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Abstract

In this paper we study the reconstruction problem in the congested clique

model. Given a class of graphs G, the problem is defined as follows: if G /∈ G,

then every node must reject; if G ∈ G, then every node must end up knowing

all the edges of G. The cost of an algorithm is the total number of bits received

by any node through one link. It is not difficult to see that the cost of any

algorithm that solves this problem is Ω(log |Gn|/n), where Gn is the subclass of

all n-node labeled graphs in G. We prove that the lower bound is tight and that

it is possible to achieve it with only 2 rounds.
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1. Introduction

The congested clique model –a message-passing model of distributed com-

puting introduced by Lotker, Patt-Shamir, Pavlov, and Peleg [26]– is receiving

increasingly more attention [5, 12, 13, 14, 16, 20]. In the congested clique, the
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underlying communication network is the complete graph. Therefore, in this

network of diameter 1, the issue of locality is taken out of the picture. The

focus is set on congestion, which is, together with locality, the main issue in dis-

tributed computing. The point is the following: if the communication network

is a complete graph and the cost of local computation is ignored, then the only

obstacle to perform any task is due to congestion alone.

Despite the theoretical motivation of the congested clique model, examples

of distributed and parallel systems, where the efficiency depends heavily on the

bandwidth and therefore might benefit from our results, are becoming increas-

ingly common. For instance, in [17], the authors show that fast algorithms in

the congested clique model can be translated into fast algorithms in the MapRe-

duce model. MapReduce is a well-known, popular parallel-programming frame-

work for processing large scale data [6]. Other similar systems are Pregel [27],

Spark [35], Hadoop [34], Dryad [19], etc.

Many theoretical models, aiming to bridge the gap between theory and pre-

viously mentioned softwares, have emerged: the Massively Parallel Commu-

nication model [2], the MapReduce Computation model [22], the k-Machine

model [23]. There is also a precursory model: the Bulk-Synchronous Parallel

model of Valiant [33]. All these models are very similar, but not completely

identical, to the congested clique model.

1.1. The model

The congested clique model is defined as follows. There are n nodes which

are given distinct identities (IDs), that we assume for simplicity to be numbers

between 1 and n. In this paper we consider the situation where the joint input

to the nodes is a graph G. More precisely, each node v receives as input an n-bit

boolean vector xv ∈ {0, 1}n, which is the indicator function of its neighborhood

inG. Note that the input graphG is an arbitrary n-node graph, a subgraph of the

communication network Kn. Nodes execute an algorithm, communicating with

each other in synchronous rounds and their goal is to compute some function f

that depends on G. In every round, each of the n nodes may send up to n− 1
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different b-bit messages through each of its n − 1 communication links. When

an algorithm stops every node must know f(G). We call f(G) the output of

the distributed algorithm. The parameter b is known as the bandwidth of the

algorithm. We denote by R the number of rounds. The product R·b corresponds

to the total number of bits received by a node through one link, and we call it

the cost of the algorithm.

An algorithm may be deterministic or randomized. We distinguish two sub-

cases of randomized algorithms: the private-coin setting, where each node flips

its own coin; and the public-coin setting, where the coin is shared between all

nodes. An ε-error algorithm A that computes a function f is a randomized

algorithm such that, for every input graph G, Pr(A outputs f(G)) ≥ 1 − ε.

In the case where ε → 0 as n → ∞, we say that A computes f with high

probability (w.h.p.). Recall that in this model all nodes compute the same

output; therefore, when we run the algorithm either all nodes compute the right

answer or none of them does.

The function f defines the problem to be solved; a 0/1-valued function corre-

sponds to a decision problem (such as connectivity [16]). For other, more general

types of problems, f may be more appropriately defined as a relation. This hap-

pens, for instance, when we want to construct a minimum spanning tree [14, 20],

a maximal independent set [13], a 3-ruling set [18], all-pairs shortest-paths [5],

etc. We remark that in these references the model does not consider the re-

striction that all vertices have to know f(G) when the algorithm stops. For

instance, in the minimum spanning tree problem each vertex has to output only

the subset of its incident edges that belong to the tree.

1.2. The reconstruction problem

The most difficult problem one could attempt to solve is the reconstruction

problem, where nodes are asked to reconstruct the input graph G. In fact, if

at the end of the algorithm every node has full knowledge of G, then, since

nodes have unbounded computational power, they could answer any question

concerning G.
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In centralized, classical graph algorithms, a widely used approach to cope

with NP-hardness is to restrict the class of graphs where the input G belongs.

We use an analogous approach here, in the congested clique model. But, as

we explain later, surprisingly, the complexity of the reconstruction problem will

only depend on the cardinality of the subclass of n-node graphs in G.

We introduce two problems, each defined for a fixed set of graphs G. The

first one, the strong reconstruction problem G-Strong-Rec, is the following.

Input: An arbitrary graph G

Output:

all the edges of G if G ∈ G;

reject otherwise.

G-Strong-Rec

Recall that the output is computed by every node of the network. In other

words, every node of an algorithm that solves G-Strong-Rec must end up

knowing whether G belongs to G; and, in the positive cases, every node also

finishes knowing all the edges of G.

We also define a weak reconstruction problem G-Weak-Rec. This is a

promise problem, where the input graph G is promised to belong to G. In

other words, for graphs that do not belong to G, the behavior of an algorithm

that solves G-Weak-Rec does not matter.

Input: G ∈ G

Output: all the edges of G

G-Weak-Rec

What is already known about the (strong) reconstruction problem? The an-

swer to this question is that there exist mainly three different types of algorithms

for tackling this problem.

First, we have Lenzen’s algorithm, which performs a load balancing pro-

cedure [24]. It simply distributes all the edges among the nodes, and then
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broadcasts everything. Therefore, if the class of input graphs G consists of a

subset of sparse graphs then such algorithm solves the reconstruction problem

very quickly. For instance, if the input graph G contains O(n) edges, then

Lenzen’s algorithm reconstruct G in a constant number of rounds with band-

width O(log n).

The second approach has been devised for graphs with bounded degeneracy.

Recall that a graph G is d-degenerate if one can remove from G a vertex r of

degree at most d, and then proceed recursively on the resulting graph G′ = G−r,

until obtaining the empty graph. Bounded genus graphs such as planar graphs,

bounded tree-width graphs, graphs without a fixed graph H as a minor, are all

examples of classes of graphs with bounded degeneracy. In [3, 29] the authors

exhibit a one-round deterministic algorithm that solves G-Strong-Rec using

bandwidth O(d log n) = O(log n), where G is the class of d-degenerate graphs.

Note that the class of d-degenerate graphs is simultaneously sparse and

hereditary . A class G is hereditary if, for every graph G ∈ G, every induced

subgraph of G also belongs to G. Many graph classes are hereditary: forests,

planar graphs, bipartite graphs, k-colorable graphs, bounded tree-width graphs,

etc. [4]. Moreover, any intersection class of graphs –such as interval graphs,

chordal graphs, unit disc graphs, etc.– is also hereditary [4].

The third type of result is related to the reconstruction of particular heredi-

tary graph classes. Authors have studied hereditary classes defined by one fixed

forbidden graph H. A graph G is called H-free if H is not an induced subgraph

of G. In [21] the authors studied the (one-round) reconstruction problem of

H-free classes, for all possible graphs H. In particular, they consider the case

when H is the path of 4 nodes P4. They exhibited a one-round, public coin

algorithm for solving G-Strong-Rec using bandwidth O(log n), where G is the

class of P4-free graphs, known as cographs.

Finally, one can also define a class of graph by forbidding H as a subgraph

(instead of forbidding it as an induced subgraph). Any class defined like this

is also hereditary. In [7], the authors prove that the degeneracy of the class of

graphs defined by forbidding the subgraph H is upper bounded by 4·ex(n,H)/n,
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where ex(n,H) is the Turán number of H, defined as the maximum number of

edges in an n-node graph not containing an isomorphic copy of H as a subgraph.

Therefore, the class of graphs defined by a forbidden subgraph H can be recon-

structed deterministically in one round with bandwidth O((ex(n,H) log n)/n).

1.3. A key remark

In this short subsection we explain a key aspect of this paper. For any

positive integer n, let us define the set Gn as the set of all n-node graphs in G.

There is an obvious lower bound for R · b, even for the weak reconstruction

problem G-Weak-Rec and even in the public-coin setting. In fact,

R · b = Ω(log |Gn|/n).

This can be seen by noting that, in the randomized case, there must be at

least one outcome of the coin tosses for which the correct algorithm reconstructs

the input graph in at least (1−ε) of the cases. In fact, if this was not true, then

we would be contradicting the correctness of the algorithm, which states that

for every input graph, in at least (1−ε) of the coin tosses, the answer is correct.

A useful way to see this is to visualize a matrix where the rows correspond to

coin tosses, the columns to input graphs, and each entry is the output given

by the algorithm to the corresponding graph and the corresponding sequence of

coin tosses.

Now we count the number of bits received by any node. By previous ar-

gument, it must be Ω(log((1 − ε) · |Gn|)) = Ω(log |Gn|). This holds because in

at least one outcome of the coin tosses, the nodes must reconstruct that many

different graphs.

On the other hand, the total number of bits received by any node v of the

network is (n−1) ·R ·b+n. In fact, (n−1) ·R ·b bits are received from the other

nodes and n bits are known by v at the beginning of the algorithm. Therefore,

putting all together, we have n+ (n− 1) ·R · b = Ω(log |Gn|). This implies that

R · b = Ω(log |Gn|/n).
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In this paper we prove that this bound is essentially tight, even with R = 1

(if G is an hereditary class of graphs) and R = 2 (in the general case).

1.4. Our results

In Section 3 we give, for every hereditary class of graphs G, a one-round

private-coin randomized algorithm that solves G-Strong-Rec with bandwidth

O(maxk∈[n] log |Gk|/k + log n).

We emphasize that our algorithm runs in one round, and therefore it runs in

the broadcast congested clique, a restricted version of the congested clique model

where, in every round, the n − 1 messages sent by a node must be the same.

This equivalence –which is a consequence of the requirement that all nodes must

compute the output after one round– is proved in Section 2. We also remark that

for many hereditary graph classes our algorithm is tight. More precisely, our

result implies that G-Strong-Rec can be solved in one round with bandwidth

O(log n) when G is the class of forests, planar graphs, d-degenerate graphs,

interval graphs, unit-circle graphs, or any other hereditary graph class G such

that |Gn| = 2O(n logn).

In Section 4 we give a very general result, showing that two rounds are

sufficient to solve G-Strong-Rec in the congested clique model, for any set

of graphs G. More precisely, we provide a two-round deterministic algorithm

that solves G-Weak-Rec and a two-round private-coin randomized algorithm

that solves G-Strong-Rec w.h.p. We also give a three-round determinis-

tic algorithm solving G-Strong-Rec. All algorithms run using bandwidth

O(log |Gn|/n+log n), so they are asymptotically optimal when |Gn| = 2Ω(n logn).

Our result implies, in particular, that G-Strong-Rec can be solved in two

rounds with bandwidth O(log n), when G is any set of graphs of size 2O(n logn).

The only property of the set of graphs G used by our algorithm is the cardinality

of Gn. Our algorithm does not require G to be closed under isomorphisms.

In Section 5 we revisit the one-round case. Our general algorithm can be

adapted to run in one round (i.e., in the broadcast congested clique model) by

allowing a larger bandwidth. We show that, for every set of graphs G, there is a
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one-round deterministic algorithm that solves G-Weak-Rec, and a one-round

private-coin algorithm that solves G-Strong-Rec w.h.p., both of them using

bandwidth O(
√

log |Gn| log n+log n). We finish Section 5 pointing out that our

algorithms are tight with respect to the bandwith as well as the requirement of

randomness.

Even though in the congested clique model, by definition, the only complex-

ity measure taken into account is communication, it is important to point out

that the general algorithms we present in this paper might run in exponential

local time.

Note, however, that unless P = NP (or even if stronger conjectures in

computational complexity are false), this difficulty can not be overcome. In

fact, for many graph classes G, solving G-Strong-Rec in polynomial local

time is impossible.

Let us illustrate this with an example. Consider the hereditary, sparse class

of 3-colorable planar graphs, that we denote 3-col-plan. It is NP -complete

to decide whether an arbitrary graph belongs to 3-col-plan [11]. Any algo-

rithm in the congested clique model that runs in polynomial local time can be

simulated by a sequential algorithm that also runs in polynomial time: simply

run the computation of each node one by one at each round. Therefore, un-

less P = NP , there is no algorithm running in polynomial local time solving

3-col-planar-Strong-Rec. Nevertheless, when the class of graphs is decid-

able in (centralized) polynomial time, there is no reason, a priori, preventing us

from finding one-round, polynomial local time reconstruction algorithms in the

congested clique model.

The remark above motivates the study of the following question: for what

graph classes G the reconstruction problem G-Strong-Rec can be solved in

one round, bandwidth O(log |Gn|/n) and polynomial local time? In Section 6

we address this question by devising one-round, public-coin algorithms for re-

constructing two hereditary classes of graphs: distance-hereditary graphs and

graphs of bounded modular width. Both algorithms use bandwidth O(log n),

run in polynomial local time, and give the correct answer w.h.p.
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We point out that, with respect to the local computation time, there exists

an example of a conditional lower-bound. In fact, Drucker et al. [7] show that,

assuming the Exponential Time Hypothesis, any randomized algorithm solving

triangle-freeness in the broadcast congested clique model such that the lo-

cal computation time is sub-exponential, has communication cost Ω(n/e
√

logn).

The existence of similar lower-bounds for the reconstruction of graph classes is

an interesting and challenging open question.

2. Preliminaries

2.1. One-round algorithms

The broadcast congested clique model is a restricted version of the congested

clique model where each node is forced, in each round, to send the same mes-

sage through its n − 1 communication links. But, if we consider one-round

algorithms, the two models are the same. In fact, suppose that there is a one-

round algorithm A (deterministic or randomized) in the congested clique with

bandwidth b. We can transform it into an algorithm B in the broadcast version

with bandwidth b + 1 as follows. We fix a vertex, say the one with ID 1, and

every node j broadcasts the message it would send to node 1 on algorithm A,

plus one bit indicating whether node j and node 1 are adjacent in G. After this

communication round of B, every node knows the messages node 1 would have

received after the communication round of algorithm A. Moreover, every node

knows the neighborhood of node 1. The result follows from the fact that, with

this information, node 1 knows the output. Obviously, as we will see in this

paper, when multi-round algorithms are considered, the broadcast congested

clique model is much less powerful than the congested clique model.

2.2. Some graph terminology

Two graphs G and H are isomorphic if there exists a bijection ϕ : V (G)→

V (H) such that any pair of vertices u, v are adjacent in G if and only if ϕ(u)

and ϕ(v) are adjacent in H. A class of graphs G is a set of graphs which is
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closed under isomorphisms, i.e., if G belongs to G and H is isomorphic to G,

then H also belongs to G. For a class of graphs G and n > 0, we call Gn the

subclass of n-node graphs in G. For a graph G = (V,E) and U ⊆ V we denote

by G[U ] the subgraph of G induced by U . More precisely, the vertex set of G[U ]

is U and the edge set consists of all of the edges in E that have both endpoints

in U . A class G is hereditary if it is closed under taking induced subgraphs, i.e.,

for every G = (V,E) ∈ G and every U ⊆ V , the induced subgraph G[U ] ∈ G.

For a graph G = ({v1, . . . , vn}, E), we call A(G) its adjacency matrix, i.e.,

the 0 − 1 symmetric square matrix of dimension n where [A(G)]ij = 1 if and

only if vi is adjacent to vj . Let M be a square matrix of dimension n, and let

i ∈ [n] = {1, . . . , n}. We call Mi the i-th row of M . Let N be another square

matrix of dimension n. We denote by dr(M,N) the row-distance between M

and N , that is, the number of rows that are different between M and N . In other

words, dr(M,N) = |{i ∈ [n] : Mi 6= Ni}|. For k > 0 and G = (V,E), we denote

by D(G, k) the set of all graphs H = (V,E′) such that dr(A(G), A(H)) = k.

2.3. Fingerprints

A fingerprint is a small representation of a large vector which statisfies that,

if two vectors are different, then their fingerprints, w.h.p., are also different [32].

We define here the fingerprint of a graph, which is simply the collection of

fingerprints of the rows of its adjacency matrix.

Let n be a positive integer and p be a prime number. In the following, we

denote by Fp the finite field of size p and by Fp[X] the polynomial ring on Fp. A

polynomial P ∈ Fp[X] is an expression of the form P (x) =
∑d
i=1 aix

i−1, where

ai ∈ Fp.

Let q be a prime number such that q < n < p. For each a ∈ Fnq , consider

the polynomial FP (a, ·) ∈ Fp[X] defined as FP (a, x) =
∑
i∈[n] aix

i−1 mod p,

where we interpret the coordinates of a as elements of Fp.

For t ∈ Fp, we call FP (a, t) the fingerprint of a and t. The following lemma

is direct.
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Lemma 1. [25] Let n be a positive integer, p and q be two prime numbers such

that q < n < p. Let a, b ∈ (Fq)n such that a 6= b. Then, |{t ∈ Fp : P (a, t) =

P (b, t)}| ≤ n− 1.

We extend the definition of fingerprints to matrices. Let M be a square

matrix of dimension n and coordinates in Fq, and let T be an element of (Fp)n.

We call FP (M,T ) ∈ (Fp)n the fingerprint of M and T , defined as FP (M,T ) =

(FP (M1, T1), . . . , FP (Mn, Tn)), where Mi is the i-th row of M , for each i ∈ [n].

For a graph of size n, and T ∈ (Fp)n we denote by FP (G,T ) the fingerprint

of A(G) and T .

3. Reconstructing hereditary graph classes

Suppose that T = (T1, . . . , Tn) ∈ (Fp)n is such that every Ti is picked uni-

formly at random. In that case, the fingerprints of two n-node graphs H and

G, that correspond to F (G,T ) and F (H,T ), are random vectors. These finger-

prints are different with a probability that grows exponentially with respect to

the number of nodes having different neighborhoods in G and H. Therefore,

roughly speaking, if G is a set of graphs where all graphs are very different, then

each graph in G will have a different fingerprint.

What happens when G differs from H only in a few nodes? We have two dif-

ferent answers, depending on whether: (i) the graphs belong to some hereditary

class of graphs G; (ii) the graphs are arbitrary.

In this section we address the first, hereditary case. More precisely, we prove

that, for any graph G that belongs to some hereditary graph class G, the number

of graphs H ∈ G which are close to G (in terms of the number different rows in

the corresponding adjacency matrices) is small. Therefore, the fingerprints will

be different even for graphs which are close between themselves.

For tackling the second, general case, together with fingerprints, we use

error-correcting codes (see Section 4).

Now we give the main result. Later we explain the consequences of this

result for well-known hereditary graph classes.
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Theorem 1. Let G be an hereditary class of graphs. There exists a one-round

private-coin algorithm that solves G-Strong-Rec w.h.p. and bandwidth

O(max
k∈[n]

(log(|Gk|)/k) + log n).

Proof. In the algorithm, nodes use a prime number p, whose value will be

chosen later. The description of the algorithm is given in Algorithm 1.

Let T in (Fp)n be picked uniformly at random. We show that, for every G,

if some H ∈ Gn satisfies FP (H,T ) = FP (G,T ), then G = H w.h.p. First, note

that

Pr(∃H ∈ Gn s.t. H 6= G and FP (G,T ) = FP (H,T ))

≤∑
k∈[n] Pr(∃H ∈ Gn ∩D(G, k) s.t. FP (G,T ) = FP (H,T )),

where D(G, k) is the set of all graphs H such that the number of rows where

the adjacency matrices of H and G differ is k.

Now suppose that H 6= G and let 0 < k ≤ n be such that H belongs to

D(G, k) ∩ Gn. From Lemma 1 we deduce that Pr(FP (G,T ) = FP (H,T )) ≤(
n
p

)k
. It follows that

Pr(∃H ∈ Gn ∩D(G, k) s.t. FP (G,T ) = FP (H,T )) ≤
(
n

p

)k
· |Gn ∩D(G, k)|.

We now claim that |Gn ∩ D(G, k)| ≤
(
n
k

)
|Gk|. Indeed, we can interpret a

graph H in D(G, k) as a graph built by picking k vertices {v1, . . . vk} of G and

then adding or removing edges between those vertices. Since G is hereditary, the

graph induced by {v1, . . . , vk} must belong to Gk. Therefore, |Gn ∩D(G, k)| ≤(
n
k

)
|Gk|. This claim implies:

Pr(∃H ∈ Gn ∩D(G, k) s.t. FP (G,T ) = FP (H,T )) ≤
(
n

p

)k
·
(ne
k

)k
· |Gk|

≤
(
n2 · e · (|Gk|)1/k

p

)k
.
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Let f : N → R be defined as f(n) = n · maxk∈[n]
log |Gk|

k . Note that this

function is increasing, satisfies f(n)/n ≤ f(n+ 1)/(n+ 1), and log |Gn| ≤ f(n).

Therefore, (|Gk|)1/k ≤ 2f(k)/k ≤ 2f(n)/n. We deduce:

Pr(∃H ∈ Gn s.t. H 6= G and FP (G,T ) = FP (H,T )) ≤
∑
k∈[n]

(
n2 · e · 2f(n)/n

p

)k
.

We now fix p as the smallest prime number greater than n4 ·e·2f(n)/n, and we

get that with probability at least 1− 1/n, either G = H or F (H,T ) 6= F (G,T ),

for every H ∈ Gn. Hence, the algorithm solves G-Strong-Rec w.h.p.

Note that the bandwidth required by node i in the algorithm equals the num-

ber of bits required to represent the pair (ti, F (xi, ti)), which are two integers

in [p]. Therefore, the bandwidth of the algorithm is

2dlog pe = O(f(n)/n+ log n) = O
(

max
k∈[n]

(log(|Gk|)/k) + log n

)
.

�

Algorithm 1: G-Strong-Rec when G is hereditary. Algorithm exe-

cuted by node i

1 Compute p, the smallest prime greater than n4 · e · 2f(n)/n, where

f(n) = n ·maxk∈[n]
log |Gk|

k ;

2 Pick Ti ∈ Fp uniformly at random using private coins ;

3 Compute FP (xi, Ti) ;

4 Communicate FP (xi, Ti) and Ti ;

5 Receive T = (T1, . . . , Tn) and FP (G,T ) ;

6 Look for H ∈ Gn such that FP (H,T ) = FP (G,T );

7 If H exists and is unique, output H. Otherwise, reject.

We deduce the following corollary.

Corollary 1. Let G be an hereditary class of graphs, and h be an increasing

function such that |Gn| = 2θ(nh(n)). Then, our private-coin algorithm solves G-

Strong-Rec w.h.p., in one-round, with bandwidth Θ(log |Gn|/n+ log n). This
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matches the lower bound on the cost R · b (which must be satisfied even in the

public coin setting).

Proof. We simply note the existence of constants c1, c2 > 0 such that:

max
k∈[n]

(log(|Gk|)/k) ≤ c2 · max
k∈[n]

h(k) ≤ c2 · h(n) ≤ (c2/c1) · (log(|Gn|)/n).

Therefore, the algorithm of Theorem 1 uses bandwidth O(log(|Gn|)/n). �

Remark 1. In [31], Scheinerman and Zito showed that hereditary graph classes

have highly-constrained growth rates. They showed (Theorem 1 in [31]) that,

for any hereditary class of graphs G, one of the following behaviors must hold:

|Gn| ∈ {O(1), nΘ(1), 2Θ(n), 2Θ(n logn), 2ω(n logn)}. Corollary 1 implies that our

algorithm is tight for any hereditary class of graphs such that |Gn| = 2Θ(n logn).

Remark 2. In this section we have shown that, if a class G is hereditary and we

want to reconstruct it, we do not need the graphs in G to be sparse. We just need

the class to be small. For example, the class of interval graphs contains very

dense graphs (including the clique), but it is small, since it contains 2O(n logn)

different labeled n-node graphs. Therefore, there exists a one-round algorithm

that reconstructs the class of interval graphs using bandwidth O(log n).

Remark 3. Consider the class G of d-degenerate graphs. This class is hered-

itary and is such that |Gn| = 2O(n logn). Therefore, we may conclude, from

Corollary 1, the existence of a private-coin algorithm that solves G-Strong-

Rec w.h.p., in one-round, with bandwidth Θ(log |Gn|/n + log n). Nevertheless,

the reconstruction algorithm for d-degenerate graphs given in [3, 29] is deter-

ministic, and therefore that result is stronger than the general one we present

here.

4. Reconstructing arbitrary graph classes

In this section we show that there exists a two-round private-coin algorithm

in the congested clique model that solves G-Strong-Rec w.h.p. and bandwidth
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O(log |Gn|/n+ log n). Our algorithm is based, roughly, on the same ideas used

to reconstruct hereditary classes of graphs. But the problem we encounter is

the following: while in the case of hereditary classes of graphs, we had for every

graph G and k > 0, a bound on the number of graphs contained in D(G, k)∩Gn,

this is not the case in an arbitrary family G. Therefore, fingerprints alone are

not enough to differentiate graphs. To cope with this obstacle, we use Reed-

Solomon error-correcting codes [30]. Error-correcting codes map vectors into

slightly larger ones, satisfying that the mapping of two different vectors differ in

many coordinates. With this, we define error-correcting-graphs where, instead

of vectors, we map any graph into a slightly larger one. The mapping of two

different graphs will have many nodes with different neighborhoods. We show

that the fingerprint of such mapping uniquely identifies the graphs in G, for any

G. The advantage of our construction is that it can be computed locally by each

node as a function of its neighborhood (i.e., as a function of the corresponding

row of the adjacency matrix).

Definition 1. Let 0 ≤ k ≤ n, and let q be the smallest prime number greater

than n + k. An error correcting code with parameters (n, k) is a mapping

C : {0, 1}n → (Fq)n+k, satisfying:

1) For every x ∈ {0, 1}n and i ∈ [n], C(x)i = xi.

2) For each x, y ∈ {0, 1}n, x 6= y implies |{i ∈ [n+ k] : C(x)i 6= C(y)i}| ≥ k.

For sake of completeness, we recall the construction of an error correcting

code with parameters (n, k). For x ∈ {0, 1}n, let Px be the unique polynomial

of degree (at most) n in Fq[X] satisfying Px(i) = xi for each i ∈ [n]. The

function C is then defined as C(x) = (Px(1), . . . , Px(n+ k)). This function

satisfies properties (1) and (2). We now adapt the definition of error correcting

codes to graphs.

Definition 2. For a graph G, we call C(G) the square matrix of dimension

n+ k with elements in Fq defined as follows.

15



• For each i ∈ [n], the i-th row of C(G) is C(A(G)i) ∈ (Fq)n+k (recall that

A(G)i is the i-th row of the adjacency matrix of G).

• For each i ∈ [k], the (n+ i)-th row of C(G) is the vector

(C(A(G)1)n+i, . . . , C(A(G)n)n+i,~0) ∈ (Fq)n+k,

where ~0 is the zero-vector of Fdq , and C(x)j ∈ Fq is the j-th element of

C(x).

We can represent C(x) as a pair (x, x̃), where x̃ belongs to (Fq)k. Similarly,

for a graph G, we can represent C(G) as the symmetric matrix:

C(G) =

 A(G) Ã(G)

Ã(G)
T

0

 ,
where Ã(G) is the matrix with rows C(A(G)i)n+1, . . . , C(A(G)i)n+k, with i ∈

[n].

Remark 4. Note that dr(C(G), C(H)) > k, for every two different n-node

graphs H and G. Indeed, if G 6= H, there exists i ∈ [n] such that A(G)i is dif-

ferent than A(H)i. Then, by definition of C (Property 2 of Definition 1), |{j ∈

[n+k] : C(A(G))i,j 6= C(A(H))i,j}| > k. This means that dr(C(G), C(H)) > k,

because C(G) and C(H) are symmetric matrices.

Lemma 2. Let G be a set of graphs, C the error correcting code with parameters

(n, k), and let p be the smallest prime number greater than (n + k) · |Gn|2/k.

Then, there exists T ∈ (Fp)n+k depending only on G, satisfying FP (C(G), T ) 6=

FP (C(H), T ) for all different G,H ∈ Gn.

Proof. From Remark 4, we know that dr(C(G), C(H)) > k, for every two

different n-node graphs H and G. Then, if we pick T ∈ (Fp)n+k uniformly at

random we have, from Lemma 1:

Pr(FP (C(G), T ) = FP (C(H), T )) <

(
n+ k

p

)k
.

Then, by the union bound
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Pr(∃G,H ∈ Gn s.t. G 6= H and FP (C(G), T ) = FP (C(H), T ))

<
(
n+k
p

)k
· |Gn|2 ≤ 1.

The last inequality follows from the choice of p. Therefore, there must

exist a T ∈ (Fp)n+k such that FP (C(G), T ) 6= FP (C(H), T ), for all different

G,H ∈ Gn. �

Theorem 2. Let G be a set of graphs. The following holds:

1) There exists a two-round deterministic algorithm in the congested clique

model that solves G-Weak-Rec with bandwidth O(log |Gn|/n+ log n).

2) There exists a three-round deterministic algorithm in the congested clique

model that solves G-Strong-Rec with bandwidth O(log |Gn|/n+ log n).

3) There exists a two-round private-coin algorithm in the congested clique

model that solves G-Strong-Rec with bandwidth O(log |Gn|/n + log n)

w.h.p.

Proof. The first algorithm we explain here, Algorithm 2, is deterministic and

solves G-Weak-Rec with bandwidth O(log |Gn|/n+ log n). The algorithms for

(2) and (3) are slight modifications of Algorithm 2 and will also be explained in

this proof.

1) Let p be the first prime greater than 2n · |Gn|2/n (then p ≤ 4n · |Gn|2/n),

and let q be the smallest prime number greater than 2n. In the algorithm, node

i first computes C(xi), where C is the error correcting code with parameters

(n, n). Then, for each j ∈ [n] node i communicates C(xi)j+n to node j. This

communication round requires bandwidth dlog qe = O(log n). After the first

communication round, node i knows C(xi) and (C(x1)i+n, . . . , C(xn)i+n), i.e., it

knows rows i and i+n of matrix C(G). Each node computes a vector T ∈ (Fp)2n

such that FP (C(G), T ) 6= FP (C(H), T ), for all different G,H ∈ Gn (each node

computes the same T ). The existence of T is given by Lemma 2. Then, node i

communicates (broadcasts) FP (C(G)i, Ti) and FP (C(G)i+n, Ti+n). This com-

munication round requires bandwidth 2dlog pe = O((log |Gn|)/n+ log n). After
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the second communication round, each node knows FP (C(G), T ). Then, they

locally compute the unique H ∈ Gn such that FP (C(H), T ) = FP (C(G), T ).

Since G belongs to Gn, then necessarily G = H.

2) Suppose now that we are solving G-Strong-Rec. In this case G does

not necessarily belong to Gn. After receiving the fingerprints of C(G), the nodes

look for a graph H in Gn that satisfies FP (C(G), T ) = FP (C(H), T ) (line 9 in

Algorithm 2). If such a graph exists, we call it a candidate. Otherwise, every

node decides that G is not in Gn, so they reject. Note that, if the candidate

exists, then it is unique, since FP (C(H1), T ) 6= FP (C(H2), T ) for all different

H1, H2 in Gn. So, if the candidate H exists, each node i checks whether the

neighborhood of vertex i on G and H are equal, and announces the answer in

the third round (communicating one bit). If every node announces affirmatively,

then they output G = H. Otherwise, it means that G is not in Gn, so every

node rejects.

3) We now show that, if we allow the algorithm to be randomized, then we

can spare the third round. In fact, nodes only need to run Algorithm 3 after

the first round of Algorithm 2. Let us explain this now. Let p′ ∈ [n2, 2n2] be

a prime number. In the second round, node i picks Si ∈ Fp, and it commu-

nicates, together with FP (C(G)i, Ti) and FP (C(G)i+n, Ti+n), also FP (xi, Si).

After the second round of communication, if a candidate H ∈ Gn exists, each

node computes S = (S1, . . . , Sn), FP (G,S) = (FP (x1, S1), . . . , FP (xn, Sn). If

FP (G,S) = FP (H,S), then nodes deduce that G = H. Otherwise, they de-

duce that G /∈ Gn and rejects. Note that if G belongs to Gn, then the algorithm

always gives the correct answer. Otherwise, it rejects w.h.p. Indeed, if G /∈ Gn,

then H 6= G, and from Lemma 1, Pr(FP (G,T ) = FP (H,T )) ≤ 1/n. �

Our private-coin algorithm for G-Strong-Rec has one-sided error. In fact,

if the input graph belongs to G, then our algorithm reconstructs it with proba-

bility 1. On the other hand, if G does not belong to G, then our algorithm fails

to discard the candidate with probability at most 1/n.
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Algorithm 2: G-Weak-Rec. Algorithm executed by node i

1 Compute C(xi), where C is the error-correcting-code with parameters

(n, n);

2 Communicate the element n+ j of C(xi) to player j ;

3 Receive C(x1)n+i, . . . , C(xn)n+i;

4 Call C(xi+n) = (C(x1)n+i, . . . , C(xn)n+i,~0), where ~0 is the zero vector

of (Fp)n;

5 Compute p as the smallest prime greater than 2n · |Gn|2/n;

6 Compute T , the vector in F2n
p , given by Lemma 2 ;

7 Compute and communicate (broadcast) FP (C(xi), Ti) and

FP (C(xn+i), Tn+i);

8 Receive FP (C(G), T );

9 Look for H ∈ Gn such that FP (C(H), T ) = FP (C(G), T );

10 Output H.

5. Revisiting the one-round case

In this section we revisit the one-round case (and therefore the broadcast

congested clique model). But, instead of studying hereditary graph classes, we

study arbitrary graph classes, and we show that for this general case we need a

larger bandwith. Our results are tight, not only in terms of the bandwidth, but

also in the necessity of using randomness.

Theorem 3. Let G be a set of graphs. The following holds:

1) There exists a one-round deterministic algorithm in the congested clique

model that solves G-Weak-Rec with bandwidth O(
√

log |Gn| log n+log n).

2) There exists a one-round private-coin algorithm in the congested clique

model that solves G-Strong-Rec with bandwidth O(
√

log |Gn| log n+log n)

w.h.p.

Proof. The algorithms in this case are very similar to the algorithms we pro-

vided in the proof of Theorem 2. Let k be a parameter whose value will be
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Algorithm 3: Checking a candidate H. Algorithm executed by node

i

1 Compute p′, the smallest prime number such that p′ > n2;

2 Pick Ti ∈ Fp uniformly at random using private coins ;

3 Compute FP (xi, Ti) ;

4 Communicate FP (xi, Ti) and Ti ;

5 Receive T = (T1, . . . , Tn) and FP (G,T ) ;

6 Output H if FP (H,T ) = FP (G,T ), otherwise reject.

chosen at the end of the proof, and let C be the error-correcting-code with pa-

rameters (n, k). Let p be the smallest prime number greater than 2n · |G|2/k.

Let T ∈ (Fp)n+k be the vector given by Lemma 2, corresponding to G. In

the algorithm, every node i computes C(xi), and communicates FP (C(xi), Ti)

together with C(xi)n+1, . . . , C(xi)n+k ∈ (Fq)k, where q is the smallest prime

greater than k + n. Note that the communication round requires bandwidth

O(log p+ k · log(n+ k)) = O(log |Gn|/k + (k + 1) · log n).

After the communication round, every node knows FP (C(xi), Ti), for all

i ∈ [n], and also knows the matrix ˜A(G). Therefore, every node can com-

pute FP (C(xi), Ti), for all i ∈ {n + 1, . . . , n + k}, and, moreover, compute

FP (C(G), T ).

From the construction of T , there is at most one graph H ∈ Gn such that

FP (C(G), T ) = FP (C(H), T ). Therefore, if G belongs to G, every node can

reconstruct it.

On the other hand, if we are solving G-Strong-Rec, then we proceed as in

the algorithm of Theorem 2, either testing whether H = G in one more round, or

sending a fingerprint of G to check with high probability if a candidate H ∈ Gn
such that FP (C(G), T ) = FP (C(H), T ) is indeed equal to G. This verification

requires to send O(log n) more bits, which fits in the asymptotic bound of the

bandwidth. The optimal value of k, that is, the one which minimizes the expres-
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sion O(log |Gn|/k + (k + 1) · log n), is such that k = O
(√

log |Gn|
logn

)
. Therefore,

the bandwidth is O(
√

log |Gn| log n+ log n). �

Remark 5. Consider the case where G is sparse but we want to reconstruct

it using the broadcast congested clique model (and therefore we can not use

Lenzen’s algorithm). Suppose, for instance, that the number of edges of graphs in

G is O(n). The naive algorithm, where every node broadcasts its incident edges,

may take Ω(n/b) rounds, because some nodes may have Ω(n) neighbors (recall

that b is the bandwidth). In Theorem 3 above, we proved that, in the broadcast

congested clique model, we can reconstruct any class of graphs G in one round

using bandwidth b = O(
√

log |Gn| log n+log n). The class of graphs having O(n)

edges satisfies that log |Gn| = O(n log n). Hence, we can reconstruct it in one

round using bandwidth b = O(
√
n log n). This algorithm is much faster than the

naive one, that would take, for the same bandwidth, Ω(
√
n/ log n) rounds.

Our algorithms for solving G-Weak-Rec and G-Strong-Rec are tight,

from two different perspectives. First, from the point of view of the bandwidth.

In fact, in Theorem 4 we exhibit a class of graphs G satisfying |Gn| ≤ 2O(n)

such that every algorithm (deterministic or randomized) solving G-Weak-Rec

in the broadcast congested clique model has cost Rb = Ω(
√

log |Gn|). This

lower bound matches the upper one-round bound given in Theorem 3 (up to

logarithmic factors).

Second, if we want to solve G-Strong-Rec with non-trivial, general one-

round algorithms, we are forced to use randomness. In fact, we exhibit in

Theorem 5 a set of graphs G∗ satisfying |G∗n| ≤ 2n such that, every one-round

deterministic algorithm that solves G∗-Strong-Rec, requires bandwidth Ω(n).

Theorem 4. There exists a class of graphs G+ satisfying |G+
n | ≤ 2O(n) such

that, any ε-error public-coin algorithm in the broadcast congested clique model

that solves G+-Weak-Rec, has cost Rb = Ω(
√
n) = Ω(

√
log |G+

n |).

Proof. Let G+ be the class of graphs defined as follows: G belongs to G+
n if

and only if G is the disjoint union of a graph H of d
√
ne nodes and n − |H|
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isolated nodes. Note that |G+
n | =

(
n
d
√
ne
)
· 2(d

√
ne
2 ) ≤ 2O(n). Indeed, there are

2(d
√
ne
2 ) = 2O(n) labeled graphs of size d

√
ne, and at most

(
n
d
√
ne
)

= 2O(
√
n logn)

different labelings of a graph of
√
n nodes using n labels (so G+ is closed under

isomorphisms).

Let A be an ε-error public-coin algorithm solving G+-Weak-Rec in R(n)

rounds and bandwidth b(n), on input graphs of size n.

Consider now the following algorithm B that solves U-Weak-Rec, where U

is the set of all graphs: on input graph G of size n, each node i ∈ [n] supposes

that it is contained in a graph G+ formed by G plus n2 − n isolated vertices

with identifiers (n + 1), . . . , n2. Note that G+ belongs to G+. Then, node

i simulates A as follows: at each round, node i ∈ [n] produces the message of

node i in G+ according to A. Note that the messages produced by nodes labeled

(n+ 1), . . . , n2 do not depend on G, so they can be produced by any node of G

without any extra communication. Since A solves G+-Weak-Rec, when the

algorithm halts every node knows all the edges of G+, so they reconstruct G

ignoring vertices labeled (n+ 1), . . . , n2.

We deduce that algorithm B solves U-Weak-Rec. Note that the cost of B

is R(n2)b(n2) on input graphs of size n. We deduce that R(n2)b(n2) = Ω(n),

i.e., the cost of A is Ω(
√
n). �

We now show that when restricted to one-round algorithms, the use of ran-

domness is necessary in order to have non-trivial general algorithms solving

G-Strong-Rec.

Definition 3. We say that an algorithm recognizes G if the algorithm decides

whether an input graph G belongs to G. We call G-Recognition the problem

of recognizing G.

Theorem 5. There exists a set of graphs G∗ satisfying |G∗n| ≤ 2n such that,

any one-round deterministic algorithm in the congested clique model that solves

G∗-Recognition, requires bandwidth Ω(n).

Proof. We prove this theorem by a counting argument. Our goal is to show
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that there are more small sets of graphs than one-round deterministic algorithms

capable to recognize them. We first count the number of sets of graphs (not

necessarily closed under taking isomorphism) containing 2n different graphs of

size n. We call the family of these sets C. There are 2(n2) possible graphs of size

n, so
(

2(
n
2)

2n

)
possible choices for graphs in C. We deduce that there exists c1 > 0

such that |C| ≥ 2c1·n
2·2n .

On the other hand, we count the number of one-round deterministic al-

gorithms that recognize a set of graphs in C with bandwidth at most β. A

one-round deterministic algorithm is composed of two parts: the algorithm be-

fore the communication round, and the algorithm after the communication. The

first part of the algorithm is defined by the messages that a node sends on each

input. The input of a node is its neighborhood represented by a Boolean vector

of size n, and an integer representing its label. Therefore, the first part of the

algorithm is defined by the messages corresponding to all the n2n possible in-

puts. Since the bandwidth is β, we obtain that there are 2nβ2n possible choices

for the first part of the algorithm.

The second part of the algorithm is defined by a function fG : ({0, 1}β)n →

{0, 1}, such that if m = (m1, . . . ,mn) are the messages sent by the nodes in the

communication round, then f(m) = 1 if and only if m was produced from an

input graph belonging to G. The crucial observation is that this implies that f

can output 1 in at most 2n inputs. Therefore, the number of possible second

parts of the algorithm is
∑
i∈[2n]

(
2nβ

i

)
≤ (1 + 2nβ)2n ≤ 2c2·nβ2n , where c2 > 0

is a constant.

We deduce that the number of one-round deterministic algorithms with

bandwidth β that are capable to recognize a set of graphs in C is at most

2c3nβ2n , with c3 > 0. Since we are considering only deterministic algorithms,

two different sets must be recognized by two different algorithms. This implies

that 2c3nβ2n must be greater than 2c1n
22n , so β = Ω(n). Finally, we construct

the set G∗ by picking, for each n, one set of graphs contained in C that can not

be recognized by any algorithm of bandwidth o(n). �
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Remark 6. Note that for any set of graphs G, problem G-Strong-Rec is at

least as hard as G-Recognition. We conclude that there exists a set of graphs

G∗ satisfying |G∗n| ≤ 2n such that, any one-round deterministic algorithm that

solves G∗-Strong-Rec, requires bandwidth Ω(n). Note that, from Theorem 3,

we know that G∗-Strong-Rec can be solved using a one-round private-coin

algorithm with bandwidth O(
√
n log n) w.h.p.

Unfortunately, we do not know any explicit set of graphs G satisfying the

above remark.

6. Local time complexity

Even though in the congested clique model, by definition, the only complex-

ity measure taken into account is communication, it is important to point out

that the general algorithms we presented in this paper might run in exponential

local time. The reason behind this is that nodes, at some point, need to look,

in Gn, for a graph having the same fingerprint as the fingerprint of G. The

search space is obviously super-polynomial when |Gn| is super-polynomial (see,

for instance, line 6 of Algorithm 1).

In this section we initiate the study of the following question: for what graph

classes G can the reconstruction problem G-Strong-Rec be solved in one round,

bandwidth O(log |Gn|/n) and polynomial local time? We already know that this

can be achieved for d-degenerate graphs (deterministically) and for cographs

(with public coins). Using ideas from the cograph reconstruction algorithm [21]

we devise here one-round public-coin algorithms for reconstructing distance-

hereditary graphs and graphs of bounded modular width. Both algorithms use

bandwidth O(log n), run in polynomial local time, and give the correct answer

w.h.p. (Distance-hereditary graphs and graphs of bounded modular width are

well studied hereditary graph classes in the context of sequential algorithms [8,

9]).
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6.1. Distance hereditary graphs

A graph G = (V,E) is distance-hereditary if the distance between any two

nodes of a same connected component is preserved in any induced subgraph

that contains them. Distance-hereditary graphs can be characterized by the ex-

istence of a twin-pendant vertex decomposition. To define this decomposition, we

must introduce some concepts. For more information about distance-hereditary

graphs, we recommend the book on graph classes written by Brandstädt, Le

and Spinrad [4].

LetG be a graph. A vertex v inG is called pendant if v has only one neighbor.

Two vertices u, v in G are called true twins if u and v are adjacent, and share

the same neighborhood, i.e., N(u) = N(v). Similarly, u and v are called false

twins when u and v are non-adjacent and share the same neighborhood.

A twin-pendant vertex decomposition of an n-node graph G is a sequence

(v1, . . . , vn) of vertices of G, such that, for each i ∈ {1, . . . , n}, one of the

following conditions is true:

1. vi is a pendant vertex in G[{vi+1, . . . , vn}],

2. vi has a true-twin in G[{vi+1, . . . , vn}],

3. vi has a false-twin in G[{vi+1, . . . , vn}].

Theorem 6 ([1]). A graph G is distance-hereditary if and only if G has a twin-

pendant vertex decomposition.

We use previous proposition to devise a one-round, public-coin algorithm to

reconstruct the class of distance-hereditary graphs.

Definition 4. Let p be a prime number, and let G = (V,E) be a graph. A

vector m = ((av, bv))v∈V ∈ F2n
p is valid for G at t ∈ Fp if there is a linearly

independent family of polynomials Φ = (φv)v∈V in Fp[X] such that, for each

v ∈ V ,

av = φv(t) mod p and bv =
∑

w∈NG(v)

φw(t) mod p.
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Note that, if node w in G has degree 1, and its neighbor is node u, then

bw = au. Moreover, two twin nodes u,w in G satisfy either bu = bw (if they

are non-adjacent) or bu + au = bw + aw (if they are adjacent). In the following

two lemmas, we show how to compute, from a valid vector of a graph G, a valid

vector of the graph obtained by the deletion of some specific nodes.

Lemma 3. Let m = ((av, bv))v∈V ∈ (Fp)2n be valid for G = (V,E) at t. Let

w be a node of degree 1 in G, and let u be its unique neighbor in G. Then, the

vector m′ = ((a′v, b
′
v))v∈V \{w} ∈ (Fp)2n−2 is valid for G− w at t, where

a′v = av for all v ∈ V \{w}, b′v =

 bv if v 6= u

bu − aw if v = u

Proof. Let Φ = (φv)v∈V be a linearly independent family of polynomials as-

sociated to m. We simply note that m′ is a valid vector of G − w in t for the

family of polynomials Φ′ = (φ′v)v∈V \{w} such that φ′v = φv for all v ∈ V \ {w}.

Indeed, for all v ∈ V \ {w}, a′v = φ′v(t) = φv(t) = av. On the other hand, for all

v 6= u,w,

b′v =
∑

x∈NG(v)\{w}

φ′x(t) =
∑

x∈NG(v)\{w}

φx(t) = bv.

Finally, b′u =
∑
x∈NG(v)\{w} φ

′
x(t) =

∑
x∈NG(v) φx(t)− φw(t) = bu − aw. �

Lemma 4. Let m = ((av, bv))v∈V ∈ (Fp)2n be valid for G = (V,E) at t ∈ Fp.

Let u,w be (true or false) twins in G such that au 6= aw. Then, a vector

m′ = ((a′v, b
′
v))v∈V \{w} ∈ (Fp)2n−2

is valid for G− w at t, where

a′v =

 av if v 6= u

au + aw if v = u
b′v =

 bv if v 6= u

bu − awδuw if v = u

and δuw = 1 if au + bu = aw + bw and 0 otherwise.

Proof. Let Φ = (φv)v∈V be a linearly independent family of polynomials as-

sociated to m.
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Consider the family of polynomials Φ′ = (φ′v)v∈V \{w}, given by φ′v = φv for

each v 6= u and φ′u = φu +φw, which is trivially linearly independent because Φ

is. We will show that m′ = ((a′v, b
′
v))v∈V \{w} ∈ (Fp)2n−2 is valid for G− w at t

for the family of polynomials Φ′, i.e., a′v = φ′v(t) and b′v =
∑
x∈NG(v)\{w} φ

′
x(t).

First, if v 6= u then a′v = φ′v(t) = φv(t) = av. On the other hand, a′u = φ′u(t) =

φu(t) + φw(t) = au + aw.

Now fix v 6= u, and note that either both u and w are neighbors of v, or

none of them, because u and w are twins. If u and w are neighbors of v, then,

b′v =
∑
x∈NG(v)\{w} φ

′
x(t)

= φ′u(t) +
∑
x∈NG(v)\{u,w} φ

′
x(t)

= φu(t) + φw(t) +
∑
x∈NG(v)\{u,w} φx(t)

= bv

On the other hand, if u and w are not neighbors of v, then

b′v =
∑

x∈NG(v)\{w}

φ′x(t) =
∑

x∈NG(v)\{u,w}

φ′x(t) =
∑

x∈NG(v)\{u,w}

φx(t) = bv.

Finally, remember that u and w are adjacent if and only if au + bu = aw + bw.

Then, δuw equals 1 when u and w are adjacent, and 0 otherwise. Therefore

b′u =
∑
x∈NG(v)\{w} φ

′
x(t)

=
∑
x∈NG(v)\{w} φx(t)

=
∑
x∈NG(v) φx(t)− δuwφw(t)

= bu − δuwaw.

�

Our distance-hereditary reconstruction algorithm consists of two parts: first,

using the public random bits, the nodes jointly produce a valid vector for the

input graph, which is communicated to all nodes. Then, each node uses the

information in the valid vector to produce a decomposition (this part does not

require any extra communication). Each vertex will look for either a pendant

node w or a pair of twins u,w, and then delete node w from the graph updating

the valid vector according to Lemma 3 and Lemma 4. The process is iterated
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until the whole graph is deleted (if the graph is distance-hereditary), or the

process is blocked (so the graph is not distance-hereditary).

Theorem 7. Let G be the class of distance-hereditary graphs. There is a one-

round, public-coin algorithm in the congested clique model that solves problem

G-Strong-Rec w.h.p. using bandwidth O(log n) and O(n3) local-time compu-

tation.

Proof. Let G = (V,E) the input graph of size n. For simplicity we assume that

V = {1, . . . , n}. In other words, the nodes and their identities are the same. Let

p be a prime number to be fixed later and Φ = (xv)v∈V as a family of polynomials

in Fp[X]. Before the communication round of the algorithm, nodes pick t ∈ Fp
uniformly at random using the public randomness, and communicate mv, where

m = (mv)v∈V is valid for G at t for the family of polynomials Φ = (xv)v∈V .

Upon receiving all messages, every vertex executes an iterative algorithm for

i ∈ {1, . . . , n}. In each step i it receives as input a vector mi and a set V i and

outputs a vector mi+1 of and a set V i+1, where V 1 = V and m1 = m. We

call mi
v = (aiv, b

i
v), for each i ∈ {1, . . . n}. The vector mi+1 and the set V i+1 is

generated as follows

1. (Look for a pendant vertex ) Look for a pair of vertices u,w in V i satisfying

aiu = biw. If such pair exists, according to Lemma 3, we deduce that w has degree

1 and his unique neighbor is u. Then mi+1 is computed according to Lemma 3,

and V i+1 is defined as V i − {w}. Then, the algorithm starts step i + 1. If no

such pair exists, continue to step 2.

2. (Look for twins) Look for a pair of vertices u,w in V i such that au 6= aw

and either bu = bw or au + bu = aw + bw. Is such pair exists, we deduce that

u and w are (true or false) twins. In either case, mi+1 is computed according

to Lemma 4, and V i+1 is defined as V i − {w}. Then, the algorithm starts step

i+ 1. If no such pair exists, continue to step 3.

3. Deduce that G is not distance hereditary and all nodes reject.

We conclude by proving the correctness of the algorithm. Let φi be the

linearly independent family of polynomials corresponding to the valid vector of
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Gi = G[V i]. For each u, v ∈ V (Gi), u 6= v, consider the polynomials αiu,v = φiu−

φiv, β
i
u,v =

∑
w∈NGi (u) φ

i
w−
∑
w∈NGi (v) φ

i
w, γiu,v =

∑
w∈NGi [u] φ

i
w−
∑
w∈NGi [v] φ

i
w

and σiu,v = φiu −
∑
w∈NGi (v) φ

i
w.

The algorithm errs when a pair of nodes u,w satisfies the conditions 1 or 2

(without being twins or without one pending from the other). The probability

of this event is at most the probability that, at some step i, t is a root of a

nonzero polynomial αiu,v, β
i
u,v, γ

i
u,v, σ

i
u,v for some pair u, v in any iteration. The

union of the families αi = (αiu,v)u,v∈V , βi = (βiu,v)u,v∈V , γi = (γiu,v)u,v∈V and

σi = (σiu,v)u,v∈V , have at most 4n2 polynomials, there are at most n steps and

each polyiomial has degree at most n. This implies that the protocol fails with

probability at most 4n4/p. If we pick p ∈ [4nc+4, 4nc+5] for c > 1 we obtain

that the protocol fails with probability at most 1/nc. �

6.2. k-modular-width graphs

Graphs of bounded modular-width were introduced by Gajarský et al. [10]

in the context of parameterized graph algorithms and parameterized complexity,

with the aim of solving efficiently a large family of problems when this parameter

is fixed. The modular-width generalizes other natural parameters such as vertex

cover, neighborhood diversity and twin-cover. We refer the reader to [28] and[15]

for surveys on structural and algorithmic aspects of modular decompositions (in

the first reference, they are called substitution decompositions).

To define k-modular-width graphs we must define the notion of module. A

module M in a graph G is a set of vertices such that all members in M have

the same neighborhood outside M . Formally, for all u, v ∈ M : N(u) \M =

N(v) \ M . We say that a graph G is a k-modular-width graph if one of the

following conditions holds:

1. G has at most one node (the base case).

2. G is a disjoint union of two k-modular-width graphs.

3. G is a join of two k-modular-width graphs, i.e., G is obtained from two

disjoint k-modular-width graphs by taking their disjoint union and then

adding all possible edges between these two graphs.
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4. The node set of G can be partitioned into ` ≤ k modules V1, . . . , V` such

that G[V`] is a k-modular-width graph, for all 1 ≤ i ≤ `.

We say that a class of graphs G is of bounded modular width if there exists

some fixed k > 0 such that every G ∈ G is a k-modular-width graph.

Given a graph G of modular-width at most k, one can associate to G a

rooted decomposition tree T following the rules above. Each internal node of the

tree corresponds to operations 2 to 4, and leaves correspond to single vertices

(operation 1). The following observations are crucial for our reconstruction

algorithm.

Lemma 5 ([9]). Let G be a k-modular-width graph having strictly more than

k vertices. Then, G has a module of 2 ≤ ` ≤ k vertices.

Proof. Consider a decomposition tree T of G. Let u be one of the internal

nodes such that all sons of u are leaves. Then, the corresponding module V [u] is

formed by at most k leaves of the subtree rooted in u, and satisfies the lemma.

�

Lemma 6. Let G be a graph and M = {u1, . . . , ul} be a module of G, with

2 ≤ l ≤ k. G is a k-modular-width graph if and only if G[u1 ← M ] := G −

{u2, . . . , ul} is a k-modular-width graph.

Proof. Let G = (V,E) be a k-modular-width graph. Actually, any induced

subgraph G[W ] is of modular width at most k. Indeed, consider a decomposition

tree for G, remove all leaves contained in V \W , and shortcut all nodes with

at most one son. We obtain a decomposition tree of G[W ], proving that it is of

modular width at most k.

Conversely, assume that {u1, . . . , ul} is a module of G, and G[u1 ← M ] is

a k-modular-width graph. Replace, in a decomposition tree of G[u1 ← M ] the

leaf u1 with a decomposition tree of G[{u1, . . . , ul}]. We obtain a decomposition

tree of G, certifying that G is a k-modular-width graph �

The idea behind our reconstruction algorithm for k-modular-width graphs

consists in iteratively find a module of size at most k in the graph, then compress
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the module into a single node, and repeat the procedure in the resulting graph.

The procedure stops when the initial graph is reduced to a single vertex (and

by Lemmas 5 and 6 we deduce that the graph is a k-modular-with graph), or no

module can be found (and we deduce that the graph was not a k-modular-width

graph). Following lemmas show how valid vectors can be used to identify the

modules on this iterative algorithm.

Lemma 7. Let m = ((av, bv))v∈V ∈ (Fp)2n be a valid vector for G = (V,E) at

t ∈ Fp. Let M = {u1, . . . , uk} be a module in G of size k, and call H = G[M ]

the subgraph induced by M . The vector

m[u1 ←M ] = ((a′v, b
′
v))v∈V \{u2,...,uk} ∈ (Fp)2n−2k

defined by:

a′v =

 av if v 6= u∑k
i=1 auk if v = u1

b′v =

 bv if v 6= u

bu1 −
∑
u∈NH(u1) au if v = u1

is valid for G[u1 ←M ] at t.

Proof. Let Φ = (φv)v∈V be a linearly independent family of polynomials as-

sociated to m, and let us call G′ = G[u1 ←M ] and m′ = m[u1 ←M ].

We show that m′ is valid for G′ at t for the family of polynomials Φ′ =

(φ′v)v∈V \{u2,...,un} given by φ′v = φv for each v 6= u1 and φ′u1
=
∑k
i=1 φui , which

is trivially linearly independent. For w 6= u1, we have that

a′w = aw = φw(t) = φ′w(t).

Since M is a module in G, any node w ∈ V \M is either adjacent to

{u1, . . . , uk} or to none of them. In both cases

b′w = bw =
∑

v∈N(w)

φ′v(t).

With respect to u1, by definition,

a′u1
= φ′u1

(t) =

k∑
i=1

φui =

k∑
i=1

aui .
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Finally,

b′u1
=

∑
u∈NG′ (u1)

φ′u =
∑

u∈NG(u1)\M

φu = bu1 −
∑

u∈NH(u1)

au.

�

The following lemma shows how to use a valid vector of G to find a module.

Let G = (V,E) be a graph, let m = ((av, bv))v∈V be a valid vector of G at

t ∈ Fp, and let 0 < k ≤ n. Let M = {u1, . . . , uk} be a set of nodes and let H

be k-node graph such that V (H) = M . Let us call, for u ∈M ,

s(u,m,H) = bu −
∑

w∈NH(u)

aw

Lemma 8. If M is a module of G such that G[M ] = H then

s(u,m,H) = s(v,m,H) for all u, v ∈M.

Proof. Let M be a module of G. Then, NG(u) \ M = NG(v) \ M , for all

u, v ∈ M . Note that s(u,m,H) is exactly
∑
w∈NG(u)\M aw. We deduce that

s(u,m,H) = s(v,m,H) for all u, v ∈M . �

The algorithm for reconstructing k-modular-width graphs is very similar to

the graph reconstructing distance-hereditary graphs. Using the public random

bits the nodes will jointly produce a valid vector for the input graph, which is

communicated to all nodes. Then, each node will use the information in the

valid vector to produce a modular decomposition. Each node guesses a non-

trivial module by testing every set M of at most k nodes, and for each such set,

every possible induced graph H of |M | vertices. Then, it suppresses all vertices

of the module except one, as in Lemma 7, and repeats the procedure in the

remaining graph.

Theorem 8. Let G be the class of k-modular-width graphs. There is a one-

round, public-coin algorithm in the congested clique model that solves problem

G-Strong-Rec w.h.p. using bandwidth O(log n) and O(k22k
2

nk+4) local-time

computation.
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Proof. Let G = (V,E) the input graph of size n. Let p be a prime number to

be fixed later and Φ = (xv)v∈V be a family of polynomials in Fp[X]. Before the

communication round of the algorithm, nodes pick t ∈ Fp uniformly at random

using the public randomness, and communicate mv, where m = (mv)v∈V is

valid for G at t for the family of polynomials Φ = (xv)v∈V .

Upon receiving all messages, every vertex executes an iterative algorithm

(the algorithm is detailed in Algorithm 4). The algorithm starts defining a set

Eout = ∅ which at the end contains the set of edges of the input graph, when the

input graph is a k-modular-width graph. In step i ∈ {1, . . . , n} the algorithm

receives as input a vector mi, a set V i and a map ϕi : V → V , and outputs a

vector mi+1, a set V i+1 and map ϕi+1. Initially m1 = m, V 1 = V and ϕ1 is

the identity, and for i > 1:

• V i is the set of vertices obtained after the i-th time a module of size at

most k is identified and reduced to a single vertex (see Lemma 8).

• mi is the valid vector of G[V i] in t.

• ϕi maps each vertex v into the vertex u into which v is compressed when

a module is reduced to u. In other words, ϕi(v) = u then u is an ancestor

of v in the decomposition tree T .

On input (mi, V i, ϕi), the values of mi+1, V i+1 and ϕi are computed as

follows:

1. Look for a set of at most k nodes that induce module M . To do this, the

algorithm picks every possible set M = {u1, . . . , u`} ⊆ V i of 2 ≤ ` ≤ k nodes

and every possible subgraph H = (M,E′), and test whether s(u,mi, H) =

s(uv,m
i, H) for all u, v ∈ M . If one such a set M and graph H are found, the

algorithm deduces that M is a module and H is the subgraph of G[V i] induced

by M , and continues with step 2. Otherwise, the algorithm deduces that the

input graph is not a k-modular-width graph and rejects. Otherwise it continues

to step 2.
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2. When a module is identified, the algorithm deduces that the connections

between the vertices in the module are given by H. Let v1 and v2 be two vertices

in V such that ϕi(v1), ϕi(v2) ∈M . Suppose now that {ϕi(v1), ϕi(v2)} ∈ E(H).

The fact that v1 and v2 have adjacent ancestors in the decomposition tree means

that v1 and v2 are also adjacent. Therefore, the algorithm adds to Eout all edges

{v, w} satisfying that ϕi(v), ϕi(w) ∈M and {ϕi(v), ϕi(w)} ∈ E(H).

3. Finally, the algorithm defines V i+1 = V i − {u2, . . . , u`}. If V i+1 = {u1},

return the set of edges Eout. Otherwise, the algorithm computes then the

vector mi+1 = mi[u1 ← M ] according to Lemma 7. The algorithm has all the

information to compute mi+1 because it knows H. Then, for each vertex v ∈ V

it defines ϕi+1(v) = u1 if ϕi+1(v) ∈M , and ϕi+1(v) = ϕi(v) otherwise.

Lemmas 5, 6, 7 and 8 ensure that the Algorithm 4 is correct as long as that

at each iteration a module M and the corresponding induced subgraph H are

correctly identified.

Consider the i-th iteration of the algorithm, and let φi be the linearly inde-

pendent family of polynomials corresponding to the valid vector of the graph

Gi = G[V i] at t. For each u, v ∈ V (Gi) and `-vertex graph H with V (H) ⊆

V (Gi), let us define the polynomials ρiH,v =
∑
w∈NGi (v) φ

i
w−

∑
w∈NH(v) φ

i
w, and

τ iH,u,v = ρiH,u − ρiH,v. Observe that ρiH,v(t) = s(v,mi, H).

The algorithm errs if at some iteration i there is a set of at most k nodes M

such that τ iH,u,v = 0 for each pair of vertices u, v ∈M , but at the same time M

is not a module of G[V i] or H is not the subgraph induced by M in G[V i]. Let

us suppose that M is not a module of G[V i] or H is not the subgraph induced

by M in G[V i]. Then there must exist a pair of vertices u, v ∈ M such that

ρiH,v and ρiH,u are defined by different linear combinations of polynomials in Φi.

Since Φi is a linearly independent family of polynomials, τ iH,u,v is a non-zero

polynomial of degree at most n. Therefore, the probability that the algorithm

fails for M and H is at most n/p.

We deduce that the probability that the algorithm misidentifies a module is

at most the probability that, at any iteration, t is a root of a nonzero polynomial

τ iH,u,v for some choice of set M of at most k nodes, graph H(M,E′), and nodes
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Algorithm 4: Iterative algorithm executed by every vertex after the

communication round.

1 Receive from each v ∈ V the bits of mv, and define m = (mv)v∈V ;

2 Initialize Eout = ∅, V 1 = V , m1 = m and ϕ1(v) = v for all v ∈ V ;

3 for i = 1 to n do

4 Compute the set Σ of all tuples (`,M = {u1, . . . , u`}, H) such that

2 ≤ ` ≤ k, M ⊆ V i, H is a graph with vertex set M , and

s(u,mi, H) = s(v,mi, H) for all u, v ∈M (see Lemma 8);

5 if Σ = ∅ then

6 return reject;

7 else

8 Pick any (`,M = {u1, . . . , u`}, H) ∈ Σ ;

9 forall v, w ∈ V do

10 if ϕi(v) 6= ϕi(w) and {ϕi(v), ϕi(w)} ∈ E(H) then

11 Eout = Eout ∪ {v, w}

12 forall v ∈ V do

13 if ϕ(v) ∈M then

14 ϕi+1(v) = ϕi(u1)

15 else

16 ϕi+1(v) = ϕi(v)

17 mi+1 = mi[u1 ←M ] (see Lemma 7) ;

18 V i+1 = V i \ {u2, . . . , u`};

19 if V i = {u1} then

20 return Eout ;
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u, v ∈M . The union of these families has at most k2 · 2O(k2) ·nk+2 polynomials

at any iteration. Since there are at most n iterations, we conclude that the

protocol fails with probability at most nf(k)(n/p), with f(k) = O(k2). Picking

p ∈ [nf(k)+c, nf(k)+c+1] we obtain that the protocol fails with probability at

most 1/nc. �

7. Discussion

A natural question is to try to understand the relation between the recogni-

tion problem and the reconstruction problem. (The recognition problem is the

classical decision problem, where we simply want to decide whether the input

graph belongs to some class G). It is clear that finding a formal proof showing

some type of equivalence between the reconstruction and the recognition prob-

lems would yield a non-trivial lower bound on the recognition problem. However,

in [7], the authors show that any non-trivial unconditional lower bound on a

decision problem in the congested clique model would imply novel Boolean cir-

cuit complexity lower bounds. Nevertheless, proving lower bounds for explicit

Boolean functions in the theory of circuit complexity has been an elusive goal

for decades. Therefore, even though for some graph classes G, it seems that the

only strategy to decide whether G ∈ G is to reconstruct G, proving this is as

difficult as proving fundamental conjectures in circuit complexity, a notoriously

difficult challenge.
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