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ABSTRACT
A Maximal Independent Set (MIS) is an inclusion maximal set of pairwise
non-adjacent vertices. The computation of an MIS is one of the core prob-
lems in distributed computing. In this article, we introduce and analyze
a finite-state distributed randomized algorithm for computing a Maximal
Independent Set (MIS) on arbitrary undirected graphs. Our algorithm is self-
stabilizing (reaches a correct output on any initial configuration) and can be
implemented on systems with very scarce conditions. We analyze the con-
vergence time of the proposed algorithm, showing that in many cases the
algorithm converges in logarithmic time with high probability.
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1. Introduction

The Maximal Independent Set problem (MIS) is one of the main problems in distributed computing.
In its simplest version, it consists in finding an inclusion-maximal set of pairwise non-adjacent vertices
on an undirected graph. TheMIS corresponds to a specific case of a wide problem in distributed graph
algorithms, known as symmetry breaking. When a distributed algorithm is executed, the nodes of a
distributed system are assumed to be in the same state, but in the successive time-steps the nodes are
expected to play different roles, hence breaking the symmetry.

The MIS has a trivial solution in the classical sequential setting, where a greedy algorithm sequen-
tially picks an arbitrary vertex, includes it in the maximal independent set, and removes that vertex
together with all its neighbors. In the 80’s, Karp and Wigderson [1] mentioned that the MIS is an
interesting problem in non-centralized computation. Soon after that, Luby [2] and Alon, Babai, and
Itai [3] presented simple distributed randomized algorithms solving MIS inO(log n) time. Since then,
this problem has been studied extensively in the distributed setting. In the LOCAL model, the fastest
deterministic MIS algorithms for general graphs run in O(log5 n) [4], and O(� + log∗ n) time [5].

Ghaffari [6] also obtained aO(log�) + 2O(
√

log log n) time randomized algorithm on general graphs,
and aO(log a +√

log n) time randomized algorithm for graphs of arboricity a. With respect to lower
bounds, Linial [7] proved that computing an MIS on an n-cycle requires time �(log∗ n). Moreover,
Kuhn et al. [8] showed a �(

√
log n) lower-bound on the round complexity on general graphs.

Another branch of research regarding the MIS problem in the distributed setting consists in con-
sidering models with limited resources. One example is the beeping model [9], where the nodes are
limited to an extremely harsh system of communication. On each round, a node can either broadcast
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a signal (a beep) or hear whether a neighbor emitted a beeping signal, but noes it is not capable of dis-
tinguishing the number nor the sources of the beeping signals it receives. In this model, Afek et al. [9]
showed that an MIS can be computed in time O(log3 n) when the nodes have to know the size of
the graph n and have poly(log n) sized memory. The stone-age model is another relevant model with
limited resources, where the memory of each node is limited to a constant not depending on the size
of the graph. In this model, Emek and Wattenhofer [10] give an MIS algorithm with a running time of
O(log2 n). Interestingly, this algorithm requires that the nodes start in a particular initial state in order
to be capable of performing correct computation.

An algorithm is called self-stabilizing [11] if it can reach a correct output starting from any initial
state. The motivation for this kind of algorithm is the capacity of distributed systems to self-repair a
faulty configuration when one of the parties crashes. For instance, consider a maximal independent
set, where one of the nodes crashes. It is possible that the rest of the nodes do not form a maximal
independent set in the remaining graph (for instance, consider an MIS in a complete graph where the
unique marked node crashes). In that context, a self-stabilizing MIS algorithm should be able to reach
an MIS for any initial state configuration of the nodes.

In a keynote talk of SIROCCO 2022 [12], George Giakkoupis presented two extremely simple ran-
domized algorithms for MIS. His algorithms have two interesting properties: they are self-stabilizing
and they require only two or three states. Despite this simplicity, the algorithm has hardly been stud-
ied before, and its convergence time is not been settled yet. In this article, we propose a variant of the
algorithm of [12] and study its convergence time both numerically and analytically.

Notation: For a positive integer k, we denote by [k] the set {1, . . . , k}. Also, for a set S, we denote by
x ∈U S the process of taking an element of S uniformly at random. On inputs of size n, we say that an
event occurs with high probability if it occurs with probability greater or equal than 1 − 1/n.

The dynamics. Let G = (V , E) be a simple finite undirected graph and k ≥ 2 an integer. A configura-
tion is a function that assigns to each node a state in [k]. Formally, a configuration is given by a function
x : V → {0} ∪ [k]. For each node u ∈ V we denote xu the state of u on configuration x. The nodes in a
state different than zero are calledmarked nodes, while the nodes in state 0 are called unmarked.

We say that a configuration represents an independent set of G when no edge has both endpoints
in a state different than 0. Formally,

∀ {u, v} ∈ E, xu · xv = 0

Additionally, we say that a configuration represents amaximal independent set of Gwhen it represents
an independent set and, in addition, no edge has both endpoints in state 0. Formally,

∀ u ∈ V , xu 	= 0 ∨ (∃v ∈ N(u), xu 	= 0) .

Let us consider the following stochastic dynamic over graph configurations. Given a configura-
tion x, the next configuration x′ is computed synchronously according to a rule that we denote
MIS-Dynamics: Synchronously, the new state x′

u of u ∈ V is computed as follows:

(i) If xu = 0 and ∀ v ∈ N(u), xv = 0, then x′
u ∈U [k].

(ii) If xu 	= 0 and ∃v ∈ N(u), xu = xv and ∀ v ∈ N(u), xv ≤ xu, then x′
u ∈U [k].

(iii) If xu 	= 0 and ∃v ∈ N(u), xv > xu, then x′
u = 0.

(iv) x′
u = xu otherwise.

In the special case of two-state configurations x : V → {0, 1}, we consider the following stochastic
dynamics, that we call 2-MIS-Dynamics: Synchronously, we compute for each u ∈ V the new state x′

u
as follows:
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(i) If xu = 0 and ∀ v ∈ N(u), xv = 0, then xu = 1.
(ii) If xu 	= 0 and ∃v ∈ N(u), xv 	= 0, then xu ∈U {0, 1}.
(iii) x′

u = xu otherwise.

Given a configuration x (also called initial configuration), the trajectory of x, denoted {xt}t≥0, is the
random variable representing the evolution of the MIS-Dynamics where xt is obtained from xt−1 for
each t> 1, and x0 = x.

We say that a configuration is a fixedpoint for theMIS-Dynamics if x′ = xwith probability 1. Observe
that a configuration x is a fixed point of the MIS-Dynamics if and only if x represents a maximal inde-
pendent set. Indeed, let x be a fixed point of the MIS-Dynamics. We say that a node u is stabilized on x
if one of the following conditions is satisfied:

(1) xu 	= 0 and every v ∈ N(u) satisfies xv = 0,
(2) xu = 0 and there exists a stabilized neighbor of u such that xu 	= 0.

1.1. Our contribution

We study the convergence time of the MIS-Dynamics and 2-MIS-Dynamics both empirically and
analytically.

We first simulate thedynamics ondifferent graph classes, namely: Complete graphs, stars, graphs of
Erdös-Renyi, random trees, and graphs of bounded degeneracy. On the one hand, we observe that the
2-MIS-Dynamics converges to a MIS in logarithmic time in expectation for all classes. We also observe
that the convergence time tends to increase with the density of the input graph. In fact, for complete
graphs, we the convergence time is �(log2(n)) with non-negligible probability. On the other hand,
we observe that the MIS-Dynamics converges to an MIS in logarithmic time, both in expectation and
with high probability. Moreover, the computation time decreases as the number of states augments.

Then, we analytically study the convergence time of the MIS-Dynamics. First, we show that with
high probability, the dynamic converges in time O(α log n), where α is the size of a maximum inde-
pendent set of the input graph. Then, we extend our analysis to the 2-MIS-Dynamics, showing that
with high probability it converges in timeO(α log2 n). Finally, we show that restricted to the class of
d-degenerate graphs, the 2-MIS-Dynamics converges in timeO(log n) with high probability.

1.2. Structure of the article

We begin giving some background and preliminaries in Section 2. In Section 3, we report the results
of our computational simulations. Then, in Section 4 we give bounds for the convergence time of the
MIS-Dynamics and 2-MIS-Dynamics on arbitrary graphs. In Section 5, we study the 2-MIS-Dynamics on
graphs of bounded degeneracy. We finish with a discussion in Section 6.

2. Preliminaries

In this article, all graphs are simple, finite, and undirected. Given a node v of a graph G = (V , E), the
neighborhood of v, denoted by N(v), is the set of vertices adjacent to v. Formally N(v) = {u ∈ V :
{u, v} ∈ E}. The degree of a node u, denoted d(u) is the cardinality of N(v). Given a set of nodes U ⊆ V ,
the subgraph of G induced by U, denoted G[U], is the graph defined by the vertex set U, and all the
edges in E with both endpoints in U. A graph is called connected if there is a path between every pair
of vertices. A connected component of a graph G is an inclusion maximal connected set of vertices.
A connected graph without cycles is called a tree. A graph where every node has degree d is called
d-regular.

A set of nodes S is called an independent set if the graph induced by it has no edges. An inclusion-
maximal independent set is simply calledmaximal independent set. The cardinality of an independent
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set of maximal cardinality is denoted α(G), and is called the independence number of G. The problem
of computing α(G) is NP-Hard. The range of its value goes from 1 for the complete graph, to n−1 for
the case of the star graph. There are a number of combinatorial lower bounds for α(G)with respect to
some graph parameters. In this article, we make use of the following simple result.

Proposition 2.1 ([13]): Let G be an n-node graph of maximum degree�. Then, α ≥ n/�.

A graph property is called an hereditary property if it is closed under taking induced subgraphs. An
example of a hereditary property is bounded degeneracy. A graph G is called d-degenerate if every
subgraph of G (including G itself) contains a vertex of degree at most d. Alternatively, a graph has
degeneracy d if it can be decomposed successively removing vertices of degree at most d. In the fol-
lowing lemma, we now show that in a d-degenerate graph, for most vertices their degree is bounded
by 4d−2.

Lemma 2.2: A connected graph of degeneracy d contains at least n/2 nodes of degree at most 4d−2.

Proof: First, observe that a graph of degeneracy d has at most dn edges. Let us call U the set of nodes
of a degree greater or equal than 4d−1. Then, for the hand-shaking lemma:

2dn =
∑
v∈V

d(v) ≥ |U|(4d − 1) + (n − |U|).

Thepreviousbound implies that |U| ≤ (2d−1)n
4d−2 ≤ n/2.Wededuce that the cardinality of the set vertices

of degree at most 4d−2 is at least n/2. �

The graphs of Erdös-Rényi-Gilbert (in the following graphs of Erdös-Rényi for simplicity) are a ran-
domizedmodel of graphswhere agraph is constructedby connecting labelednodes,where eachedge
is included in the graph with probability p, independently from every other edge. The following result
states that with a high probability the independence number of a graph of Erdös-Rényi is bounded by
the logarithm of the number of nodes.

Proposition 2.3 ([14]): For each p ∈ (0, 1) and sufficiently large n, the independence number of a graph
of Erdös-Rényi with parameters n and p isO(log n)with high probability.

3. Experimental results

In this section, we report the empirical analysis of the 2-MIS-Dynamics and the MIS-Dynamics.
In Figure 1 we show the results of a study of the 2-MIS-Dynamics and the MIS-Dynamics of k states

with k ∈ {2, 3, 4, 9} over complete graphs. We observe that on all cases the average convergence time
has a logarithmic growwith respect to the size of the graph. We also observe that the average conver-
gence time of the MIS-Dynamics decreases as the number of states k grows. The 2-MIS-Dynamics has
a better convergence time than the three-state MIS-Dynamics for small values of n, but for complete
graphs onmore than 16 nodes the 2-MIS-Dynamics has a larger average convergence time than all the
MIS-Dynamics for every k ≥ 2.

We then extend the analysis to other graph classes. In Figure 2 we report our results for complete,
star, random trees (Barabasi-Albert graphs with m = 1) and 4-regular graphs. In all cases, the results
are roughly the same than those we obtained for the complete graphs. That is to say, the average
convergence timeO(log n) and it decreases as we increase the number of states in the dynamics. We
complement our analysis with a study of the worst-case convergence time (i.e. the maximum conver-
gence time over all initial configurations). In Figure 3 we report our results, which were obtained in
the same way as Figure 2, except that we take the maximum over all observed convergence times for
each graph size.
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Figure 1. Plot of the average convergence time for the 2-MIS-Dynamics and MIS-Dynamics. On the x-axis we have the number of
nodes in log2 scale, while in the y-axis are given the number of iterations. The different dynamics are represented with different col-
ors. The line labeled k = 1 corresponds to the 2-MIS-Dynamicswhile the other lines represent theMIS-Dynamicswith k ∈ {2, 3, 4, 9}
states. Each line represents the average convergence time of 5000 initial configurations picked uniformly at random. We also give
the slope � of the least squares regression line corresponding to the points.

Interestingly, in theworst-case analysis on complete graphs, we observe that the convergence time
of the 2-MIS-Dynamics behaves significantly different than on the rest of the classes, and also with
respect to the average case. In fact, our results suggest that in the worst case the convergence time of
the 2-MIS-Dynamics isO(log2 n). This fact is indeed verified in the next section.

Finally, we explore how the density of the input graph influences the average and worst-case
convergence-time of the 2-MIS-Dynamics and MIS-Dynamics. To do so, we fixed a number of nodes
to n = 500, and simulate the dynamics in two families of graphs. First, on Erdös-Rényi graphs for
different probabilities p. Second, in d-degenerate graphs for different values of d. Our results are
reported in Figure 4. We observe that for the 2-MIS-Dynamics and the MIS-Dynamics, the maximum
average convergence times are found on graphs with a mean degree around n/2. With respect to
the worst-case convergence-time, we observe a similar behavior for the MIS-Dynamics, while for the
2-MIS-Dynamics tends to increase with the density.

4. A bound on the convergence time of theMIS-Dynamics on arbitrary graphs

In this section, we show that for every initial configuration, the MIS-Dynamics converges to a fixed
point (hence a configuration that represents amaximal independent set) inO(α · log n) time-steps on
average. For simplicity, our analysis focuses on the case where k = 2, as it can be trivially generalized
to the case where k> 2.

For a configuration x, we define the following energy functional:

S(x) =
∑

{u,v}∈E
δ(xu, xv), where δ(a, b) =

{
1 if a = b 	= 0,

0 otherwise.

Let us fix an initial configuration x0 and a time-step t. We denote by St the random variable that equals
S(xt). A configuration xt such that St = 0 is called a zero-energy configuration. Observe that all config-
urations that represent an independent set are zero-energy configurations (but the converse is not
true). We call Etm the random variable representing the set of edges of G having on time-step t with
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Figure 2. Plots of the average convergence time for the 2-MIS-Dynamics and MIS-Dynamics for different graph classes. On the x-
axis we have the number of nodes, while on the y-axis are given the number of iterations. In the left column,we have the linear scale,
while in the right columnwe give the x-axis in log2 scale. The different dynamics are represented in different colors. The line labeled
k = 1 corresponds to the 2-MIS-Dynamics while the other lines represent the MIS-Dynamics with k ∈ {2, 3, 4, 9} states. Each line
represents the average convergence time of 1000 initial configurations picked uniformly at random. We also give the slope � of the
least squares regression line corresponding to the points.
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Figure 3. Plots of the worst-case convergence time for the 2-MIS-Dynamics and MIS-Dynamics for different graph classes. On the
x-axis we have the number of nodes, while on the y-axis are given the number of iterations. In the left column, we have the linear
scale, while in the right column we give the x-axis in log2 scale. The different dynamics are represented in different colors. The line
labeled k = 1 corresponds to the 2-MIS-Dynamicswhile the other lines represent theMIS-Dynamicswith k ∈ {2, 3, 4, 9} states. Each
line represents the average convergence time of 1000 initial configurations picked uniformly at random. We also give the slope � of
the least squares regression line corresponding to the points.
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Figure 4. Plots of the influence of the edge density on convergence time for the 2-MIS-Dynamics and MIS-Dynamics. On the four
plots we represent the convergence time of the 2-MIS-Dynamics (k = 1) and the MIS-Dynamics on k ∈ {2, 3, 4, 9} states on graphs
with n = 500 nodes. In the left column we represent the behavior of the convergence-times on Erdös-Renyi graphs, where the x-
axis represents the probability p of adding the edge between two vertices. In the right column we represent the behavior of the
convergence-times on d-degenerate graphs. In that case, the x-axis represents the different values of the degeneracy d. In the top
row the y-axis represent the average convergence times of the corresponding dynamics, while the bottom rowwe show the worst-
case convergence times. Each point is computed taking 10,000 random initial conditions, each one on a different graph picked
uniformly at random.

both endpoints marked with the same value. Formally,

Etm = {{u, v} ∈ E : xtu = xtv 	= 0}
Observe that St = |Etm|. We also denote by At and Bt the random variables representing the following
sets of edges:

At = {u ∈ V : xt−1
u = 0 and xtu 	= 0}

Bt = {u ∈ V : xt−1
u 	= 0 and xtu 	= 0}

We say that a time-step t such that At 	= ∅ is amarking time step.

Lemma 4.1: Let {xt}t≥0 be a trajectory and let t0 be a marking time-step. Let C be a connected compo-
nent of the graph induced by At0 . Then C contains a node that is never unmarked. Formally, there is u ∈ C
satisfying xtu 	= 0 for every t ≥ t0.

Proof: Let us suppose by contradiction that there is a time step t1 > t0 where every node in C has
visited state 0 at least once on some configuration of {xt0 , . . . , xt1}. From all possible choices of t1, we
pick the minimum one. Let v be a node such that xtv 	= 0 for every t0 ≤ t < t1 and xt1v = 0. Then, the
only possibility is that xt1−1

v = 1 and that v has a neighbor u ∈ N(v) such that xt1−1
u = 2. Observe that

xt1u 	= 0 (it impossible that a node in state 2 switches to 0 in the next time-step). Then, by definition
of T, there must exist a time-step t0 < t < t1 − 1 such that xtu = 0. However, we are assuming that v
is in a state different than 0 on all the configurations of that interval. Therefore, it is impossible that u
switches to a state different than 0 on a time-step between t and t1 − 1. This contradicts the choice of
u. We deduce that at least one node of C is never unmarked. �

Lemma 4.2: The trajectory of every configuration has at most α marking time steps.
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Proof: Now let us call T the set of time-steps t such that At 	= ∅. Given a time-step t ∈ T , we know by
Lemma 4.1 that there is a node v(t) ∈ V that is never unmarked after time-step t. We have that the set
{v(t)}t∈T forms an independent set ofG. Indeed, let us pick two different time-steps t1, t2 ∈ T such that
t1 < t2. By definition of At2 we have that x

t2−1
v(t2)

= 0 and xt2v(t2) 	= 0. Since t1 < t2 we have that x
t2−1
v(t1)

	= 0.
We deduce that v(t1) and v(t2) cannot be adjacent. We conclude that |T| ≤ α(G). �

Lemma 4.3: Let t> 0 be a non-marking time-step. Then,E(St) ≤ St−1/2.

Proof: First, we observe that, since At = ∅, every edge that contributes to St also contributes to St−1.
Formally, Etm ⊆ Et−1

m . Indeed, let e = {u, v} be an edge contained in Etm. Clearly u and v belong to Bt ,
as At is empty. Then, xt−1

u 	= 0 and xt−1
v 	= 0. Moreover, xt−1

u = xt−1
v , as otherwise at least one of the

endpoints would be 0 on time-step t. Therefore e is also contained in Et−1
m . Now observe that for every

e ∈ Et−1
m , the probability that e ∈ Etm is fewer or equal than the probability that both endpoints of e

remain marked and choose the same state, which is 1/2. We deduce that E(St) ≤ St−1/2. �

Lemma 4.4: Let t be a zero energy time-step. Then at least one of the following holds:

• t+ 1 is marking,
• t+ 2 is marking,
• xt+1 is a fixed point

Proof: Let t be a time-step satisfying that St = 0, and let us assume that At+1 = ∅. We show first that
xt+1 must represent an independent set. Observe that At+1 = ∅ implies St+1 = 0. Then, in xt or xt+1

no edge has both endpoints in state different than 0. Suppose that there exist an edge {u, v} such that
xt+1
u = 1 and xt+2

v = 2. Then necessarily xtu = xtv = 0, which contradicts the assumption of At+1 = ∅.
We deduce xt+1 represents an independent set. Now suppose that xt+1 does not represent a maxi-
mal independent set, that is to say, there is a node w such that xt+1

v = 0 for all v ∈ N(w) ∪ {w}. Then
necessarily xt+2

w = 1, implying that At+2 	= ∅. �

Now we are ready to prove the main result of this section.

Theorem 4.5: For every initial configuration, the MIS-Dynamics converges to a configuration represent-
ing amaximal independent set inO(α · log n) time-steps with high probability.

Proof: Let x0 be an arbitrary initial configuration. From Lemma 4.3 we know that, with high prob-
ability, in at most O(log n) time-steps the trajectory visits a zero-energy configuration or a marking
time-step. Let t> 0 be a marking time-step or a time-step where the trajectory visits a zero-energy
configuration. Combined with Lemmas 4.4 and 4.1 we know that either xt+1 is a fixed point (so we are
done), or either t, t+ 1 or t+ 2 is marking. In the later cases, we repeat the analysis by taking xt , xt+1

or xt+2 as the initial configuration. By Lemma 4.2 we know that the number of repetitions is bounded
by α. We deduce that with high probability the dynamic converges to a configuration representing a
maximal independent set inO(α · log n) time-steps. �

4.1. The 2-MIS-Dynamics on arbitrary graphs

We now adapt our result to the 2-MIS-Dynamics. The difference is found in the result given on
Lemma 4.1. In fact, that lemma does not hold for the 2-MIS-Dynamics. Indeed, on every marking time-
step t, there exists a non-zero probability that all nodes of At become unmarked. Nevertheless, the
next lemma shows that at least one marked node is stabilized with a constant probability.
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Lemma4.6: Let {xt}t≥0 be a trajectory and let t0 be amarking time-step. Let C be a connected component
of the graph induced by At0 . Let E the event where at least one node of C is never unmarked. Formally,

E : ∃ u ∈ C, ∀ t ≥ 0, xtu 	= 0.

Then, there exists an absolute constant c ∈ (0, 1) satisfying that Pr(E) ≥ c.

Proof: Let m be the number of edges in G[C]. If m = 0 then C consists on an isolated marked node,
which is stabilized with probability 1. If 0 < m ≤ 144 we have that Pr(E) ≥ 2−144. Indeed, whenm ≤
144 we have that C contains at most 144 nodes. A lower-bound on Pr(E) is the event where on one
time-step all except one fixed node of C becomes 0. The probability of such an event is lower-bounded
by 2−144. In the following, we assume thatm> 144.

Let us denote e1, . . . , em the edges of G[C]. For each i ∈ [m] we denote by eti the random variable
that equals 1 if edge ei is marked on all time-steps in {t0, . . . , t0 + t}. We also denotemt = ∑

i∈[m] e
t
i . In

words,mt is the randomvariable representing the edges that have both endpointsmarked on all time-
steps in {t0, . . . , t0 + t}. Observe that for each i, j ∈ [m],E(eti ) = 2−2t andby linearity of the expectation,
E(mt) = 2−2tm.

We aim to bound the probability that the actual value of mt has a large gap with respect to its
expectation. By Chebyshev’s inequality we have that

Pr(|mt − E(mt)| > a) ≤ Var(mt)

a2
.

By Bienyamé’s identity, we know that

Var(mt) =
∑
i∈[m]

Var(eti ) +
∑
i∈[m]

∑
j∈[m]\{i}

Cov(eti , e
t
j )

where

Var(eti ) = E((eti )
2) − (E(eti ))

2 = 2−2t − 2−4t .

and

Cov(eti , e
t
j ) = E(eti e

t
j ) − E(eti )E(eti ) =

{
2−3t − 2−4t if ei ∩ ej 	= ∅
0 otherwise.

Then, if we denote by � the maximum degree of G[C],

Var(mt) ≤ m · (2−2t − 2−4t) + m · 2� · (2−3t − 2−4t).

Observe that �2 ≤ |C|� ≤ 2m. Therefore,

Var(mt) ≤ m · (2−2t − 2−4t) + 23/2m3/2 · (2−3t − 2−4t).

Now let us pick k ≤ m a variable to be fixed later. If we choose

τ =
⌊
log(m) − log(k)

2

⌋
,

we have that E(mτ ) ∈ [k, 2k] and

Var(mτ ) ≤ m ·
(
k

m
−
(
k

m

)2
)

+ 23/2m3/2 ·
((

k

m

)3/2

−
(
k

m

)2
)

= k + k
√
8k −

(
k2

m
−

√
8k2√
m

)
≤ k + k

√
8k
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Then,

Pr(|mτ − E(mτ )| > k/2) ≤ 4
k

+ 4
√
8√
k
.

If we pick k = 144 we obtain that Pr(|mτ − E(mτ )| > 72) < 0.98. In other words, with probability
greater than0.02wehave thatmτ ∈ [E(mτ ) − 72,E(mτ ) + 72] ⊆ [72, 360]. Conditioned to that event,
we have that with probability greater or equal than 2−360 a fixed node u is stabilized on time-step
τ + 1.

We conclude that Pr(E) ≥ c = 0.02 · 2−360. �

Using the previous lemma, we can show that, with high probability, there areO(α · log n)marking
time-steps on a 2-MIS-Dynamics.

Lemma 4.7: For every initial configuration, with high probability, there areO(α · log n) marking time-
steps on the 2-MIS-Dynamics.

Proof: From Lemma 4.6, we know that there exists a constant c such that at least one marked node
is stabilized with a probability greater than c. Then, onO(log n)marking time-steps at least one node
is stabilized with high probability. We deduce that the trajectory of every initial configuration visits
O(α · log n) marking time-steps with high probability. �

Observe that we can show results analogous to Lemmas 4.3 and 4.4 using exactly the same proofs.
We deduce the main result of this subsection.

Theorem4.8: For every initial configuration, the2-MIS-Dynamics converges toa configuration represent-
ing amaximal independent set inO(α · log2 n) time-steps with high probability.

5. The 2-MIS-Dynamics on graphs of bounded degeneracy

In this section, we show that the 2-MIS-Dynamics converges to a configuration that represents a
maximal independent set in timeO(log n) on average.

Let G be an arbitrary graph. We denote by G≤d the sub-graph of G induced by the nodes of degree
at most d and by αd the size of a maximum independent set of G≤d .

Lemma5.1: LetGbeagraph, let d beapositive integer, and let x bea configurationofGwithno stabilized
vertices. Then, on average,�(

αd
4d+1 ) nodes are stabilized after two time-steps.

Proof: For each u ∈ V and t> 0, let us call P(u, t) the probability that u is stabilized on time-step t. We
claim that P(u, 2) ≥ 2−(2du+1). Indeed, if xu = 1 then P(u, 1) ≥ 2−(du+1), hence P(u, 2) ≥ 2−(2du+1). If
xu = 0 then, on time step t = 1 the probability that u and all its neighbors are unmarked is at least
2−du . Hence P(u, 2) ≥ 2−(2du+1).

Now let U be a maximum independent set of G≤d , and letW be the random variable representing
the subset ofU that is stabilized on time-step t = 2. Then, for each u ∈ U, Pr(u ∈ W) ≥ 2−(2d+1). Hence

E(|W|) ≥ |U|
22d+1

≥ αd

4d+1
. �

Theorem 5.2: For every initial configuration over a d-degenerate graph, the 2-MIS-Dynamics converges
to a configuration representing amaximal independent set inO(log n) time-steps with high probability.

Proof: Let G be an arbitrary n-node graph of degeneracy d, and let x be an arbitrary configuration of
G. Without loss of generality, we assume that G has no stabilized vertices. Otherwise, we pick the set
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of nodes U that are not stable on x, and continue the reasoning with the subgraph of G induced by U.
Observe that G[U] is a d-degenerate graph as the property is hereditary.

Let W be the set of nodes in G of degree at most 4d−2. From Lemma 2.2 we know that |W| ≥
n/2. Now let us call αW the size of a maximum independent set of the graph induced by W. From
Proposition 2.1 we have that

αW ≥ |W|
4d − 2

≥ n

2(4d − 2)
.

Then, from Lemma 5.1 we know that after two time-steps, the expected number of stabilized nodes is:

αW

44d−1
≥ n

2(4d − 2)44d−1
.

Let us denote c(d) = 2(4d − 2)44d−1. The previous bound implies that after

T ≥ 2
log(c(d)) − log(c(d) − 1)

· log(n)

time-steps, the expected number of non-stabilized nodes is at most 1/n. By the Markov inequality, we
deduce that on time-step T the probability that all nodes are stabilized is at least 1 − 1/n. We conclude
that, with high probability, onO(log n) time-steps all nodes are stabilized. �

6. Discussion

Wehave presented a very simple dynamics that converges to configurations that represent amaximal
independent set of the input graph on any initial configuration with probability 1. Our experimen-
tal results suggest that in average the convergence time of our dynamics is O(log n). Moreover, the
dynamics on three or more states converges inO(log n) steps with high probability, while in the case
of two states, the convergence time isO(log2 n) with high probability.

The results given in Theorems 4.5 and 4.8 confirm the observations on graphs with constant
independence number (such as complete graphs). Theorem 5.2 also confirms the observations of
the 2-MIS-Dynamics on graphs of bounded degeneracy. Finally, Proposition 2.3 together with The-
orems 4.5 and 4.8 implies poly-logarithmic convergence time for graphs of Erdös-Rényi in average, as
well as with high probability.

We remark that the convergence time of our dynamics is not settled for general graphs. The exis-
tence of graph classeswith large convergence time (on averageorwith highprobability) is a possibility
that we do not completely explore in this article. In this sense, we conjecture that our results can be
improved in order to show a poly-logarithmic convergence time for every graph class.

From a more general perspective, we believe that there is an interesting research line related to
the definition of simple finite-state dynamics that can work as strategies to efficiently compute to
other graph structures, different thatmaximal independent sets, such asmaximal matchings, minimal
dominating sets, etc.
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