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Abstract

Consider a system composed of n sensors operating in synchronous rounds. In each round
an input vector of sensor readings x is produced, where the i-th entry of x is a binary value
produced by the i-th sensor. The sequence of input vectors is assumed to be smooth: exactly
one entry of the vector changes from one round to the next one. The system implements a fault-
tolerant averaging consensus function f . This function returns, in each round, a representative
output value v of the sensor readings x. Assuming that at most t entries of the vector can be
erroneous, f is required to return a value that appears at least t + 1 times in x. The instability
of the system is the number of output changes over a random sequence of input vectors.

Our first result is to design optimal instability consensus systems with and without memory.
Intuitively, in the memoryless case, we show that an optimal system is D0, that outputs 1 unless
it is forced by the fault-tolerance requirement to output 0 (on vectors with t or less 1’s). For
the case of systems with memory, we show that an optimal system is D1, that initially outputs
the most common value in the input vector, and then stays with its output unless forced by the
fault-tolerance requirement to change (i.e., a single bit of memory suffices).

Our second result is to quantify the gain factor due to memory by computing cn(t), the
number of decision changes performed by D0 per each decision change performed by D1. If
t = n

2
the system is always forced to decide the simple majority and, in that case, memory

becomes useless. We show that the same type of phenomenon occurs when n

2
− t is constant.

Nevertheless, as soon as n

2
− t ∼ √

n, memory plays an important stabilizing role because the
ratio cn(t) grows like Θ(

√
n). We also show that this is an upper bound: cn(t) = O(

√
n).

Our results are average case versions of previous works where the sequence of input vectors
was assumed to be, in addition to smooth, geodesic: the i-th entry of the input vector was
allowed to change at most once over the sequence. It thus eliminates some anomalies that
ocurred in the worst case, geodesic instability setting.

1 Introduction

Consider a system composed of n sensors sampled at synchronous rounds. In each round an input
vector of sensor readings is produced, where the i-th entry of the vector is a value from some finite

∗Partially supported by Programs Conicyt“Anillo en Redes”, Instituto Milenio de Dinámica Celular y Biotecnoloǵıa
and Ecos-Conicyt.
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set V produced by the i-th sensor. To simplify the presentation, the sampling interval is assumed
to be short enough, to guarantee that the sequence of input vectors is smooth: exactly one entry
of a vector changes from one round to the next one.

There are situations where, for fault-tolerant purposes, all sensors are placed in the same loca-
tion. Ideally, in such cases, all sensor readings should be equal. But this is not always the case;
discrepancies may arise due to differences in sensor readings or to malfunction of some sensors.
Thus, the system must implement some form of fault-tolerant averaging consensus function f , that
returns a representative output value v of the sensor readings x. Assuming that at most t entries of
a vector x can be erroneous, f is required to return a value that appears at least t + 1 times in x.

A natural function f is the one that returns the most common value of vector x. However, the
instability of such function is high. In fact, as the next example shows (n = 5 and t = 1), the
output value computed by this f could change from one round to the next one unnecessarily often:

inputs: 00011 → 10011 → 10010 → 11010 → · · ·
outputs: 0 → 1 → 0 → 1 → · · ·

If instead of the previous f we consider the one that decides the smallest value in x that appears
at least t + 1 times, then no output changes would have occurred in the previous sequence (in the
example 0 < 1 and t + 1 = 2). Moreover, we could consider a function f with memory to reduce
further the instability, and try to stay with the ouput of previous rounds.

The worst case instability of consensus functions was studied in two previous papers [3, 5]. The
input sequence considered in those papers was assumed to be, in addition to smooth, geodesic: the
i-th entry of the input vector was allowed to change at most once over the sequence. The instability
of a consensus function was given by the largest number of output changes over any such sequence,
called a geodesic path. Notice that a geodesic path must be finite, since the set V from which the
input vectors draw their values is finite. The case V = {0, 1} of binary input vectors was considered
in [5]. The case of multi-valued input vectors, where the set V is arbitrary, turned out to be much
more difficult and required higher-dimensional topological methods [3].

In this paper we initiate a study of the average instability of consensus functions. We tackle
the case V = {0, 1} of binary input vectors. We remove the geodesic requirement and therefore
the smooth sequences of input vectors we consider here are random walks over the hypercube. If
P = X0,X1, . . . is such a walk, then the average instability of a consensus function f is given by
the fraction of time f changes its output over P . The first goal is –given n and t– to find out
what function f minimizes the instability in the two possible scenarios: with memory and without
memory. We obtain the following results.

For the memoryless case we show that a system, D0, that outputs 1 unless it is forced by the
fault-tolerance requirement to output 0 (on vectors with t or less 1’s), is optimal. For the case of
systems with memory, we show that a system, D1, that initially outputs the most common value in
the input vector, and then stays with its output unless forced by the fault-tolerance requirement to
change is optimal. Thus, a single bit of memory suffices to achieve optimal instability. We should
point out that in order to compute the instability of D1 we use a non-trivial result concerning the
Ehrenfest Markov chain model (which gives a simple expression to the value of the expected time
to go from state k to state k + 1 [14]).

Our second goal is to measure the stabilizing role played by memory. A natural way of doing
this is by computing cn(t), the number of decision changes performed by D0 per each decision
change performed by D1. We prove that cn(t) = O(

√
n), and this upper bound is reached when
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n/2− t = α
√

n, with α constant. In contrast, if t or n/2− t are constant then cn(t) is also constant.
Our approach eliminates some anomalies that occured in the worst case geodesic instability

setting. For instance, in the case of t = 0 (which is interesting because it leaves maximum freedom
on the choice of f), it was proved in [5] that any optimal instability memoryless function must
be one-bit defined, i.e., output the value of the i-th sensor. Intuitively, such a function has high
instability. Indeed, in our average case setting, its instability is 1/n, much higher than the optimal
average instability of 1/2n given by f0.

As noted in [5], studying the instability of consensus functions may have applications in various
areas of distributed computing, such as self-stabilization [4] (indeed, see [10]), Byzantine agreement
[1], real-time systems [11], complexity theory [8] (boolean functions), and VLSI energy saving
[2, 12, 16] (minimizing number of transitions).

Also, it would be interesting to relate our results to natural phenomena that exhibit hysteresis
(memory). It is known, for instance, that some biology phenomena exhibit hysteresis [9, 15]. Did
they appear in evolution as a way to minimize instability? The approach could also be applied in
the social sciences. In fact, wouldn’t it be possible to conceive an electoral system which instead
of deciding by simple majority incorporates some memory in order to eliminate noise? Notice that
system D1, which minimizes instability, corresponds to an hysteretic switch.

This paper is organized as follows. In Section 2 we describe the model and define the instability
measure. Section 3 considers memoryless consensus systems, while Section 4 considers the general
case. In Section 5 we quantify the relevance of memory by analyzing the behavior of the gain factor
for different values of t.

2 Instability

Let n, t be non-negative integers, n ≥ 2t+1. The hypercube of dimension n is a graph whose vertices
Vn = {0, 1}n are all binary n-dimensional vectors, called input vectors. The edges En are all pairs
of vertices whose vectors differ in exactly one component. Notice that |En| = n2n−1. The distance
d(x1, x2) between two vertices x1, x2 is equal to the number of entries in which they differ. Thus,
d(x1, x2) = d iff the shortest path between x1 and x2 in the hypercube is of length d. We denote
by #b(x) the number of entries in x that are equal to b ∈ {0, 1}. The corners of the hypercube are
the vertices 0n and 1n. The d-neighborhood of a vertex x of the hypercube, N d(x), is the set of
vertices at distance at most d from x. Thus, N t(0n) = {x | #1(x) ≤ t}, and similarly for 1n. Since
n ≥ 2t + 1, N t(0n) ∩ N t(1n) = ∅.

Let x0, x1, . . . be the vertices of a walk in the hypercube. We will consider functions f that
assign, to each xi, an output value d that satisfies the fault-tolerance requirement:

f(xi) = d ⇒ #d(xi) ≥ t + 1.

In the memoryless case f is a function only of xi. In general, f outputs d based on the previous
vertices of the walk. Formally, a system is a tuple D = (n, t, S, τ, f), where S is a finite set of
states that includes a special initial state ⊥ ∈ S, τ : Vn × S → S is the transition function, and
f : Vn ×S → {0, 1} is the consensus decision function. The fault-tolerance requirement implies, for
all x ∈ Vn, s ∈ S:

f(x, s) =

{

0 if x ∈ N t(0n)
1 if x ∈ N t(1n)
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An execution of the system is a sequence (x0, s0, d0) → (x1, s1, d1) → . . ., where s0 = ⊥,
si+1 = τ(xi, si), and di = f(xi, si). A triple (xi, si, di) is a configuration.

We assume that if x is the current input vector, then the next input vector x′ is taken in a
random uniform way from the vectors at distance one from x in the hypercube. The initial input
vector is chosen according to some distribution λ. Once the initial state x0 is determined, so is
the initial configuration, (x0, s0, d0). The next configuration is produced by choosing at random
a neighbor of x0, say x1, and we get the next configuration (x1, s1, d1), where s1 = τ(x0, s0) and
d1 = f(x1, s1).

Formally, we define the following Markov process: the set of states is Vn × S and there is a
transition from (x, s) to (x′, s′) if {x, x′} ∈ En and τ(x, s) = s′. Therefore, any random walk
X0,X1,X2, . . ., where X0 is chosen according to λ, defines an execution.

Each state (x, s) has an associated output value f(x, s), so we may write di = f(Xi) to be the
output value associated to Xi. Let cλ,l(D) be the random variable defined by:

cλ,l(D) =
1

l

l−1
∑

k=0

|dk+1 − dk|.

Definition 1. The average instability of a consensus system D is c(D) = E( lim
l→∞

cλ,l(D)).

The Markov chain described above is finite and hence c(D) exists by the ergodic theorem1.

3 Average instability of memoryless systems

In a memoryless system |S| = 1, and τ is irrelevant, so the system is defined by a triplet D = (n, t, f),
where f : Vn → {0, 1}. In this case, the Markov chain is irreducible2, and its set of states is Vn.
That is, X0,X1,X2, . . . is a λ-random walk on the hypercube, and its stationary distribution π is
the uniform πx = 1/2n, for every x ∈ Vn (for notation see [13])). The instability of f counts the
number of times the function f changes its decision along a random walk. By the ergodic theorem,
the fraction of time the random walk crosses bicolored edges (where changes in the decision take
place) tends to the number of bicolored edges divided by |En| = n2n−1.

Proposition 1. Let D = (n, t, f) be a memoryless system. Then,

c(D) =

∑

{x,y}∈En
|f(x) − f(y)|

n2n−1

Proof. Since by definition c(D) = E( lim
l→∞

cλ,l(D)), it is sufficient to prove that

cλ,l(D) −→
l→∞

∑

{x,y}∈En
|f(x) − f(y)|

n2n−1
a.s.

This follows directly from the ergodic theorem. Formally, we consider the Markov chain (X0,X1),

(X1,X2), . . . in which each state is an arc e = (Xi,Xi+1) ∈ −→
E n, an ordered couple of neigh-

bor vertices of the hypercube. Therefore the function defined over the set of states (the arcs) is

1When S is not finite, c(D) might not exist, but c
′(D) = E(lim inf

l→∞
cλ,l(D)) always exists, and can be considered

as a lower bound for the cost.
2In an irreducible Markov chain, it is possible to get to any state from any state.
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f(Xi,Xi+1) = |f(Xk+1) − f(Xk)|. In this standard approach one needs to verify that the chain
is irreducible and that the unique invariant distribution is the uniform distribution in order to
conclude that:

cλ,l(D) =
1

l

l−1
∑

k=0

f(Xk,Xk+1) −→
l→∞

∑

e∈−→E n

πef(e) =
1

2n2n−1

∑

e∈−→E n

f(e) =
1

n2n−1

∑

e∈En

f(e) a.s.

3.1 Geodesic worst case vs. average instability

The worst case geodesic instability measure of [5, 3] depends on the values f takes in a small part
of the hypercube, given by a geodesic path (where the i-th entry of a vector changes at most once).
In contrast, the average instability permits walks that traverse the whole hypercube. We are going
to remark this difference by giving two examples for which the values behave in opposite ways.

Let us assume t = 0. In this case the only restrictions appear in the corners of the hypercube.
More precisely, f(dn) = d.

Suppose that the output of f depends exclusively on what happens in one particular processor
(the i-th processor). In other words, consider the function f (i)(x) = x(i), where x = x(1) . . . x(n).
By common sense, this is clearly a bad strategy. But in terms of the geodesic analysis, this function
appeared to be optimal [5]. Morover, it was proved that any optimal function must be of this form
(when t = 0). The explanation comes from the fact that in a geodesic path, once the i-th coordinate
changes, it can not change anymore. On the other hand, by Proposition 1, the average instability
of f (i) is c(f (i)) = 1

n2n−1
2n

2 = 1
n .

It is easy to see that the average instability of f (i) is far from being optimal. For example,
assume n is odd. And let f(x) = 1 if and only if x = 0k1l with l odd. There is a geodesic path for
which the function changes all along the path. Nevertheless, there is a small number of 1’s in the
hypercube. And, in fact, c(f) = 1

n2n−1
n
2n = n

2n << c(f (i)).

3.2 Optimal memoryless systems

Let Γi denote the set of vectors x ∈ Vn satisfying #1(x) = i. In other words, Γi is the set of nodes
of the hypercube at distance i from 0n. Recall that N k(x) = {y | d(x, y) ≤ k}. Let us define
D0 = (n, t, f0) with f0(x) = 0 if and only if x ∈ N t(0n). In other words, f0 is always 1 unless the
fault-tolerance requirement force the system to decide 0. We prove below that D0 is an optimal
memoryless system.

Theorem 1. Let D = (n, t, f) be a memoryless system. Then c(D0) ≤ c(D), with c(D0) =
(n−1

t )
2n−1 .

Proof. By Proposition 1, in order to compute c(D0), we need to count the number of bicolored
edges {x, y} induced by f0. This number is (n − t)

(

n
t

)

because |Γt| =
(

n
t

)

and each vertex in Γt is

connected to n− t vertices in Γt+1. Thus, c(D0) =
(n−t)(n

t)
n2n−1 =

(n−1
t )

2n−1 . It remains to show that there
is no system D = (n, t, f) of lower cost.

We show this using network flow theory. We orient the edges of he hypercube from Γi to Γi+1,
and we assign a capacity 1 to each of these arcs. An output function f induces a cut, i.e., an
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(S, T )-partition of the vertices of the hypercube. In fact, S are the vertices that output 0 and T
are the vertices that output 1. Since N t(0n) ⊆ S and N t(1n) ⊆ T , we are in fact dealing with cuts
separating Γt and Γn−t. The capacity of the cut is the number of edges starting in S and ending
in T . This number (divided by n2n−1) is precisely the average instability of D.

The cut induced by f0 has capacity (n − t)
(

n
t

)

. If we prove that this is a minimum cut, we are
done. We do this by describing a flow from Γt to Γn−t that saturates this cut, which proves the cut
is minimum, by the min-cut/max-flow theorem. The flow on an arc linking a node of Γi to a node

of Γi+1 is uniformly
(n−1

t )
(n−1

i )
, for t ≤ i < n − t. Notice that the law of flow conservation is satisfied

since, at a vertex x ∈ Γi, t < i < n− t, one easily checks that the incoming flow (n− i)
(n−1

t )
(n−1

i )
is equal

to the outgoing flow i
(n−1

t )
(n−1

i−1)
. The flow of each arc e is at most 1, and the total transported flow is

equal to
(

n
i

)

(n − i)
(n−1

t )
(n−1

i )
= n

(

n−1
t

)

. Finally n
(

n−1
t

)

= (n − t)
(

n
t

)

, which is equal to the capacity of

the cut.

3.3 Symmetric memoryless systems: the Ehrenfest urn model

Random walks turn out to be particularily interesting when the function f is symmetric, i.e., when
it depends only on the distribution of 0’s and 1’s in the input vector. These functions are of the
follwing type: “if i sensors are measuring the value 1 then the output is d”. In these cases, we can
project the hypercube into a path, whose vertices are {0, . . . , n}. We can therefore assume that f is
defined over this set of vertices, instead of over the vertices of the hypercube. Instead of considering
the state x we consider the state i = #1(x). We get a new Markov chain with transitions:P{i → (i + 1)} =

n − i

n
P{i → (i − 1)} =

i

n
.

This process is known as the Ehrenfest urn model [7]. The probability of moving from i to i+1
is simply the probability of moving from a vertex with i entries equal to 1 to a vertex with i + 1
entries equal to 1. There are n − i such edges that can cause this to happen.

The invariant distribution of the Ehrenfest model (easily computable by projection of the uni-

form distribution of the hypercube) is known to be πi =
(n

i)
2n . Therefore, the invariant distribution

of the coupled states corresponding to the arcs (i, i + 1) and (i + 1, i) are π(i,i+1) =
(n

i)
2n

n−i
n , and

π(i+1,i) =
( n

i+1)
2n

i+1
n . Thus, π(i,i+1) = π(i+1,i) =

(n−1
i )

2n .

Theorem 2. Let D = (n, t, f) be a symmetric memoryless system. Then,

c(D) =

n−1
∑

i=0

(

n − 1

i

) |f(i + 1) − f(i)|
2n−1

.

Proof. We know from the ergodic theorem that

cλ,l(D) −→
l→∞

n−1
∑

i=0

π(i,i+1)|f(i + 1) − f(i)| +
n−1
∑

i=0

π(i+1,i)|f(i + 1) − f(i)| a.s.

The result follows from the fact that π(i,i+1) = π(i+1,i) =
(n−1

i )
2n .
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Remark 1. We can recompute the instability of sytem D0 introduced in previous section, because
f0 is symmetric: f0(i) = 1 ⇐⇒ i > t. Therefore, c(D0) =

(n−1
t

)

1
2n−1 .

Remark 2. D0, in the context of the geodesic analysis in [5], appeared to be optimal only among
the symmetric memoryless systems.

4 Average instability of systems with memory

Let us define the following system having only one bit of memory: D1 = (n, t, S1, f1, τ1), where
S1 = {⊥, 0, 1} and

f1(x, s) = τ1(x, s) =















0 if #1(x) ≤ t
1 if #0(x) ≤ t
maj(x) if s = ⊥
s otherwise

Here, maj(x) returns the most common bit value in x ∈ {0, 1}n, and 1 in case of a tie.

Remark 3. System D1 is optimal in the geodesic cost model [5]. Nevertheless, the proof is much
more complicated than in the memoryless case.

Theorem 3. For every system D = (n, t, S, τ, f), we have c(D1) ≤ c(D). Moreover,

c(D1) =

(

2n−1
n−t−1
∑

k=t

1
(n−1

k

)

)−1

and 1
c(D1) is the average time necessary to pass from t to n − t in the Ehrenfest model.

Proof. Let D = (n, t, S, τ, f) be an arbitrary system. Let x0, x1, . . . , xl be the first l + 1 vertices of
a walk in the hypercube. We can associate to each of these vertices a symbol in {∗, 0, 1} depending
on whether the system is not forced to decide (t < #0(xi),#1(xi) < n − t), it is forced to decide
a 0 (#1(xi) ≤ t) or it is forced to decide a 1 (#0(xi) ≤ t). We therefore obtain a sequence
y ∈ {∗, 0, 1}l+1. Let us delete the symbols ∗ in y in order to obtain a shorter binary string y′. Let
c′(y′) be the number of changes in two consecutive symbols of y′ (either 01 or 10). It is clear that
the number of output changes of f over the same walk is at least c′(y′). Since c′(y′) is exactly the
number of output changes of f1 over the walk, we have that cλ,l(D1) ≤ cλ,l(D) over each random
walk. Therefore, c(D1) ≤ c(D).

It remains to study the average instability of D1. Since f1 is symmetric, we can project the
system into states of the form

(i, s) ∈ ({0, . . . , t − 1} × {0}) ∪ ({t, . . . , n − t} × {0, 1}) ∪ ({n − t + 1, . . . , n} × {1}),

where i denotes the number of 1’s the processors are reading and s denotes the last output of f1 (we
are not considering the case s = ⊥ because it appears only once, at the beginning). The transitions
are the following:P{(i, s) → (i + 1, s′)} = (

n − i

n
)1{f(i,s)=s′} P{(i, s) → (i − 1, s′)} = (

i

n
)1{f(i,s)=s′}
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t−1,00,0 t,0 t+1,0 n−t,0n−t−1,0 

t,1 t+1,1 n−t−1,1 n−t,1 n−t+1,1 n,1

Figure 1: The auxiliar Markov chain for D1 (with t = 2).

Previous Markov chain is irreducible and it has a stationary distribution π (to see that we only
need to exhibit a positively recurrent state, for instance (0, 0)). We know that cλ,l(D1) corresponds
to the fraction of time the chain has been in states (t, 1) or (n− 1, t) at time l. In fact, the system
changes its decision each time it reads t 1’s while its last decision was 1, or when it reads t 0’s while
its last decision was 0 (see Figure 1).

Then, by the ergodic theorem, cλ,l(D1) converges almost surely to πt,1 + πn−t,0. By symmetry,
it follows that c(D1) = 2πt,1. We denote the expected time necessary to pass from a state (i, a)
to a state (j, b) by E(i,a)(T(j,b)). Since the inverses of the expected return times correspond to the

stationary distribution, we have c(D1) = 2E(t,1)(T(t,1))
. But, since each cycle passing through (t, 1)

also passes through (n − t, 0),E(t,1)(T(t,1)) = E(t,1)(T(n−t,0)) +E(n−t,0)(T(t,1))

By symmetry, we have E(t,1)(T(n−t,0)) = E(n−t,0)(T(t,1)). On the other hand, for each i 6= t, we
have E(t,1)(T(i,0)) = E(t,0)(T(i,0)). Thus we obtain:

c(D1) =
2

2E(t,0)(T(n−t,0))
=

1E(t,0)(T(n−t,0))

The expected time to reach state (n − t, 0) starting from (t, 0) is equal to the expected time to
reach state n − t starting from state t in the classical Ehrenfest model. In fact, in this part of the
walk the system will always be in state 0 and it only shifts to 1 when leaving the position n − t.

The last result follows from a theorem of [14], in which the authors prove that the expected
time to go from state k to state k + 1 in the Ehrenfest model is equal to 1

(n−1
k )

∑k
j=0

(n
j

)

. Thus,

1

c(D1)
=

n−t−1
∑

k=t

1
(n−1

k

)

k
∑

j=0

(

n

j

)

Stating k′ = n − 1 − k we get:

1

c(D1)
=

n−t−1
∑

k′=t

1
( n−1
n−1−k′

)

n−k′−1
∑

j=0

(

n

j

)

=

n−t−1
∑

k′=t

1
(n−1

k′

)

n
∑

j=k′+1

(

n

j

)

Thus, adding the two expressions of 1
c(D1) we have:

2

c(D1)
=

n−t−1
∑

k=t

2n

(n−1
k

) .
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5 The stabilizing role played by memory

In order to quantify the stabilizing role played by memory we must compute the number of decision
changes of the optimal memoryless system D0 per each decision change performed by the optimal
1-bit of memory system D1. More precisely, we must study the ratio c(D0)

c(D1)
. Since we are interested

in the asymptotic behavior n → ∞, we note n instead of n − 1:

cn(t) =
c(D0)

c(D1)
=

n−t
∑

k=t

(n
t

)

(

n
k

)

5.1 Upper bounds

First we prove an upper bound that is independent of t.

Lemma 1. cn(t) = O(
√

n)

Proof. Let us assume (w.l.o.g.) that n is even.

cn(t) = 2

n/2
∑

k=t

(

n
t

)

(n
k

) = 2

n/2
∑

k=t

(t + 1)(t + 2) . . . k

(n − k + 1)(n − k + 2) . . . (n − t)
.

Let 1 ≤ sn ≤ n/2 (sn grows with n; later it becomes clear why we should choose sn =
√

n). If

t+ sn > n/2 then cn(t) ≤ 2
∑n/2

k=n/2−sn+1 1 = 2sn. Let us consider the case t+ sn ≤ n/2. It follows:

cn(t) = 2
t+sn
∑

k=t

(t + 1)(t + 2) . . . k

(n − k + 1)(n − k + 2) . . . (n − t)
+ 2

n/2
∑

k=t+sn+1

(t + 1)(t + 2) . . . k

(n − k + 1)(n − k + 2) . . . (n − t)

≤ 2 + 2sn + 2

n/2
∑

k=t+sn+1

(t + 1) . . . (t + sn)

(n − t) . . . (n − t − sn + 1)

(t + sn + 1) . . . k

(n − t − sn) . . . (n − k + 1)

≤ 2 + 2sn + 2

n/2
∑

k=t+sn+1

(t + 1) . . . (t + sn)

(n − t) . . . (n − t − sn + 1)
≤ 2 + 2sn + 2(n/2 − t − sn)

(

t + sn

n − t − sn

)sn

Let x = n/2 − t − sn. Let gn(x) = 2 + 2sn + 2x
(

1− 2x
n

1+ 2x
n

)sn

. Since cn(t) ≤ gn(x), our goal is to

find the maximum of gn(x). By computing g′n(x0) = 0 we get

x0 =
nsn

2

(

−1 +

√

1 +
1

s2
n

)

=
nsn

2

(

−1 + 1 +
1

2s2
n

+ o

(

1

s2
n

))

=
n

4sn
+ o

(

n

sn

)

.

Since 2x0
n = 1

2sn
+ o

(

1
sn

)

, it follows:
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cn(t) ≤ 2 + 2sn + 2

(

n

4sn
+ o

(

1

sn

))

exp
sn(log(1− 1

2sn
+o

“

1
sn

”

)−log(1+ 1
2sn

+o
“

1
sn

”

)

≤ 2 + 2sn + 2

(

n

4sn
+ o

(

1

sn

))

exp
sn(− 1

2sn
− 1

2sn
+o

“

1
sn

”

)

≤ 2 + 2sn + 2

(

n

4sn
+ o

(

1

sn

))

exp−1+o(1) = O(sn +
n

sn
)

Since either sn or n
sn

grows faster than
√

n, the best we can do is to choose sn =
√

n in order
to conclude cn(t) = O(

√
n).

5.2 Lower bounds

The main question is whether there are values of t for which the previous upper bound is achieved,
i.e., whether cn(t) = Θ(

√
n) for some relation between n and t. We are going to see first that this

does not happen for extremes values of t.

Lemma 2. When t is constant, lim
n→∞

cn(t) = 2.

Proof. Notice first that cn(t) = 2 +
∑n−t−1

k=t+1
(n

t)
(n

k)
. When t is a constant,

(n

t)
( n

t+1)
=

(n

t)
( n

n−t−1)
= O(1/n).

For t + 2 ≤ k ≤ n − t − 2,
(n

t)
(n

k)
= O(1/n2) and there are O(n) such k’s. Thus, lim

n→∞
cn(t) = 2.

The previous result can be explained as follows: for t constant, the Markov process will rarely
enter a state where it needs to change its decision, either with D0 or D1. Thus, the chain, between
two forced decisions, will be shuffled. Once shuffled, in half of the cases the chain will force the
system to take the same decision it took before. On the other hand, when t is close to n/2, almost
all the decisions are forced. In this case the ratio is also bounded by a constant. In fact,

Lemma 3. When t = n/2 − β, lim
n→∞

cn(t) ≤ 2 + 2β.

Proof. We have cn(t) = 2 +
∑n−t−1

k=t+1
(n

t)
(n

k)
. The sum above contains (less than) 2β terms, which are

all smaller than 1. Thus, cn(t) ≤ 2 + 2β when n tends to infinity.

The interesting case appears when t is close to n/2 but this distance grows with n. More
precisely,

Lemma 4. Let t = n/2 − α
√

n (with α constant). Then cn(t) = Θ(
√

n).

Proof. It only remains to prove the lower bound (see Lemma 1).
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cn(n/2 − α
√

n) ≥
α
√

n
∑

k=0

( n
n/2−α

√
n

)

(

n
n/2−α

√
n+k

)

=

α
√

n
∑

k=0

(n/2 − α
√

n + 1)(n/2 − α
√

n + 2) . . . (n/2 − α
√

n + k)

(n/2 + α
√

n)(n/2 + α
√

n − 1) . . . (n/2 + α
√

n − k + 1)

≥
α
√

n
∑

k=0

(

n/2 − α
√

n

n/2 + α
√

n

)k

≥ α
√

n

(

1 − 2α√
n

1 + 2α√
n

)α
√

n

= α
√

n exp
α
√

n(log(1− 2α√
n

)−log(1+ 2α√
n

))
= α

√
n exp

α
√

n(1− 2α√
n
−1− 2α√

n
+o( 1√

n
))

= α
√

n exp
−4α+o( 1√

n
)
= Ω(

√
n)
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