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Abstract We investigate the natural situation of the dissemination of

information on various graph classes starting with a random set of in-

formed vertices called active. Initially active vertices are chosen inde-

pendently with probability p, and at any stage in the process, a vertex

becomes active if the majority of its neighbours are active, and there-

after never changes its state. We show that in any cubic graph, with high

probability, the information will not spread to all vertices in the graph

if p < 1
2
. We give families of graphs in which information spreads to all

vertices with high probability for relatively small values of p.

1 Introduction

LetG = (V,E) be a simple undirected graph. A configuration C ofG is a function
that assigns to every vertex in V a value in {0, 1}. The value 1 means that the
corresponding vertex is active while the value 0 represents passive vertices.

We investigate the natural situation in which a vertex v needs a strong majority
of its neighbours, namely strictly more than 1

2d(v) neighbours, to be active in
order to become an active vertex. Therefore, consider the following rule of dis-
semination that acts on configurations: a passive vertex v whose strict majority
of neighbours are active becomes active; once active, a vertex never changes its
state. The initial configuration of a dissemination process is called an insemina-
tion. Since the set of active vertices grows monotonically in a finite set V , a fixed
point has to be reached after a finite number of steps. If the fixed point is such
that all vertices have become active, then we say that the initial configuration
overruns the graph G. A community [10] (also called an alliance) in G is a subset
of nodes X ⊆ V each of which has at least as many neighbours in X as in V \X,
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i.e. for every v ∈ X, |N(v)∩X| ≥ |N(v)∩ (V \X)|. Notice that a configuration
overruns G if and only if it contains no community of passive vertices.

Dissemination has been intensively studied in the literature, using various dis-
semination rules (see e.g. [17] for a survey). Among other types of rules we can
cite models in which a vertex becomes active if the total weight of its active
neighbours exceeds a fixed value [12], or symmetric majority voting rules, for
which an active vertex may also become passive if the number of passive neigh-
bours outweights the number of active neighbours [17]. One of the main questions
for each of these models is to find small sets of active vertices which overrun the
network. Several authors considered the problem of finding small communities
in arbitrary graphs or special graph classes [8,10].

In this work we consider a probabilistic framework. A random configuration
in which each vertex is active with probability p and passive with probability
1− p is called a p-insemination. We are interested in the probability θp(G) that
a p-insemination overruns G. It is clear that θp(G) is a monotonic increasing
function of p. We investigate the majority dissemination process starting with a
p-insemination for various graph classes. Such random dissemination processes,
with different types of dissemination rules, have been studied in the literature
in the context of cellular automata or in bootstrap percolation [11].

One of the basic questions is to determine the ratio of active vertices (in other
words, the critical value of p) one needs in order to overrun the whole graph with
high probability. Without any restriction on the structure of the underlying
graph, it appears to be difficult to determine this ratio. It is therefore more
instructive to consider whole classes of graphs. If G is a class of graphs, let
G = (Gn)n∈N denote a generic sequence of graphs Gn ∈ G such that |V (Gn)| <
|V (Gn+1)| for all n ∈ N. We define dissemination half-thresholds p+

c and p−c of
class G by

p+
c (G) = inf{p | ∃G : lim θp(Gn) = 1}
p−c (G) = sup{p | ∀G : lim θp(Gn) = 0}

In words, for p < p−c and any increasing sequence G in G, the probability that
a random p-insemination overruns the graph tends to zero.

For example, for the class K of all complete graphs, it is straightforward to see
that p+

c (K) = p−c (K) = 1
2 . If for a class G the two half-thresholds are equal, we

say that pc(G) = p+
c (G) = p−c (G) is the dissemination threshold of class G. It

is convenient to introduce the following terminology: throughout the paper, if
(An)n∈N is a sequence of events in a probability space such that limn→∞ P[An] =
1, we write An a.a.s (asymptotically almost surely). For example, if p < p−c (G)
then a.a.s Gn ∈ G is not overrun by a p-insemination.

In this paper, we consider dissemination on regular graphs and particular classes
of irregular graphs. First we consider regular graphs, for which we give simple
lower bounds for the dissemination half-threshold p−c , and we prove that the



threshold pc is exactly 1
2 for cubic graphs. In the second part, we give simple

explicit constructions of graph classes with relatively small dissemination half-
threshold p+

c (G). This counters the naive intuition that one should need about
half of the vertices to overrun the whole graph.

Regular graphs. The dissemination process, as we have mentioned, has been
studied for specific families of graphs, such as integer lattices, hypercubes, and
so on, all of which are regular graphs. More generally, let Gr be the family of
r-regular graphs. We observe that pc(G2) = 1, since a p-insemination overruns
a cycle if and only if there are no two consecutive passive vertices. A more
interesting case is the class Q of hypercube graphs: these are regular graphs
but with growing degrees. Following from more general results on families of
regular graphs with growing degrees, Balogh, Bollobás and Morris [5] showed
pc(Q) = 1

2 . Balogh and Pittel [6] considered dissemination on random r-regular
graphs. Consider Gn,r, a graph chosen uniformly at random from the family of
all r-regular graphs on n vertices, so G(r) = {Gn,r : n ∈ N}. It turns out that
pc(G(r)) a.a.s. exists and equals

pr := 1− inf
y∈(0,1)

y

F (r − 1, 1− y)

where F (r, y) is the probability of obtaining at most r/2 successes in r indepen-
dent trials with the success probability equal y. This leaves the determination
of the dissemination threshold for Gr for fixed r > 3 as an open question. Let us
have a look at the values of pr for small r, though:

r 3 4 5 6 7
pr 0.5 0.667 0.275 0.397 0.269

We conjecture that the dissemination thresholds pc(Gr) exist and equal pr. To-
wards this conjecture, we show the following modest result:

Theorem 1. For all positive integers r, p−c (Gr) ≤ pr and

p−c (Gr) ≥
{

1
r if r is odd
2
r if r is even

We will prove the conjecture in the case r = 3:

Theorem 2. pc(G3) = 1
2

Irregular graphs. It is natural to search for graph classes G for which p+
c (G) is

small. If, as we conjecture, regular graphs behave like random regular graphs,
then regular graphs cannot have very low thresholds. One should consider graphs
whose vertices have varying degrees – we refer to these loosely as irregular graphs.
To this end, we consider the class of wheels and toroidal graphs. Let Cn denote
the cycle on n vertices and C2

n denote the the toroidal grid on n2 vertices. Notice



that C2
n is, indeed, the cartesian square of Cn. In general, let Ckn denote the k-

dimensional torus. Let u ∗ Ckn denote the k-dimensional torus augmented with
a single universal vertex u. We will consider the class of wheels – i.e. the family
W = {u∗Cn | n ∈ N} – and the class of toroidal grids plus a universal vertex – i.e.
T = {u ∗C2

n | n ∈ N}. Our main result is that for both classes the dissemination
threshold is small:

Theorem 3. For the class W, we have p+
c (W) = 0.4030..., where 0.4030... is

the unique root in the interval [0, 1] of the equation p+p2−p3 = 1
2 . For the class

T of toroidal grids plus a universal vertex, we have 0.35 ≤ p+
c (T ) ≤ 0.372.

Since our goal is to find graph classes with small dissemination thresholds, clearly
the second result is stronger than the first. Nevertheless, we shall present their
proofs in parallel. For establishing the bounds on toroidal grids plus a universal
vertex we need (a small amount of) computer-aided computations, while on
wheels all computations are easy to check by hand.
The results of Balogh and Pittel on 7-regular graphs imply the existence of
graph classes with half-threshold p+

c < 0.27. Although this bound is smaller
than in our case, our result has the advantage of giving explicit constructions
of graph classes with small half-threshold p+

c . We also believe that our proof
techniques might give new tools for constructing classes with even smaller values
of p+

c . Let us remark that computer simulations for higher dimension tori with a
universal vertex u ∗Ckn indicate even lower thresholds. In simulations, a random
p-insemination overruns u∗C2

n the graph a.a.s. already with p = 0.37, which fits
within the bounds shown in this paper. For k equal 3, 4 and 5 the graph u ∗Ckn
is a.a.s. overrun by a random p-insemination already with p equal 0.35, 0.32 and
0.3, respectively. We leave the following as an open problem: Is there a family
of graphs on which any p-insemination overruns the graph a.a.s for any p > 0?

2 Regular graphs

In this section we outline the proof of Theorem 1. Balogh and Pittel [6] showed
that for the class of random r-regular graphs, the dissemination threshold is a
constant pr a.a.s. where p3 = 1

2 , p4 = 2
3 and so on. This establishes the upper

bound in Theorem 1. For the lower bound, we use the following easy observation.
The average degree of a graph G is 2e(G)/|V (G)|.

Lemma 1. Let G be a graph of average degree more than 2k − 2, where k ∈ N.
Then G has a subgraph of minimum degree at least k.

Proof. Let G be such a graph. We recursively remove vertices of degree at most
k−1. Each step this removes at most k−1 edges, thus at the end of this process
we must obtain a non-empty subgraph of G. This subgraph has the required
property. ut



Let I be the set of active vertices of a p-insemination of G ∈ Gr, and Ic =
V (G) \ I. Then

E[|Ic|] = (1− p)n and E[e(Ic)] =
r

2
(1− p)2n

where e(Ic) is the number of edges of G with both ends in Ic. Note that |Ic| is
a binomial random variable, in particular the the Chernoff Bound [2] implies:

|Ic| ∼ (1− p)n a.a.s. (2.1)

We also need to prove that

e(Ic) ∼ r

2
(1− p)2n a.a.s. (2.2)

This is proved using the Independent Bounded Differences (IBD) inequality
(see [14]).

Theorem 4 ([14]). Let X = (X1, X2, . . . , Xq) be a family of independent ran-
dom variables with Xi taking values in a set Ai for each i. Suppose that the
real-valued function f defined on ΠAi satisfies

|f(x)− f(x′)| ≤ ci

whenever vectors x and x′ only differ on the ith coordinate. Let µ be the expected
value of f(X). Then for any t ≥ 0,

P(|f(X)− µ| ≥ t) ≤ 2e−2t2/
∑
c2i .

Note that e(Ic) can be considered as a function of the independent variables
Xv, for all vertices v of the graph, where Xv = 1 if v is active in the initial
configuration, and Xv = 0 if v is initially passive. By changing the value of only
one variable Xv, we simply move vertex v from I to Ic or vice-versa. Thus the
value of e(Ic) changes by at most r since G ∈ Gr. By applying Theorem 4 to
e(Ic), we obtain (2.2). If p < 1/r for r odd and p < 2/r for r even, by (2.1) and
(2.2), we have

e(Ic) >
(⌈r

2

⌉
− 1
)
|Ic| a.a.s.

Lemma 1 with k = dr/2e implies that the graph G[Ic] induced by Ic a.a.s
has a subgraph of minimum degree at least dr/2e, and so Ic a.a.s contains a
community. This gives θp(G)→ 0, as required.

3 Cubic graphs

In this section, we prove Theorem 2, which determines the dissemination thresh-
old for cubic graphs. We observe that a community in a cubic graph contains
a cycle, and therefore the obstruction to a p-insemination overrunning a cubic
graph is a cycle of passive vertices.



3.1 Random cubic graphs

In this section, we outline the proof of Theorem 2. To prove that pc(G3) ≤ 1
2

we shall find a family of cubic graphs G such that θp(G) → 1 as |V (G)| → ∞
for all p > 1

2 . Note that the existence of such a family is implied by the work
of Balogh and Pittel [6]. Nevertheless, our proof is short, self-contained and can
be easily turned into an explicit construction of such a family. This family of
cubic graphs is generated by considering cubic graphs chosen at random from
all cubic graphs, and then showing that such a random graph has the required
properties. A survey of random regular graphs is found in Wormald [15]. The
specific property we shall require of such graphs G is that the length of the
shortest cycle in G tends to infinity as |V (G)| tends to infinity, and G contains
no more than 2i cycles of length i for every i ≤ |V (G)|. We call such graphs
cycle-sparse. The following fundamental result on short cycles in random regular
graphs was proved by Bollobás [3]:

Proposition 1. Let Xi denote the number of cycles of length i in a random
cubic graph on n vertices, for i ≤ n. Then, for any fixed integer g > 3,

lim
n→∞

P[∀i ≤ g : Xi = 0] = exp

(
−

g∑
i=1

i−12i−1

)
.

This result was recently extended to longer cycles in random cubic graphs by
Garmo [9]. Omitting technical details, the results of Garmo show that for any
i ≤ n, P[Xi > 2i] = O(i−2). Since the Euler sum converges, we deduce that with
positive probability Xi ≤ 2i for all i. A few more technical considerations show
that we can ensure that with positive probability, Xi = 0 for i ≤ g and Xi ≤ 2i

for i > g, no matter what constant value of g we prescribe. It follows that there
are infinitely many cycle-sparse cubic graphs.
To finish the proof that pc(G3) ≤ 1

2 , we fix p > 1
2 and apply the Harris-Kleitman

inequality [2]. For this inequality we consider the probability space Qn, whose
underlying sample space is the n-dimensional Boolean lattice {0, 1}n endowed
with the natural product probability measure

P(ω) :=
n∏
i=1

pωi(1− p)1−ωi for ω ∈ {0, 1}n.

We may consider ω ∈ {0, 1}n as the incidence vector of a subset of {1, 2, . . . , n}.
Taking this stance, a downset in Qn is an event A ⊂ {0, 1}n such that if ω ∈ A
and ω′ ⊆ ω, then ω′ ∈ A. An event is an upset if its complement is a downset.

Proposition 2. Let A1, A2, . . . , Ar be downsets in Qn. Then

P[A1 ∩A2 ∩ · · · ∩Ar] ≥
r∏
i=1

P[Ai].

The same holds if the events are all upsets.



In the current context, we take a p-insemination of a cycle-sparse n-vertex cubic
graph Gn (seen as a {0, 1}n vector), and observe that the events AC that all
vertices of a cycle C ⊂ Gn are passive are downsets in Qn. By the Harris-
Kleitman inequality,

P[
⋂

C⊂Gn

AC ] ≥
∏

C⊂Gn

P[AC ]

where the products and intersections are over all cycles C ⊂ G. Observe that AC
has probability (1− (1− p)`) if C has length `. Using the cycle-sparse property
of Gn, we see ∏

C⊂Gn

P[AC ] ≥
∏
i>g

(1− (1− p)i)2
i

.

Since p > 1
2 , 1− (1− p)i > e−2(1−p)i

. Consequently,∏
C⊂Gn

P[AC ] > exp
(

2
∑
i>g

(2(1− p))i
)
> exp

(
−2(2(1− p))g

1− 2p

)
.

We conclude that for any p > 1
2 and any constant g,

lim sup
n→∞

θp(Gn) ≤ 1− lim
n→∞

exp
(
−2(2p)g

1− 2p

)
.

Since g was an arbitrary constant,

lim
n→∞

θp(Gn) = 1

and this shows pc(G3) ≤ 1
2 .

3.2 pc(G3) ≥ 1
2

With high probability, the existence of many short vertex-disjoint cycles in a
cubic graph prevents a p-insemination from overrunning the graph. Therefore,
to prove pc(G3) ≥ 1

2 , it is enough to consider cubic graphs which have very few
short disjoint cycles – after some technical details, we may assume that we have
an infinite sequence G where an n-vertex cubic graph Gn in G has no cycles
of length at most 2g where g = 1

8 log n. These details will be presented in the
full version of the paper. We now outline the proof that for any p < 1

2 and any
increasing sequence of graphs Gn, θp(Gn)→ 0 as n→∞.

Let Cλ(Gn) denote the number of sets of λ vertices of Gn through which Gn
contains a cycle of length λ – we shall call these cyclic sets. Note that, in general,
Cλ(Gn) is less than the number of cycles of length λ in Gn. The key idea in
showing θp(Gn)→ 0 is the following technical proposition:

Proposition 3. For some λ satisfying λ = Θ(log n),

Cλ(Gn) = Ω(λ−42λ).



An intuitive way to see this is via eigenvalues: the number of closed walks of
length k in Gn is exactly n

∑n
i=1 λ

k
i , where λi is the ith largest eigenvalue of the

adjacency matrix of Gn. Since Gn is cubic, λ1 = 3. Now it is possible, although
fairly detailed, to show by subtracting walks on trees, that about Ω(2k/k) of
these walks contain cycles provided k is a large enough constant times log n. A
similar computation is carried out in [13] (see Proposition 4.2). Putting k = λ,
and using the girth condition, one arrives at the bound on Cλ(G) in Proposition
3. We also observe that in a random cubic graph, the expected number of cycles
of length λ is roughly 2λ/λ, so in the sense of counting cycles, Gn is close to a
random cubic graph, and these were discussed in the last section. We consider
the events AX that all vertices in a cyclic set X of size λ are passive. The Harris-
Kleitman Inequality – Proposition 2 – gives a lower bound on the probability
that no AX occurs, whereas we require an upper bound. The requisite inequality
for such an upper bound is Janson’s Inequality [16]:

Proposition 4. Let A1, A2, . . . , Ar be downsets in the probability space Qn, and
define

4 =
∑
i∼j

P[Ai ∩Aj ]

where i ∼ j means the events Ai and Aj are dependent and µ is the expected
number of Ai which occur. Then

P[
r⋂
i=1

Ai] ≤ e−µ
2/24.

Showing θp(Gn) → 0 is equivalent to showing that some AX occurs a.a.s., and
we shall establish this with Janson’s Inequality by showing that for the events
AX , µ2/4→∞.

To prove this, note that from Proposition 3,

µ = (1− p)λCλ(Gn) = Ω
( (2− 2p)λ

λ4

)
.

It is trickier to estimate 4, and this relies heavily on the assumption that Gn
has no cycles of length at most 2g. To estimate 4, we fix a cyclic set X and
ask, for each i ∈ N, for the number 4i(X) of cycles C of length λ for which
|X ∩ V (C)| = i. It turns out that

4i(X) = λO(1)2λ−i−g for 1 ≤ i < λ− g

and 4i(X) = 0 otherwise. This allows us to estimate 4:



4 ≤ Cλ(Gn)
λ−g−1∑
i=1

(1− p)2λ−i4i(Gn)

= O(µ2) · λO(1)

λ−g−1∑
i=1

(1− p)−i2−i−g

= O(µ2)λO(1)2−g.

Here we used the fact that p < 1
2 . By the choice of g, λO(1)2−g → 0, and we are

done: 4/µ2 → 0. In words, some λ-cycle is passive a.a.s by Janson’s Inequality,
and therefore θp(Gn)→ 0.

4 Wheels and toroidal grids

We prove here Theorem 3: wheels and toroidal grids plus a universal vertex u

have (relatively) small dissemination half-thresholds p+
c . One of the main ob-

servations is that, for any probability p > 0, if the universal vertex becomes
active during the dissemination process, then the graph is overrun a.a.s. Thus,
for any value p such that p-inseminations contaminate a.a.s. more than half of
the vertices of the cycle or of the toroidal grid, we deduce that the whole graph
is overrun.
There has been much research on dissemination on the k-dimensional torus and
grid graphs. The considered rules were the l-neighbours rule, which are more
general than the majority rule: in this setting a vertex becomes active if at least
l of its neighbours already are active. In particular, Aizenman and Lebowitz [1]
studied the 2-neighbours dissemination on P 2

n and their results extend to C2
n.

Notice that the majority dissemination on C2
n is the 3-neighbours dissemination,

since C2
n is a four-regular graph.

Our approach is based on the observation that once the universal vertex u be-
comes active, the majority dissemination in the Ckn part of u∗Ckn, in fact, follows
the weak majority rule restricted to Ckn. In the weak majority rule a vertex be-
comes active if at least half of its neighbours are active. If the p-insemination of
u ∗ Ckn is such that half plus one vertex of Ckn become active, then u becomes
active as well. Moreover, for any p > 0, the weak majority rule dissemination
process for Ckn will almost surely overrun the whole graph (the result is trivial
for cycles, and due to Aizenman and Lebowitz for toroidal grids):

Lemma 2 (see [1]). Let Owp (G) be the random event that a p-insemination
overruns G under the weak majority rule, and let us denote owp (G) the corre-
sponding probability. Then for any p > 0 and any k ∈ {1, 2},

lim
n→∞

owp (Ckn) = 1



Therefore, for any probability p > 0 on graphs of type u∗Ckn, if the dissemination
contaminates the vertex u it will almost surely overrun the whole graph.

Lemma 3. Denote by Fp(G) the number of active vertices obtained by the p-
dissemination process on G. For every class of graphs G of type u ∗Ckn, p+

c (G) =
inf{p ∈ [0, 1] over all values p such that there exists an increasing sequence u∗Ckni

satisfying limi→∞ P(Fp(Ckni
) > nki /2) = 1.

From now on we only consider the p-dissemination process in cycles and toroidal
grids, under the strong majority rule. Recall that Fp(G) is the random variable
counting the number of active vertices in the final state, after a p-dissemination
process in G. We give upper and lower bounds for the expected value of Fp for
cycles and toroidal grids. Moreover, we shall see that, with very high probability,
the value of Fp(Ckn) is very close to its expectation, when n→∞. Therefore, it
is sufficient to see for which values of p this quantity E(Fp(Ckn)) is strictly bigger
than nk/2, and for which values it is strictly smaller than nk/2. According to
Lemma 3, the dissemination threshold for the class u ∗ Ckn lies between the two
values.

Since we are unable to give an exact formula for Fp(Ckn), we give upper and
lower bounds for this quantity. Consider a window Dd(v) formed by all vertices
at distance at most d from v in Ckn. Let Sdp(v) be a random variable equal
to 1 if v becomes active when we replace, in the original p-insemination, all
vertices outside the window Dd(v) by passive vertices, and equal to 0 otherwise.
Let sdp(C

k
n) be the probability that Sdp(v) = 1 (by symmetry this probability is

the same for all vertices). Dually, let W d
p (v) = 1 if v becomes active when, in

the initial p-insemination, all vertices outside Dd(v) are transformed into active
vertices, and W d

p (v) = 0 otherwise. The probability that W d
p (v) = 1 is denoted

wdp(Ckn). Finally, let Sdp(G) =
∑
v S

d
p(v) and W d

p (G) =
∑
vW

d
p (v)1.

Clearly, we have

Lemma 4. For any constant d and any k ≥ 1,

Sdp(Ckn) ≤ Fp(Ckn) ≤W d
p (Ckn)

For any fixed values of k and d, the probabilities sdp(C
k
n) and wdp(Ckn) can be

expressed as polynomials on p.

Lemma 5.

1. For any n ≥ 3,
s1p(Cn) = w1

p(Cn) = p+ p2 − p3.

1 In the case of cycles, it is easy to see that the dissemination process stops in exactly

one step: a passive vertex becomes active iff both neighbours are active, therefore

Sd
p(Cn) = Fp(Cn) = W d

p (Cn) for any n ≥ 3 and any d ≥ 1.



2. For any n ≥ 5, s3p(C
2
n) and w3

p(C
2
n) are polynomials of degree 25 on p. Their

exact formula has been computed by a program.

Proof. Let us prove the the first part of the lemma. Let v be a vertex of the
cycle and assume that all vertices at distance at least 2 from v are passive. Then
v will be active if and only if initially v is already active (which occurs with
probability p) or initially v is passive and both his neighbours are active (which
occures with probability (1 − p)p2. Therefore the probability that u becomes
active is p + p2 − p3 = s1p. Now if we configure all non-neighbours of v to be
active, the situation is exactly the same: v will be active iff it was active since
the begining, or if it was initially passive and both neighbours were active.
For the second part of the proof, the polynomials corresponding to s3p and w3

p

have been computed by a program. The program considers the window D3(v)
formed by the 25 vertices of distance at most 3 from vertex v in C2

n. For each
number i, with 0 ≤ i ≤ 25, we count the number of configurations with exactly
i active vertices and such that v belongs to a passive community. (We consider
both settings, when vertices outside the window are all active, respectively all
passive.) We find e.g. 1 community with 0 active vertices, 24 communities with
one active vertex, 276 communities with 2 active vertices, etc. The probability of
such a configuration being pi(1−p)25−i, we obtain the required polynomials. ut

The expectation of the variable Sdp(Ckn) (respectively W d
p (Ckn)) is nksdp(C

k
n) (re-

spectively nksdp(C
k
n)). Moreover, we have:

Sdp(Ckn) ∼ nksdp(Ckn) and W d
p (Ckn) ∼ nkwdp(Ckn) a.a.s. (4.1)

For proving that the two quantities are very close to their expectations we use
again the Independent Bounded Differences inequality (Theorem 4). Consider
Sdp(Ckn) and W d

p (Ckn) as real functions on all possible initial configurations of Ckn
(so their domain is {0, 1}nk

). For each vertex v of Ckn, let Xv be the random
variable s.t. Xv = 1 if v is active in the initial configuration, and Xv = 0 if v is
initially passive. Clearly the variables Xv are independent. Recall that Sdp(Ckn) =∑
w S

d
p(w), where Sdp(w) is the boolean random variable corresponding to the

event “vertex w becomes active if we replace, in the original p-insemination, all
vertices at distance larger that d from w by passive vertices”. If in the initial
configuration we only change the value of one vertex v, this only changes the
values Sdp(w) for vertices w at distance at most d from v. Hence the value of
Sdp(Ckn) is modified by at most a constant value. By similar arguments, the
value of W d

p (Ckn) also changes by at most a constant. Therefore we can apply
Theorem 4 to both functions, and deduce Equation 4.1.

We are now able to prove our Theorem 3. Consider the case of wheels. For
any p > 0.4030..., we have s1p(Cn) = p + p2 − p3 > 1/2. By Lemma 4 and
Equation 4.1, we have that Fp(Cn) > n/2 a.a.s. Therefore p+

c (W) ≤ p, for any
p > 0.4030.... by Lemma 3. Symmetricaly, for any p < 0.4030..., w1

p(Cn) < 1/2



and thus Fp(Cn) < n/2 a.a.s. We deduce by Lemma 3 that p+
c (W) ≥ 0.4030...,

which proves the first part of Theorem 3.

The same kind of arguments can be applied to toroidal grids plus one vertex.
For any p ≥ 0.372 (resp. any p ≤ 0.35), the polynomial s3p(C

2
n) (resp. w3

p(C
2
n),

see Lemma 5) has value strictly greater (resp. smaller) than 1/2. We conclude
by Lemma 3 that 0.35 ≤ p+

c (T ) ≤ 0.372.
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