of the
node, and then each node decides whether to accept or reject, based on its input and neighbors
(including their ids), its certificate, and the messages it received from its neighbors.
Formally, an MA protocol is specified by two collections of functions, A = ({msg, }, , {acc, }, ).

After receiving a certificate assignment ¢ : V' — {0, 1}", the protocol executes in two stages:

(1) Each node v generates a message m(v), by calling the function msg,, which takes as in-
put id(v), {id(u) : w € N(v)}, z(v), c(v), and a random string r(v). The message m(v) is
broadcast to v’s neighbors.

(2) Each node v uses the function acc, to decide whether to accept or reject; acc, takes as input

id(v), {(id(u),m(u)) : u € N(v)}, z(v), c(v), r(v).

For a given protocol A, the acceptance probability of (G, x,id, ¢) under A is the probability that
all nodes accept the configuration (G, x,id) with certificate c¢. The probability here is taken over
the nodes’ internal randomness (the random strings 7(v)).

A Merlin-Arthur protocol verifies a distributed language £ with success probability p €
(0,1/2) if, for every configuration (G, z, id),

(G,z,id)e L = Fc:V(G) —{0,1}* | Pr[A accepts (G, z,id,c)] > p
(G,z,id) ¢ L = Vc:V(G)— {0,1}*, Pr[A accepts (G, z,id,c))] < 1 —p.



A Merlin-Arthur protocol can be viewed as the non-deterministic version of randomized deci-
sion. It can also be viewed as the randomized version of locally checkable proofs (the randomized
version of proof-labeling schemes has been considered in [3]).

The cost of an MA protocol is defined as the size of the longest certificate c¢(v) accepted by
a node v in any configuration on n nodes (the size may grow with n). (The standard definition
of two-party MA protocols also charges for the communication between the players, which in our
case corresponds to the messages m(v). However, the lower bounds we prove apply even if the
messages have unbounded length, as they depend more on the local knowledge of the nodes even
after seeing the certificates.)

Given a distributed language £, we define its Merlin-Arthur complexity, denoted dMA,, (L),
as the minimum cost of a Merlin-Arthur protocol that decides £ with success probability p.

Note that our definition above does not provide node v with the inputs and neighborhoods of its
neighbors; this is similar to proof-labeling schemes (although we also provide ids), and dissimilar
to locally-checkable proofs. However, it is easy to modify our lower bounds so that the view of
a node is the same as it would be in a locally-checkable proof, except that instead of seeing the
certificates of its neighbors, it only sees the messages they generated.

Comparison with Other Randomized One-Round Models of Verification. Let us point out
how dMA protocols relate to two other models.

In an Arthur-Merlin distributed decision protocol (or dAM for short) [14], each node v sends
a random string to the prover, and the prover responds by providing each node with a certificate
(which can depend on the random strings of all the nodes). Each node then makes its decision
based on its own randomness, its neighborhood, and its neighbors’ certificates. The order of
interaction is the opposite of dMA schemes, where the prover first commits to the certificates, and
then the nodes send random messages. As we show in this paper, this reverse order gives dAM
protocols more power than dMA protocols, at least in some scenarios.

Another related model is randomized proof labeling schemes (RPLS) [3]. These are very
similar to dMA protocols, except that the certificate size is unbounded, and the protocol is only
charged for the randomized messages the players send to each other. It was shown in [3] that
any property admits an RPLS that is exponentially cheaper than the best proof labeling scheme;
however, the construction in [3] not only does not reduce the certificate size, it in fact blows it up,
by a factor of up to n. We show in this paper that this is inherent: if we do care about the certificate
size, then randomness does not always help.

1.1 Our Results

Both AMOS and LEADER have proof-labeling schemes using certificates on O(logn) bits. (A tree
rooted at the leader if any, or at an arbitrary node otherwise, suffices.) The next result shows that
one cannot do better, even using randomization for the verification part.

Theorem 2.2. Any 2-sided error AMA protocol for AMOS with success probability larger than
4/5 requires certificates on S)(logn) bits. Any I-sided error dMA protocol for AMOS requires
certificates on Q)(log n) bits. The same result holds for LEADER.



In contrast, whenever randomization is used before interacting with the prover, AMOS can be
decided with certificates on O(1) bits.

Theorem 2.1. For every k > 1, there exists a dAM protocol for AMOS with success probability
1 — 1/2%, using (k + 1)-bit certificates at each node.

This shows that the gap between dAM and dMA (with success probability > 4/5) is poten-
tially unbounded. Next, we show that a certain class of reductions from 2-party communication
complexity can be adapted to show dMA lower bounds as well. As a consequence, we obtain
lower bounds on DIAMETER, SYMMETRY, and COUNT.

Corollary 3.1. Let 0 < € < 1/3. Then, dMA_.(DIAMETER<g) = Q(n/logn). That is, every
Merlin-Arthur protocol with success probability at least 1 — ¢ that is able to decide whether the
diameter of the input graph is at most 6 requires certificates on Q(n/logn) bits.

Corollary 3.2. Let 0 < & < 1/3. Then, dMA;_.(SYMMETRY) = Q(n?).
Corollary 3.3. Ler 0 < ¢ < 1/3. Then, dMA;_ (COUNT,, j5,1) = Q(n).

Our lower bounds are shown by adapting existing tools for proving lower bounds on locally-
checkable proofs and in CONGEST, thus showing that some types of lower bounds extend easily
to dMA.

1.2 Related Work

This paper is very much related to two recent contributions on distributed interactive proofs. The
concept of distributed interactive proofs was introduced in [14]. Among other results, [14] proves
that SYMMETRY admits a dMAM protocol with O(log n)-bit certificates, and a dAM protocol with
O(nlogn)-bit certificates. Moreover, it is also proved that any dAM protocol for SYMMETRY
requires certificates on €2(log log n) bits. Graph non-isomorphism has also been studied in [14] —
every node is given the adjacency list of a node in some graph H, and the nodes have to collectively
decide whether the actual network G is isomorphic to /. It is proved that this problem admits a
dAMAM protocol with certificates on O(n logn) bits.

The recent paper [19] carried on the investigations in [14]. In particular, [19] proves that NON-
SYMMETRY can be decided by a dAMAM protocol with O(log n)-bit certificates. It is also proved,
using general reductions from circuit computation, that graph non-isomorphism can be decided by
an interactive protocol with a constant number of interaction rounds between Arthur and Merlin,
and certificates on O(logn) bits. Another variant of graph non-isomorphism is also considered
in [19] — every node is given two subsets of incident edges, and the nodes have to collectively
decide whether the resulting subgraphs of the actual network G are isomorphic. It is proved that
this problem admits a dJAMAM protocol with certificates on O(log n) bits.

Problem DIAMETER<}, has been studied, in the framework of distributed verification algo-
rithms, in [5]. More precisely, in the proof-labeling scheme model, the authors show, for the
certificate size, an upper bound of O(nlogn) and a lower bounds of 2(n/k). They manage to
improve the previous upper bound by introducing approximation ( [5] defines approximate proof-
labeling schemes).



2  Warmup: Deciding AM0s and LEADER

As a warm-up, let us consider the distributed language AMOS, for “at most one selected”, intro-
duced in [8]. Recall that for every configuration (G, x,id), we have (G, z,id) € AMOS if and
only if x(v) € {0,1} for every v € V(G) and |[{v € V(G) : x(v) = 1}| < 1. A node v with
x(v) = 1is said to be selected. This language is therefore similar to LEADER, apart from the fact
that having no leader is a legal configuration.

It is shown in [8] that AMOS cannot be decided deterministically in sublinear time without a
prover, as a configuration with two selected nodes that are at distance n — 1 from one another
cannot be detected. On the other hand, using randomization (but still without a prover), AMOS can
be decided in zero rounds with success probability p = (v/5 — 1)/2: every selected node accepts
with probability p, and the non-selected nodes all accept. A legal configuration is accepted with
probability exactly p, while an illegal one is accepted with probability at most p> = 1 — p. In
fact, [8] shows that p is the best success probability possible for a sublinear-time randomized
algorithm.

Alocally checkable proof for AMOS can simply be designed using certificates on O(log n) bits.
On a legal instance, every node is given a pointer to a neighbor, on O(log n) bits, such that the set
of all pointers encodes a spanning tree 7" rooted at an arbitrary node if there are no selected nodes,
and rooted at the selected node otherwise. The certificate also includes O(logn) bits forming a
distributed proof that 7" is indeed a spanning tree (see [16]). The verification algorithm consists,
for every node v, to check that 7" is indeed a spanning tree. In addition, a node with z(v) = 1 that
is not the root of 7" rejects. It was shown in [12] that O(log n)-bit certificates is the best that can
be achieved, that is, there is no locally checkable proofs for AMOS with certificates on o(logn)
bits.

Remark 2.1. With the previous example we can see the power of the AMA model in comparison
with proof labelling schemes and randomized local decision. Suppose that we want to decide
AMOS N BIPARTITE (i.e., whether the input is a bipartite graph with at most one selected node).
We can combine a one-bit certificate (for bipartiteness) with local randomness (for at-most-one-
selected) in order to get a one-bit Merlin-Arthur protocol for AMOS N BIPARTITE with probability

of success at least @

The following result is a simple illustration of the power of Arthur-Merlin protocols, by show-
ing that one can design an Arthur-Merlin protocol for AMOS with success probability as close to 1
as desired, with certificates on O(1) bits. For LEADER, we refer to [19] which describes a dMAM
protocol using O(1)-bit certificates, but with one more interaction between Arthur and Merlin.

Theorem 2.1. For every k > 1, there exists a dAM protocol for AMOS with success probability
1 — 1/2%, using (k 4 1)-bit certificates at each node.

Proof. Let k > 1. Every node picks k bits at random. On a legal instance, and given these
k random bits at each node, Merlin sends —1 to every node if there are no selected nodes, and
otherwise sends the bit string randomly selected by the selected node. The verification algorithm
is as follows. Every node checks that the certificate given by Merlin is the same as the one given to
its neighbors. If this test is passed, then a non-selected node systematically accepts, and a selected
node accepts only if the bit string sent by Merlin is identical to the one it randomly generated. If



there are more than one selected nodes, the probability that they all pick the same random string
is at most 1/2%, thus the verification succedes with probability at least 1 — 1/2F. O

In contrast, the following results illustrates the limitation of Merlin-Arthur protocols, by show-

ing that such protocols cannot achieve success probability much larger than @ = 0.61...
whenever using certificates on o(log n) bits.

Theorem 2.2. Any 2-sided error dMA protocol for AMOS with success probability larger than
4/5 requires certificates on Q(logn) bits. Any 1-sided error dMA protocol for AMOS requires
certificates on Q)(log n) bits. The same result holds for LEADER.

Proof. The intuition of the proof is simple. Consider a configuration I; € AMOS consisting of
an n-node cycle with a unique selected node v. Let us then take two copies of I, remove the
edge e opposite to v in both, and create a cycle with 2n nodes by glueing the two resulting paths.
Let us call this latter configuration I5. We have Iy ¢ AMOS. Let us consider a dMA protocol
P for AMOS with success probability larger than 2/3. We have Pr[P accepts I] > 2/3 with
the appropriate certificate assignment ¢ to the nodes of I, and Pr[P rejects Is] > 2/3 for every
certificate assignment to the nodes of I5. On the other hand, for the certificate assignment c, since
the nodes have the same view in I; and I, as far as the certificates are concerned, we get, by the
union bound, that Pr[P rejects I] < 1/3+ 1/3 = 2/3, yielding a contradiction. There is however a
gap between this intuition and a correct proof. In particular, as nodes have identities, one cannot
claim that the extremities of the removed edge e do not “see” the difference between I; and Is.
Glueing legal instances to create illegal instances in which the nodes cannot distinguish which one
they belong to requires some more work.

The sophisticated glueing technique introduced in [12] allowed G66s and Suomela to show
that there is no locally checkable proof for AMOS and LEADER with certificates of size o(logn)
bits. This glueing technique can also be used to prove that the same result holds for dMA protocols
with success probability larger than 4/5. To see why, let us first briefly summarize the construction
in [12].

Let n be even, and let us consider an arbitrary partition of {1, ...,n?} of the form (A4;, Bi)ieq,..

such that {1,...,n%} = (U, A;)U(UL, B;), where |A;| = |B;| = n/2foreveryi € {1,...,n}.
The elements of A; are enumerated as A;[1],..., A;[n/2] forevery i € {1,...,n}, and the same
forevery B;. Let A = {4;,i=1,...,n}and B ={B;,i =1,...,n}.

Given (A, B) € A x B, let R4 p be the n-node ring (v1,...,vy), where id(v;) = A[i] for
i =1,...,n/2, and id(vp—iy1) = BJi] fori = 1,...,n/2. For every node v in the ring, let
¢4 g(v) € {0,1} be its input label, specifying whether v is selected or not. Assume that only one

node is selected in each Ra, p; fori,j € {1,...,n}, and that this node is at distance at least 2
from the nodes v,,_1, vy, v1, v2, With respective identities B;[2], B;[1], A;[1], A;[2], which form a
path of length 4 in R4, p;.

For (A, B) € A x B, let c4 g(v) be the certificates assigned to the nodes of R4 g with such a
unique selected node, leading all nodes to accept, with probability > 4/5. Finally, for every node v,

let Ly g(v) = (£a,B(v),ca,B(v)), and set
Lap=(Lap(vn-2),LaB(vn-1),LaB(n),Lap(vi),Lan(v2),Lan(vs)).

Let us consider the complete bipartite graph K, ;, with bipartitions A and B, and let us color
every edge {A, B}, (A,B) € A x B, with Ly p. Since L4 p is on o(logn) bits, it can be



shown that the colored K, ,, contains a monochromatic 4-cycle. Let (A, By, A2, B2) be such
a cycle. The two n-node rings R4, B, and R4, B, are then glued to form a 2n-node ring S by
removing the edge {v,,v;} in both n-node rings, and connecting the copy of v; in one ring to
the copy of v, in the other ring. Note that there are two selected nodes in the ring S. Since
La,.B, = La,B, = La, B, = La, B,, nonodes can distinguish whether they are in one of the
four small (legal) rings R4, 5;,i,j € {1, 2}, or in the large (illegal) ring S.

We are now ready to apply the intuition provided at the beginning of the proof to the construc-
tion in [12]. Let us consider a dMA protocol P for AMOS with success probability larger than
4/5. For every i,j € {1,2}, we have Pr[P accepts R, p,] > 4/5, with the appropriate certificate
assignment ¢; ; given to the nodes of R4, ;. Also, Pr[P rejects S] > 4/5 for every certificate
assignment to the nodes of S. However, consider S with the certificate assignment ¢ consisting in
giving the certificates defined by ¢; ; to the nodes coming from R4, p, in S, for ¢ = 1,2. By union
bound, we have

Pr[3v € S : P rejects at v with certificate c(v)] <
Pr[3v € {va4,...,vp—3} : P rejects at v in R4, p, with certificate ¢ 1]
+ Pr[3v € {v4,...,vp—3} : P rejects at v in Ry, p, with certificate c3 o]
+ Pr[3v € {vy—2,vn—1,Un, v1,v2,v3} : P rejects at vin R4, p, with certificate ¢z 1]
[

+ Pr[3v € {vp—2,vn—1,vn, v1,v2,v3} : P rejects at v in R4, p, with certificate ¢; o).

Each of the four terms on the right hand side of the equation above is smaller than 1/5. It follows
that, with the certificate assignment ¢, we have Pr[3v € S : P rejectsat v] < 4/5, which
contradicts the fact that the success probability of P is larger than 4/5.

The proof above applies to LEADER as well since all legal configurations considered in the
proof have exactly one selected node, and all illegal configurations have exactly two selected
nodes. For both AMOS and LEADER, the proof also applies to 1-sider error protocols, since, for
such protocols, the union bound yields Pr[dv € S : P rejects at v] = 0, that is, P is incorrect
with probability 1 for .S with certificate c. O

Remark 2.2. Both LEADER and AMOS have locally checkable proofs with 2-bit certificates, when-
ever restricted to trees. Indeed, for LEADER, the certificate at every node v in a legal instance
consists of the distance of v to the leader in the tree, modulo 3. The same for AMOS, apart that, if
there is no leader, then the distance is from an arbitrary node of the tree. Such certificates enable
to identify a unique root of the tree, which is the only node allowed to be leader (it must be selected
in LEADER, but do not need to be selected in AMOS).

3 The Canonical 2-Party Reduction

In this section we show that a widely-used class of reductions from 2-party communication com-
plexity, which is typically used to prove lower bounds in CONGEST, also yields lower bounds on
dMA. These reductions are typically used to relate the round complexity of a deterministic or ran-
domized algorithm in CONGEST to the deterministic or randomized communication complexity
of some 2-party problem, but here we use them as reductions from nondeterministic communica-
tion complexity.



Let Leomm be a two player communication complexity language with instances of the form
(z,y) € X x Y, where both X and Y are finite sets. Let Lg;5; be a distributed language. We
consider in this section distributed languages that represent “pure graph properties”. Therefore,
the instances are of the form (G, id), where G is a graph and id is the list of the identifiers of the
nodes. In fact, for simplicity, we are going to consider the instances as being just graphs (and the
ids will be fixed). In other words, a distributed interactive protocol Py, that solves L4;st, needs
to implicitly answer whether G € L ;5.

A reduction from Lo to Lg;s: is an explicit transformation of instances (x,y) of Leomm
into instances G of Lg;s such that (z,y) € Leomm if and only if G,y € Lg;s. If the reduction
is such that G, € L4 has the specific structure we are going to define in the sequel, we say
that the reduction is canonical. We consider here only reductions that generate graphs over a fixed
set V.= {1,...,n} of nodes, for any specific n.

The definition below captures “clean-cut” reductions where each player “owns” part of the
graph, with a fixed cut between the two parts. Many reductions in the literature have this structure,
or can be easily modified to have it.

Definition 3.1. Let s : N — N be a computable function. A reduction from Lcomm to Lg;st is said

to be s-canonical if there is some fixed partition V. = (V1, Va) of the node set of the graph, such
that for all (z,y) € X x Y,

o The neighborhood of any node in Vi in G does not depend on y, and the neighborhood
of any node in V3 in G, does not depend on .

e Consider the cut E(V1,Va2) = {{u,v} € E(Gyy) : u € Vi,v € Va}. Let V. be the vertices
of the cut (i.e., endpoints of edges in the cut). Then V. does not depend on either x or y, and
Vel < s(n).

Nondeterministic Communication Complexity. A 2-party nondeterministic protocol II is mod-

elled as a collection IT = {II.}, {01} of deterministic protocols. On inputs x, y, the protocol be-

gins with the prover presenting Alice and Bob with a proof ¢ € {0, 1}6; the players then execute
the protocol I1. corresponding to the proof c. The cost of 11 is defined to be £ + max, |II.|, where
ITL.| is the worst-case number of bits sent by II. on any input.

The protocol II solves L omm, if, for any input (x, y), we have (z,y) € Leomm iff there exists
a proof ¢ € {0,1}" such that IT, accepts (z, y).

We denote by N(Lcomm ) the nondeterministic cost of solving L omm, i.€., the cost of the best
nondeterministic protocol that solves L.omm. It is known, for example, that DISTOINTNESS has
nondeterministic cost (n).

Theorem 3.1. [f there exists an s-canonical reduction from L .omm to Lgist, then, for every € <
1/3,
N(L
IMA, . (L) = © <("””)> |
s(n)
Proof. Consider a dMA protocol P that solves Lg;5; with success probability at least 1 — ¢ and

using p(n)-bit certificates. Our goal is to show that p(n) = (%), by constructing a

nondeterministic protocol II for £y With communication cost O(p(n) - s(n)).
On input (z, y), the protocol II proceeds as follows:



(1) Alice (resp. Bob) locally constructs G, ,[V1] from x (resp., G ,[V2] from y). Note that both
players agree on the neighborhoods of the cut nodes V., because the reduction is canonical:
these nodes’ neighborhoods do not depend on either x or y.

(2) The prover presents Alice and Bob with a proof = € {0, 1}? (n)-5(n) which the players interpret
as an assignment of certificates to the cut nodes V..

(3) Alice (resp. Bob) enumerates over all possible assignments of p(n)-bit certificates to the
nodes in V4 \ V. (resp. V5 \ V.), and checks whether there is an assignment that, together
with the certificates 7 of the cut nodes, causes all nodes of V; (resp. V2) to jointly accept with
probability at least 1 — ¢.

(4) The players inform each other whether they can find such an assignment. The players accept
iff both were able to find some assignment that makes all nodes in V7 (resp. V) accept.

Note that both Alice and Bob can perform step (3) above without need of communication:
after fixing the certificates 7 of the nodes V. on both sides of the cut, the acceptance probability
of any node in 1/ does not depend on y, and vice-versa. This is because the neighborhood of any
node in V; does not depend on y, and vice-versa.

Clearly, the cost of IT is s(n) - p(n) + 2. It remains to prove its correctness:

e Suppose that (z,y) is a YES-instance of L.omm. We are going to show the existence of a
certificate ¢ that causes both Alice and Bob to accept.

By definition of the reduction, G, is a YES-instance of L4, so there exist certificates
C to the nodes of G, such that, with probability at least 1 — ¢, all nodes accept. Let
be the restriction of the certificates to the nodes of V.. In II, the prover can give 7 to the
players, causing them to accept: when enumerating over all possible certificates, Alice and
Bob will each find the restriction of C' to the nodes on their side of the graph (V; and Va,
respectively), and since C causes all nodes to accept w.p. > 1 — ¢, in particular it causes all
nodes of V; (resp. V») to accept w.p. > 1 — €.

e Suppose that (z,y) is a NO-instance of L.omm. We need to show that there is no certificate
7 that can be given to Alice and Bob to cause them to accept.

Suppose for the sake of contradiction that there is such a certificate 7, and let C, Cy, be the
extensions of 7 to the nodes of V; (resp. V2) that cause them all to accept with probability
at least 1 — . Now consider the global certificate assignment C' = (C,, C,) where in the
distributed dMA protocol P, the prover assigns C,, to the nodes of V; and C), to the nodes
of V5. By the union bound, when assigned C, the probability that either some node in V; or
some node in V5 (or both) reject is at most 2e. Overall, we see that the proof is accepted by
all nodes with probability at least 1 — 2 > 1 — 2 - (1/3) = 1/3, which is a contradiction,
because Gz y & Leomm-
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3.1 Lower Bound on DIAMETER

It is known that, for every k > 1, DIAMETER<;, € LCP(O(nlogn)), i.e., has a locally checkable
proof — actually, a proof-labeling scheme — using certificates on O(n logn) bits [5]. (For this
certificate, the prover constructs a BES tree from every node of the graph.) We show that allowing
randomization in the verification of the proof does not help.

Let DISJ be the two-player problem the players receive sets z,y C [n], and their goal is to
acceptiff z Ny = ().

Our canonical reduction from DISJ to DIAMETER<g is a simple modification of a reduction of
Censor-Hillel, Khoury and Paz [4]. The reduction of [4] mostly has the static structure required
for a canonical reduction, and it has a sparse cut, of size s(n) = O(logn); however, it is not
O(logn)-canonical, only because the neighborhoods of the cut nodes may depend on x or on .
This is easily solved by replacing each edge in the cut by a path of length 3 (subdividing the edge
by inserting two auxiliary nodes). Let G, be the resulting graph. After this modification, (x,y)
are disjoint iff the diameter of G, is at most 6, and the new reduction is O(logn)-canonical.
Thus, we obtain:

Lemma 3.1. There exists an O(log(n))-canonical reduction from DISJ to DIAMETER <.
By Theorem 3.1, we have:
Corollary 3.1. Let 0 < ¢ < 1/3. Then, dMA; _.(DIAMETER<g) = §2(n/logn).

The proof uses the fact that N(D1SJ) = (n) (see, e.g., the textbook [13]).

3.2 Lower Bound on SYMMETRY

It is known that SYMMETRY is among the most difficult graph properties to verify in a distributed
manner, in the sense that every locally checkable proof for SYMMETRY requires certificates on
Q(n?) bits [12], while all distributed languages on n-node graphs can be verified using a certificate
on O(n?) bits at each node [16]. We show that allowing randomization in the verification of the
proofs does not help.

We extend the SYMMETRY lower bound of [12] to dMA. The lower bound in [12] is not
formally stated as a reduction; it essentially “re-proves” the 2-party nondeterministic lower bound
for EQUALITY. By observing that this lower bound is in fact a canonical reduction, we obtain a
dMA lower bound.

Let EQp be the two-player communication language where the players receive inputs x,y €
D, and their goal is to output 1 iff z = y. Here, D is some domain of size /N, which, following [12],
we take to be a set of equivalence classes of all n-node asymmetric graphs, under the isomorphism
equivalence relation. It is known that |D| = 20("*) [7].

Let SYMMETRY be the distributed language defined on the set of all graphs, where the YES-
instances are graphs having non-trivial automorphisms. Obviously, all the graphs in D are NO-
instances of SYMMETRY.

Theorem 3.2 ([12], re-phrased). There exists a 2-canonical reduction from EQp to SYMMETRY
that transforms instances (G, Gy) € D? into graphs Gy, of size 2n + 2.

For completeness, we repeat the argument of [12], and show that it is a 2-canonical reduction:
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Proof. Let Vi = {1,...,n+1}, Vo = {n+2,...,2n+2}. On inputs G, G, Alice and
Bob construct the following graph: Alice constructs a copy of some graph in the equivalence
class G, over the nodes {1,...,n}, and Bob constructs a copy of some graph in G, over nodes
{n+3,...,2n + 2}. In addition, Alice connects node n + 1 to node n, Bob connects node n + 2
to n + 3, and “both players” add the edge {n + 1,n + 2}.

The reduction is 2-canonical because there is only one edge in the cut. Correctness follows
from the fact that, since G, and G, contain only asymmetric graphs, and they are equivalence
classes of the isomorphism relation, the resulting graph G, is symmetric iff G, = G, U

Since the nondeterministic cost of EQp is |D| [13], we obtain:

Corollary 3.2. Let 0 < & < 1/3. Then, dMA;_.(SYMMETRY) = (n?).

3.3 Lower Bound on COUNT

Finally, we observe that the notion of a canonical reduction is easily extended to languages where
the nodes have input in addition to the graph: to do this, we require a transformation from the
communication problem Lopm to configurations (Gx,y, d) (keeping the ids fixed, as before),
such that (z,y) € Leomm iff (Gyy,d) € Lgist. We require all the conditions from the previous
section; moreover, the input d(u) of any neighbor u € N (v) for v € Vj (resp. V2) may not depend
on y (resp. x). With this additional restriction, Theorem 3.1 continues to hold.

For example, consider the problem of counting the number of distinct elements in the input.
Cast as a decision problem, we define it as COUNT;, = {(G = (V, E),d) : | {d(u) : uw € V}| = k}.

In [21], Patt-Shamir showed by reduction from DISJ that counting the number of distinct ele-
ments in the input of an n-node network requires €2(n) rounds in CONGEST, even if randomiza-
tion is allowed. A similar argument was used in [2] to show that streaming algorithms for counting
the number of distinct elements require linear memory (indeed, [2] shows that this holds either for
randomized exact algorithms, or for deterministic approximate algorithms). Implicitly, the argu-
ment of [2] shows that the nondeterministic cost of DISJ with input sets of size n/4, and with the
promise that either z Ny = () or |z Ny| > n/100, is Q(n).

The reduction of [21] is “almost” 2-canonical. We modify it slightly to make it 2-canonical;
this involves restricting the size of the input sets, and fixing the input of the cut nodes.

Lemma 3.2. There is a 2-canonical reduction from DIS] with sets of size n/4 to COUNT,, /o in
networks of size n/2 + 2.

Proof. The modified reduction features a line network of n/2 + 2 nodes, 1,...,n/2 + 2, with
Alice controlling nodes 1,...,n/2 + 1 and Bob controlling nodes /2 + 2,...,n/2 + 2. Nodes
n/24+1,n/2+ 2, which are the cut nodes, always receive L as their input (where L is some fixed
element that is not in the universe of DISI). Let x = {:rl, .. ,:cn/4} Y = {yl, .. ,yn/4} be
the inputs of Alice and bob. Alice assigns each node ¢ the input x;, and Bob assigns each node
n/2 + 1+ j the input y;.

If x Ny = (), then the total number of distinct elements in the input is |z| + |y| + 1 = n/2+ 1,
whereas if Ny # (), the number of distinct elements is smaller. O

For deterministic algorithms, using the argument from [2], this can be extended to a sufficiently
small constant approximation (e.g., 1 4+ 1/100).
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We obtain:
Corollary 3.3. Let 0 < ¢ < 1/3. Then, dMA;_. (COUNT,,j5.1) = Q(n).

Let us make two further remarks about verifying the approximate number of distinct elements
in line networks. First, there is an O(logn)-bit dAM scheme for this problem: we can simulate
the execution of the streaming algorithm from [2], which uses O(logn) bits of randomness and
O(logn) bits of memory, and gives a constant approximation. In the simulation, the first node
in the line sends the prover O(logn) bits of randomness r, which serve to specify a pairwise-
independent hash function in [2]. The prover responds by sending r to all the nodes, and also, it
tell each node ¢ the state of the streaming algorithm of [2] after processing the inputs of the first
1 nodes, using the hash function indicated by r. The nodes verify that they all received the same
value of r, and also that, if node ¢ received state s; and node ¢ + 1 received state s; 1, then indeed,
with randomness 7, the algorithm of [2] transitions from state s; to state s; 41 upon processing the
input of node 7. This idea can be extended to arbitrary networks, by using mergeable sketches [1],
asking the prover to specify a spanning tree, and “summing” the sketches up the tree.

Next, we observe that {2(logn) is in fact a lower bound on the dAM-cost of computing the
exact number of elements in a network. This can be shown by the following argument, which is
very similar to a recent §2(log n) lower bound for the dAM-cost of SYMMETRY [15].

Theorem 3.3. We have dAM(COUNT,, ;5) = Q(log n).

Proof. Given an ¢-bit dAM protocol for COUNT,, /5, we construct a 20(0) bit, private-coin, ran-
domized two-party protocol for DISJ with sets of size n/4 (without a prover). Since DISJ requires
Q(n) bits of communication, we conclude that £ = Q(logn).

The protocol proceeds as follows: given inputs (z,y), the players construct the network from
Lemma 3.2, but they use only n/2 nodes in total (with each player responsible for n/4 nodes),
and omit the input L (it is not necessary here). Then, Alice and Bob each sample a private random
string 74,75 (respectively). We say that a pair of ¢-bit certificates ¢, ¢ is r4-good if there is
an assignment of certificates to all the nodes in Alice’s side, where the cut nodes receive the
certificates ¢ and ¢’ (respectively), such that when their randomness is 74 (here, r4 represents a
list of the random string of each node on Alice’s side), all nodes on Alice’s side accept when their
randomness is 74. Similarly, we say that ¢, ¢ is rg-good if the same holds for Bob’s side with
randomness 7. Alice and Bob announce to each other the list of pairs ¢, ¢’ that are r 4-good and
rg-good, respectively. This requires 2%¢ bits. Finally, the players accept iff there is some pair ¢, ¢/
that is good for both players.

It is easy to verify (see, e.g., [14]) that the probability that the players accept is exactly the
probability that a prover has of convincing all nodes of the network to accept. Therefore, the
protocol correctly solves DISJ. O

As a final remark, the argument above also yields an €2(loglogn) lower bound on the dAM
cost of deciding whether the number of distinct elements is (1 + 1/100)k, for £k = ©(n). We
use the same reduction, but reduce from the gap version of DISJ, where it is promised that either
xNy = 0 or|xNy|l > n/100. This problem has randomized private-coin communication
complexity Q(logn) (as its deterministic cost is £2(n) [2], and the private-coin randomized cost
of a problem is never exponentially better than its deterministic cost [13]). Interestingly, our
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upper bound of O(logn) on approximating the number of distinct elements could be improved to
O(loglogn), if the nodes had shared randomness. We could then simulate the famous Flajolet-
Martin streaming algorithm [9], which assumes perfectly random hash functions, and requires
O(loglogn) bits of memory.

Acknowledgements

Partially supported by CONICYT PIA / Apoyo a Centros Cientificos y Tecnoldgicos de Excelencia
AFB 170001 (P.M. and L.R.), Fondecyt 1170021 (I.R.) and CONICYT via PAI + Convocatoria
Nacional Subvencién a la Incorporacion en la Academia Ao 2017 + PAI77170068 (P.M.). Rotem
Oshman is supported by ISF i-core Center for Excellence, No. 4/11.

References

[1]

(2]

[10]

Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, Ke
Yi: Mergeable Summaries. ACM Trans. Database Syst. 38(4): 26:1-26:28 (2013).

Noga Alon, Yossi Matias, Mario Szegedy: The Space Complexity of Approximating the
Frequency Moments. J. Comput. Syst. Sci. 58(1): 137-147 (1999)

Mor Baruch, Pierre Fraigniaud, Boaz Patt-Shamir: Randomized Proof-Labeling Schemes. In
34th ACM Symposium on Principles of Distributed Computing (PODC), pp 315-324, 2015.

Keren Censor-Hillel, Seri Khoury, Ami Paz: Quadratic and near-quadratic lower bounds for
the CONGEST model. arXiv preprint arXiv:1705.05646 (2017).

Keren Censor-Hillel, Ami Paz, Mor Perry: Approximate Proof-Labeling Schemes. Structural
Information and Communication Complexity (SIROCCO 2017). LNCS 10641, pp. 71-89,
2017.

Sephen A. Cook: The Complexity of Theorem-Proving Procedures. In Proceedings of the
third annual ACM symposium on Theory of computing (STOC *71). ACM, New York, NY,
USA, 151-158, 1971.

Paul Erdés, Alfréd Rényi: Asymmetric Graphs. Acta Mathematica Hungarica 14.3-4 (1963):
295-315.

Pierre Fraigniaud, Amos Korman, David Peleg: Towards a Complexity Theory for Local
Distributed Computing. J. ACM 60(5): 35:1-35:26 (2013).

Philippe Flajolet, G. Nigel Martin: Probabilistic Counting Algorithms for Data Base Appli-
cations. J. Comput. Syst. Sci. 31(2): 182-209 (1985).

Oded Goldreich, Silvio Micali, and Avi Wigderson: Proofs that Yield Nothing but their
Validity or all Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM
(JACM) 38.3: 690-728, 1991.

14



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Shafi Goldwasser, Silvio Micali, and Charles Rackoff: The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing, 18(1), 186-208, 1989.

Mika G66s, Jukka Suomela: Locally Checkable Proofs in Distributed Computing. Theory of
Computing 12(1): 1-33 (2016).

Eyal Kushilevitz, Noam Nisan: Communication Complexity. Cambridge University Press
1997, ISBN 978-0-521-56067-2, pp. I-XIII, 1-189

Gillat Kol, Rotem Oshman, Raghuvansh R. Saxena: Interactive Distributed Proofs. In 37th
ACM Symposium on Principles of Distributed Computing (PODC), pp. 255-264, 2018.

Gillat Kol, Rotem Oshman, Raghuvansh R. Saxena: AM Lower Bound for Symmetry. Pri-
vate communication, 2019.

Amos Korman, Shay Kutten, David Peleg: Proof Labeling Schemes. Distributed Computing
22(4): 215-233 (2010).

Eyal Kushilevitz, Noam Nissan: Communication Complexity. Cambridge University Press
(2006).

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan: Algebraic Methods for
Interactive Proof Systems. J. ACM 39, 4, 859-868, 1992.

Moni Naor, Merav Parter, Eylon Yogev: The Power of Distributed Verifiers in Interactive
Proofs. CoRR abs/1812.10917 (2018).

Moni Naor, Larry J. Stockmeyer: What Can be Computed Locally? SIAM J. Comput. 24(6):
1259-1277, 1995.

Boaz Patt-Shamir: A Note on Efficient Aggregate Queries in Sensor Networks. Theor. Com-
put. Sci. 370(1-3): 254-264 (2007)

Adi Shamir: IP = PSPACE. J. ACM 39, 4, 869-877, 1992.

15



