
Local Certification of Graphs with Bounded Genus

Laurent Feuilloleya,1,∗, Pierre Fraigniaudb,2, Pedro Montealegrec,3, Ivan
Rapaportd,4, Éric Rémilae,5, Ioan Todincaf

aUniv. Lyon, Université Lyon 1, LIRIS UMR CNRS 5205, F-69621, Lyon, France
bIRIF, CNRS and Université de Paris Cité, Paris, France

cFacultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
dDIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

eUniv Lyon, UJM Saint-Etienne, GATE L-SE UMR 5824, Saint-Étienne, France
fLIFO, Université d’Orléans and INSA Centre-Val de Loire, Orléans, France

Abstract

Naor, Parter, and Yogev [SODA 2020] recently designed a compiler for auto-
matically translating standard centralized interactive protocols to distributed
interactive protocols, as introduced by Kol, Oshman, and Saxena [PODC
2018]. In particular, by using this compiler, every linear-time algorithm for
deciding the membership to some fixed graph class can be translated into a
dMAM(O(log n)) protocol for this class, that is, a distributed interactive pro-
tocol with O(log n)-bit proof size in n-node graphs, and three interactions be-
tween the (centralized) computationally-unbounded but non-trustable prover
Merlin, and the (decentralized) randomized computationally-limited verifier

∗Corresponding author
Email addresses: laurent.feuilloley@univ-lyon1.fr (Laurent Feuilloley),

pierre.fraigniaud@irif.fr (Pierre Fraigniaud), p.montealegre@uai.cl (Pedro
Montealegre), rapaport@dim.uchile.cl (Ivan Rapaport),
eric.remila@univ-st-etienne.fr (Éric Rémila), ioan.todinca@univ-orleans.fr
(Ioan Todinca)

1Additional funding from Institute for Research in Market Imperfections and Public
Policy (MIPP) and ANR project GrR (ANR-18-CE40-0032).

2Additional funding from ANR project DESCARTES, and INRIA project GANG
3Additional funding from ANID via PAI + Convocatoria Nacional Subvención a la

Incorporación en la Academia Año 2017 + PAI77170068 and FONDECYT 11190482
4Additional funding from CONICYT via PIA/Apoyo a Centros Cient́ıficos y Tec-

nológicos de Excelencia AFB 170001 and Fondecyt 1220142
5Additional funding from IDEX LYON (project INDEPTH) within ANR-16-IDEX-

0005 and MODMAD

Preprint submitted to Elsevier October 10, 2022

Arthur. As a corollary, there is a dMAM(O(log n)) protocol for recognizing
the class of planar graphs, as well as for recognizing the class of graphs with
bounded genus.

We show that there exists a distributed interactive protocol for recogniz-
ing the class of graphs with bounded genus performing just a single interac-
tion, from the prover to the verifier, yet preserving proof size of O(log n) bits.
This result also holds for the class of graphs with bounded non-orientable
genus, that is, graphs that can be embedded on a non-orientable surface of
bounded genus. The interactive protocols described in this paper are actu-
ally proof-labeling schemes, i.e., a subclass of interactive protocols, previously
introduced by Korman, Kutten, and Peleg [PODC 2005]. In particular, these
schemes do not require any randomization from the verifier, and the proofs
may often be computed a priori, at low cost, by the nodes themselves. Our
results thus extend the recent proof-labeling scheme for planar graphs by
Feuilloley et al. [PODC 2020], to graphs of bounded genus, and to graphs of
bounded non-orientable genus.

1. Introduction

1.1. Context and Objective

The paper considers the standard setting of distributed network com-
puting, in which processing elements are nodes of a network modeled as a
simple connected graph G = (V,E), and the nodes exchange information
along the links of that network (see, e.g., [50]). As for centralized com-
puting, distributed algorithms often assume promises on their inputs, and
many algorithms are designed for specific families of graphs, including regu-
lar graphs, planar graphs, graphs with bounded arboricity, bipartite graphs,
graphs with bounded treewidth, etc. Distributed decision refers to the prob-
lem of checking that the actual input graph (i.e., the network itself) satisfies
a given predicate. One major objective of the check up is avoiding erroneous
behaviors such as livelocks or deadlocks resulting from running an algorithm
dedicated to a specific graph family on a graph that does not belong to this
family. The decision rule typically specifies that, if the predicate is satisfied,
then all nodes must accept, and otherwise at least one node must reject. A
single rejecting node can indeed trigger an alarm (in, e.g., hardwired net-
works), or launch a recovery procedure (in, e.g., virtual networks such as
overlay networks). The main goal of distributed decision is to design efficient

2

checking protocols, that is, protocols where every node exchange information
with nodes in its vicinity only, and where the nodes exchange a small volume
of information between neighbors.

Proof-Labeling Schemes.. Some graph predicate are trivial to check locally
(e.g., regular graphs), but others do not admit local decision algorithms.
For instance, deciding whether the network is bipartite may require long-
distance communication for detecting the presence of an odd cycle. Proof-
labeling schemes [39] provide a remedy to this issue. These mechanisms have
a flavor of NP-computation, but in the distributed setting. That is, a non-
trustable oracle provides each node with a certificate, and the collection of
certificates is supposed to be a distributed proof that the graph satisfies the
given predicate. The nodes check locally the correctness of the proof. The
specification of a proof-labeling scheme for a given predicate is that, if the
predicate is satisfied, then there must exist a certificate assignment leading
all nodes to accept, and, otherwise, for every certificate assignment, at least
one node rejects. As an example, for the case of the bipartiteness predicate,
if the graph is bipartite, then an oracle can color blue the nodes of one of the
partition, and color red the nodes of the other partition. It is then sufficient
for each node to locally check that all its neighbors have the same color,
different from its own color, and to accept or reject accordingly. Indeed, if
the graph is not bipartite, then there is no way that a dishonest oracle can
fool the nodes, and make them all accept the graph.

Interestingly, the certificates provided to the nodes by the oracle can
often be computed by the nodes themselves, at low cost, during some pre-
computation. For instance, a spanning tree construction algorithm is usually
simply asked to encode the tree T locally at each node v, say by a pointer p(v)
to the parent of v in the tree. However, it is possible to ask the algorithm to
also provide a distributed proof that T is a spanning tree. Such a proof may
be encoded distributedly by providing each node with a certificate containing,
e.g., the ID of the root of T , and the distance d(v) from v to the root (see,
e.g., [2, 6, 37]). Indeed, every node v but the root can simply check that
d(p(v)) = d(v)−1 (to guarantee the absence of cycles), and that it was given
the same root-ID as all its neighbors in the network (for guaranteeing the
uniqueness of the tree).

Distributed Interactive Protocols.. The good news is that all (Turing-
decidable) predicates on graphs admit a proof-labeling scheme [39]. The

3

bad news is that there are simple graphs properties (e.g., existence of a non-
trivial automorphism [39], non 3-colorability [34], bounded diameter [11],

etc.) which require certificates on Ω̃(n) bits in n-node graphs. Such huge
certificates do not fit with the requirement that checking algorithms must
not only be local, but they must also consume little bandwidth. Random-
ized proof-labeling schemes [29] enable to limit the bandwidth consumption,
but this is often to the cost of increasing the space-complexity of the nodes.
However, motivated by cloud computing, which may provide large-scale dis-
tributed systems with the ability to interact with an external party, Kol,
Oshman, and Saxena [38] introduced the notion of distributed interactive pro-
tocols. In such protocols, a centralized non-trustable oracle with unlimited
computation power (a.k.a. Merlin) exchanges messages with a randomized
distributed algorithm (a.k.a. Arthur). Specifically, Arthur and Merlin per-
form a sequence of exchanges during which every node queries the oracle by
sending a random bit-string, and the oracle replies to each node by sending
a bit-string called proof. Neither the random strings nor the proofs need to
be the same for each node. After a certain number of rounds, every node
exchange information with its neighbors in the network, and decides (i.e.,
it outputs accept or reject). It was proved that many predicate requiring
large certificate whenever using proof-labeling schemes, including the exis-
tence of a non-trivial automorphism, have distributed interactive protocols
with proofs on O(log n) bits [38].

Naor, Parter, and Yogev [45] recently designed a compiler for automat-
ically translating standard centralized interactive protocols to distributed
interactive protocols. In particular, by using this compiler, every linear-time
algorithm for deciding the membership to some fixed graph class can be
translated into a dMAM(O(log n)) protocol, that is, a distributed interactive
protocol with O(log n)-bit proof size in n-node graphs, and three interactions
between Merlin and Arthur: Merlin provides every node with a first part of
the proof, on O(log n) bits, then every node challenges Merlin with a random
bit-string on O(log n) bits, and finally Merlin replies to every node with the
second part of the proof, again on O(log n) bits. Every node then performs
a single round of communication with its neighbors, exchanging O(log n)-bit
messages, and individually outputs accept or reject. As a corollary, there is
a dMAM(O(log n)) protocol for many graph classes, including planar graphs,
graphs with bounded genus, graphs with bounded treewidth, etc.

4

The Limits of Distributed Interactive Protocols.. Although the compiler
in [45] is quite generic and powerful, it remains that the resulting inter-
active protocols are often based on many interactions between Merlin and
Arthur. This raises the question of whether there exist protocols based on
fewer interactions for the aforementioned classes of graphs, while keeping the
proof size small (e.g., on O(polylog n) bits). Note that, with this objective in
mind, proof-labeling schemes are particularly desirable as they do not require
actual interactions. Indeed, as mentioned before, the certificates may often
be constructed a priori by the nodes themselves. Unfortunately, under the
current knowledge, establishing lower bounds on the number of interactions
between the prover Merlin and the distributed verifier Arthur, as well as
lower bounds on the proof size, not to speak about tradeoffs between these
two complexity measures, remains challenging. Therefore, it is not known
whether dMAM(O(log n)) protocols are the best that can be achieved for
graph classes such as graphs with bounded genus, or graphs with bounded
treewidth.

Graphs with Bounded Genus.. In this paper, we focus on the class of graphs
with bounded genus, for several reasons. First, this class is among the promi-
nent representative of sparse graphs [47], and the design of fast algorithms
for sparse graphs is not only of the utmost interest for centralized, but also
for distributed computing (see, e.g., [3, 8, 13, 16, 31, 32, 33, 41, 42, 54]),
as many real-world physical or logical networks are sparse. Second, graphs
of bounded genus, including planar graphs, have attracted lots of attention
recently in the distributed computing framework (see, e.g., [4, 5, 30]), and it
was shown that this large class of graphs enjoys distributed exact or approx-
imation algorithms that overcome several known lower bounds for general
graphs [40, 51, 53]. Last but not least, it appears that the graph classes for
which proof-labeling schemes require certificates of large size are not closed
under node-deletion, which yields the question of whether every graph family
closed under node-deletion (in particular graph families closed under taking
minors) have proof-labeling schemes with certificates of small size. This was
recently shown to be true for planar graphs [25], but the question is open be-
yond this class, putting aside simple classes such as bipartite graphs, forests,
etc.

As for the class of planar graphs, and for the class of graphs with bounded
genus, every graph class G that is closed under taking minors has a finite
set of forbidden minors. As a consequence, as established in [25], there

5

is a simple proof-labeling scheme with O(log n)-bit certificates for G, i.e.,
for not being in G. The scheme simply encodes a forbidden minor present
in G in a distributed manner for certifying that G /∈ G. Therefore, for
every k ≥ 0, there exists a simple proof-labeling scheme with O(log n)-bit
certificates for genus or non-orientable genus at least k. The difficulty is
to design a proof-labeling scheme with O(log n)-bit certificates for genus or
non-orientable genus at most k.

1.2. Our Results

1.2.1. Compact Proof-Labeling Schemes for Graphs of Bounded Genus

Recall that planar graphs are graphs embeddable on the 2-dimensional
sphere S2 (without edge-crossings). Graphs with genus 1 are embeddable on
the torus T1, and, more generally, graphs with genus k ≥ 0 are embeddable
on the closed surface Tk obtained from S2 by adding k handles. We show
that, for every k ≥ 0, there exists a proof-labeling scheme for the class of
graphs with genus at most k, using certificates on O(log n) bits. This extends
a recent proof-labeling scheme for planar graphs [25] to graphs with arbitrary
genus k ≥ 0. Note that the certificate-size of our proof-labeling schemes is
optimal, in the sense there are no proof-labeling schemes using certificates
on o(log n) bits, even for planarity [25]6.

For every k ≥ 1, our proof-labeling schemes also apply to the class of
graphs with non-orientable genus (a.k.a., Euler genus) at most k, that is, they
also hold for graphs embeddable on a non-orientable surface with genus k.
Graphs with non-orientable k are indeed graphs embeddable on the closed
surface Pk obtained from S2 by adding k cross-caps. Some more precise
definitions and descriptions are given later, in Section 2.1.

This paper therefore demonstrates that the ability of designing proof-
labeling schemes with small certificates for planar graphs is not a coincidental
byproduct of planarity, but this ability extends to much wider classes of
sparse graphs closed under taking minors. This provides hints that proof-
labeling schemes with small certificates can also be designed for very many
(if not all) natural classes of sparse graphs closed under vertex-deletion.

6The goal of this paper is not to optimize the size of the certificates as a function of
the genus k, but it is not hard to see that our certificates have size O(2k log n).

6

C1 C2

Σ(0) = T2 Σ(1) = S2

(a)

C ′′2

C ′2

C ′1

C ′′1
φ′1 φ′′1

φ′′2φ′2

S2

C ′′2

C ′2

C ′1
C ′′1φ′1 φ′′1 φ′′2φ′2ψ1 = χ1

ψ2 ψ3
ψ4

P1

S2

C ′′2

C ′2

C ′1

C ′′1
χ2

ψ3
ψ4

P ′1

P ′′1

P2

χ2

S2

Φ∗

(e) (f)

(b) (c)

(d)

Φ∗ B∗

H∗

Figure 1: An idealistic scenario where a graph G embedded on T2 has disjoint non-
separating cycles. In this case, we cut along two disjoint non-separating cycles C1 and C2,
get four supplementary faces, and merge these faces by cutting along disjoint paths, until
we get only one face (which is orange in the drawing). Let us give more details, using
the notations of the proof. The supplementary faces are φ′1, φ

′′
1 , φ
′
2 and φ′′2 , and they are

renamed ψ1, ψ2, ψ3 and ψ4 respectively, for convenience. These faces are merged step by
step: a duplicated path is used to merge such a face ψi with the face χi−1 originating
from the merge of the faces ψ1 to ψi−1 (with χ1 = ψ1). Picture (d) illustrates the merge
of χ2 with ψ3. In the end, we have a single merged face that we call Φ∗. The latter
face Φ∗ can be seen as the infinite face of the planar graph embedding obtained by these
transformations.

1.2.2. Our Techniques

Our proof-labeling schemes are obtained thanks to a local encoding of a
mechanism enabling to “unfold” a graph G of genus or non-orientable genus k
into a planar graph Ĝ, by a series of vertex-duplications. Specifically, for
graphs of genus k, i.e., embeddable on an orientable surface Tk, we construct
a sequences G(0), . . . , G(k) where G(0) = G, G(k) = Ĝ, and, for every i =
0, . . . , k, G(i) has genus k − i. For i ≥ 1, the graph G(i) is obtained from
G(i−1) by identifying a non-separating cycle Ci in G(i−1), and duplicating the
vertices and cycles of Ci (see Figure 1(a-b)). (Recall that a non-separating
cycle, is a cycle that can be removed without making the graph disconnected.)
This enables to “cut” a handle of the surface Tk−i+1, resulting in a closed
surface Tk−i with genus one less than Tk−i+1, while the embedding of G(i−1)

on Tk−i+1 induces an embedding of G(i) on Tk−i. The graph Ĝ is planar, and
has 2k special faces φ′1, φ

′′
1, . . . , φ

′
k, φ

′′
k, where, for i = 0, . . . , k, the faces φ′i

7

(a) (b) (c)

(d) (e) (f)

C1

C ′1
C ′′1

C ′1
C ′′1

C2

C ′′2C ′1

C ′′1

C ′2

C ′′2C ′1 C ′′1
C ′2

φ′′1
φ′1

φ′1

φ′′1

φ′′2

φ′2

φ′′1
φ′1

φ′1 φ′′1
φ′′2φ′2 φ∗

P ′1

P ′′1

P ′2

P ′′2

P ′3P ′′3

Figure 2: A more complex unfolding a graph G embedded on T2. Faces created by
duplications have not disjoint boundaries, and parts of previous duplicated paths are used
to create new paths.

and φ′′i results from the duplication of the face Ci (see Figure 1(c)).

The proof-labeling scheme needs to certify not only the planarity of Ĝ,
but also the existence of the faces φ′1, φ

′′
1, . . . , φ

′
k, φ

′′
k, and a proof that they

are indeed faces, which is non-trivial. Therefore, instead of keeping the 2k
faces as such, we connect them by a sequence of paths P1, . . . , P2k−1. By
duplicating each path Pi into P ′i and P ′′i , the two faces χ and ψ connected
by a path Pi is transformed into a single face, while planarity is preserved.
Intuitively, the new face is the “union” of χ, ψ, and the “piece in between”
P ′i and P ′′i (see Figure 1(d)). The whole process eventually results in a planar
graph H with a single special face φ (see Figure 1(e-f)). In fact, the paths
Pi, i = 1, . . . , 2k − 1 do not only serve the objective of merging the 2k faces
φ′1, φ

′′
1, . . . , φ

′
k, φ

′′
k into a single face φ, but also serve the objective of keeping

track of consistent orientations of the boundaries of these faces. The purpose
of these orientations is to provide the nodes with the ability to locally check
that the 2k faces can indeed be paired for forming k handles.

The planarity of H and the existence of the special face φ can be certified
by a slight adaptation of the proof-labeling scheme for planarity in [25]. It
then remains to encode the sequence of cycle and path-duplications locally,
so that every node can roll back the entire process, for identifying the cycles
Ci, i = 1, . . . , k, and the paths Pj, j = 1, . . . , 2k − 1, and for checking their
correctness.

Among many issues, a very delicate problem is that, as opposed to cycles

8

and paths drawn on a surface, which can be chosen to intersect at few points,
these cycles and paths are in graphs embedded on surfaces, and thus they
may intersect a lot, by sharing vertices or even edges. Figure 1 displays an
idealistic scenario in which the cycles Ci’s are disjoint, the paths Pj’s are
disjoint, and these cycles and paths are also disjoint. However, this does
not need to be the case, and the considered cycles and paths may mutually
intersect in a very intricate manner. For instance, Figure 2 displays a case in
which C2 intersects with C ′′1 , P ′2 and P ′′2 are reduced to single vertices, and P ′′3
intersects with P ′1. It follows that the sequence of duplications may actually
be quite cumbersome in general, with some nodes duplicated many times.
As a consequence, keeping track of the boundaries of the faces is challenging,
especially under the constraint that all information must be distributed, and
stored at each node using O(log n) bits only. Also, one needs to preserve
specific orientations of the boundaries of the faces, for making sure that
not only the two faces φ′i and φ′′i corresponding to a same cycle Ci can be
identified, but also that they can be glued together appropriately in a way
resulting to a handle, and not be glued like, e.g., a Klein bottle.

The case of graphs embedded on a non-orientable closed surface causes
other problems, including the local encoding of the cross-caps, and the fact
that decreasing the genus of a non-orientable closed surface by removing a
cross-cap may actually result in a closed surface that is orientable. Indeed,
eliminating cross-caps is based on doubling a non-orientable cycle of the
graph, and this operation may result in a graph embedded on a surface
that is actually orientable. (This phenomenon did not arise in the case of
orientable surfaces, as removing a handle from an orientable closed surface
by cycle-duplication results in a graph embedded on an orientable closed
surface.) Thus, the proof-labeling scheme for bounded non-orientable genus
has to encode not only the identification the cross-caps, but also of faces to
be identified for forming handles.

For guaranteeing certificates on O(log n) bits, our proof-labeling schemes
distribute the information evenly to the certificates provided to the nodes,
using the fact that graphs of bounded (orientable or non-orientable) genus
have bounded degeneracy. This property enables to store certificates on
O(log n) bits at each node, even for nodes that have arbitrarily large degrees.

We complete this brief summary of our techniques with two remarks.

On the cuts. Modifying a graph of bounded genus by performing a se-
quence of cuts for eventually producing a planar graph has already been

9

used in the literature — see, e.g., [36], where a probabilistic embedding
of bounded genus graphs into planar graphs is designed. However, us-
ing this techniques in the framework of distributed computing is, to
our knowledge, new, and poses additional challenges. In particular,
dealing with the intersections of the aforementioned paths and cycles
is not much difficult in centralized computing (typically, few virtual
nodes may be added, or the graph may even be triangulated, for avoid-
ing intersections), but the techniques used in the centralized setting
do not carry over easily to the decentralized setting. More generally,
the fact that every step of the transformation of a graph of bounded
(non-orientable) genus into a planar graph must be verifiable locally in
a distributed manner imposes strong constraints, and restricts the set
of techniques that can be used. As a consequence, we could not pick a
transformation from the shelf for using it as a black box, but we had
to come up with a specific one, bearing close similarities with existing
ones, for carefully monitoring every step of it, and checking the ability
to implement this step in a distributed manner using small certificates.

On the general approach. An approach conceptually simpler than the
one used in this paper would have been to use induction, simply
assuming the existence of a proof-labeling scheme with O(log n)-bit
certificates for graphs with (non-orientable) genus k ≥ 0, and then
constructing a proof-labeling scheme with O(log n)-bit certificates for
graphs with (non-orientable) genus k + 1. However, although we are
not claiming that such a desirable and conceptually simpler approach
is impossible to use, we strongly believe that it may simply be not
the right approach, for at least two reasons. First, the proof-labeling
scheme in [25] certifies planarity, but it does not provide a way to cer-
tify all the faces of a planar embedding. Indeed, it only provides a
certification for a single specific face, namely the outer-face. Given an
arbitrary cycle in the graph, certifying that this cycle corresponds to
the boundary of a face in the planar embedding is not provided in [25],
and the design of a compact proof-labeling scheme for this property
appears to be non trivial. Note in particular that we do not assume
that the graphs we manipulate have unique embeddings, thus a cycle
might be a face in one embedding, but not in another embedding. Sec-
ond, even if the previous problem could be solved, it would remain that
the orientations of the pair of faces to be merged at each level of the

10

induction are crucial. One needs to make sure that the nodes can lo-
cally check that the orientations provided by the non-trustable prover
are correct, for distinguishing handles from cross-caps. The inductive
design of a compact proof-labeling scheme for this property appears to
be even more challenging. These two issues are serious obstacles to the
development of an inductive construction, and, to overcome them, we
adopted the approach consisting to “unwrap” the whole construction.
This is less elegant and comprehensible than an inductive construction,
but this allowed us to (1) identify a single face in the planar embedding,
which can be certified (e.g., using [25]), and (2) provide an orientation
to the boundary of this face, for enabling to certify that the orientation
given by the non-trustable prover to each and every pair of faces to be
merged is indeed correct.

1.3. Related Work

Bounded-degree graphs form one of the most popular class of sparse
graphs studied in the context of design and analysis of distributed algorithms,
as witnessed by the large literature (see, e.g., [50]) dedicated to construct lo-
cally checkable labelings (e.g., vertex colorings, maximal independent sets,
etc.) initiated a quarter of a century ago by the seminal work in [46]. Since
then, other classes of sparse graphs have received a lot of attention, including
planar graphs, and graphs of bounded genus. In particular, there is a long
history of designing distributed approximation algorithms for these classes,
exemplified by the case of the minimum dominating set problem. One of
the earliest result for this latter problem is the design of a constant-factor
approximation algorithm for planar graphs, performing in a constant number
of rounds [41]. This result is in striking contrast with the fact that even a
poly-logarithmic approximation requires at least Ω(

√
log n/ log log n) rounds

in arbitrary n-node networks [40]. The paper [41] has paved the way for a
series of works, either improving on the complexity and the approximation
ratio [16, 42, 54], or using weaker models [55], or tackling more general prob-
lems [14, 15], or proving lower bounds [35, 16]. The minimum dominating set
problem has then been studied in more general classes such as graphs with
bounded arboricity [42], minor-closed graphs [13], and graphs with bounded
expansion [3]. Specifically, for graphs with bounded genus, it has been shown
that a constant approximation can be obtained in time O(k) for graphs of
genus k [4], and a (1+ε)-approximation algorithm has recently been designed,
performing in time O(log∗n) [5].

11

Several other problems, such as maximal independent set, maximal
matching, etc., have been studied for the aforementioned graph classes, and
we refer to [21] for an extended bibliography. In addition to the aforemen-
tioned results, mostly dealing with local algorithms, there are recent results in
computational models taking into account limited link bandwidth, for graphs
that can be embedded on surfaces. For instance, it was shown that a com-
binatorial planar embedding can be computed efficiently in the CONGEST
model [31]. Such an embedding can then be used to derive more efficient al-
gorithms for minimum-weight spanning tree, min-cut, and depth-first search
tree constructions [32, 33]. Finally, it is worth mentioning that, in addition
to algorithms, distributed data structures have been designed for graphs em-
bedded on surfaces, including a recent optimal adjacency-labeling for planar
graphs [8, 17], and routing tables for graphs of bounded genus [30] as well as
for graphs excluding a fixed minor [1].

Proof-labeling schemes (PLS) were introduced in [39], and different vari-
ants were later introduced. Stronger forms of PLS include locally checkable
proofs (LCP) [34] in which nodes forge their decisions on the certificates
and on the whole states of their neighbors, and t-PLS [24] in which nodes
perform communication at distance t ≥ 1 before deciding. Weaker forms of
PLS include non-deterministic local decision (NLD) [26] in which the certifi-
cates must be independent from the identity-assignment to the nodes. PLS
were also extended by allowing the verifier to be randomized (see [29]). Such
protocols were originally referred to as randomized PLS (RPLS), but are
nowadays referred to as distributed Merlin-Arthur (dMA) protocols.

The same way NP is extended to the complexity classes forming the
Polynomial Hierarchy, by alternating quantifiers, PLS were extended to a
hierarchy of distributed decision classes [7, 23], which can be viewed as re-
sulting from a game between a prover and a disprover. Recently, distributed
interactive proofs were formalized [38], and the classes dAM[k](f(n)) and
dMA[k](f(n)) were defined, where k ≥ 1 denotes the number of alternations
between the centralized Merlin and the decentralized Arthur, and f(n) de-
notes the size of the proof — dAM[3](f(n)) is also referred to as dMAM(f(n)).
Distributed interactive protocols for problems like the existence of a non-
trivial automorphism (AUT), and non-isomorphism (ISO) were designed and
analyzed in [38]. The follow up paper [45] improved the complexity of some
of the protocols in [38], either in terms of the number of interactions between
the prover and the verifier, and/or in terms of the size of the certificates. A
sophisticated generic way for constructing distributed IP protocols based on

12

sequential IP protocols is presented in [45]. One of the main outcome of this
latter construction is a dMAM protocol using certificates on O(log n) bits for
all graph classes whose membership can be decided in linear time. For other
recent results on distributed interactive proof, see [12, 27].

It is worth noticing that a very recent paper [19] provides an alternative
proof of the results of this paper, by certifying (i) the faces of the embedding
using the Heffter-Edmonds-Ringel rotation principle, and (ii) the genus of
the embedding using Euler’s Formula.

1.4. Organization of the Paper

The next section provides the reader with basic notions regarding graphs
embedded on closed surfaces, and formally defines our problem. Section 3
describes how to “unfold” a graph G of genus k, for producing a planar
graph H with a special face φ. The section also describes how, given a planar
graph H with a special face φ, one can check that (H,φ) results from the
unfolding of a graph G with genus k. Then, Section 4 presents our first main
result, that is, a proof-labeling scheme for the class of graphs with bounded
genus. In particular, it describes how to encode the description of the pair
(H,φ) from Section 3, and, more importantly, how to locally encode the whole
unfolding process in a distributed manner, using certificates on O(log n) bits,
which allow the nodes to collectively check that their certificates form a proof
that G has genus k. Section 5 presents our second main result, by showing
how to extend the proof-labeling scheme of Section 4 to the class of graphs
with bounded non-orientable genus. Finally, Section 6 concludes the paper
with a discussion about the obstacles to be overcame for the design of a
proof-labeling scheme for the class of graphs excluding a fixed minor.

2. Definitions, and Formal Statement of the Problem

This section contains a brief introduction to graphs embedded on surfaces,
and provides the formal statement of our problem.

2.1. Closed Surfaces

Most of the notions mentioned in this section are standard, and we refer
to, e.g., Massey et al. [43] for more details.

13

2.1.1. Definition

Recall that a topological space is a pair (X,T) where X is a set, and T
is a topology on X (e.g., T is a collection of subsets of X, whose elements
are called open sets, satisfying the following properties : the set X and the
empty set are open, any finite intersection of open sets is an open set, and
any arbitrary union of open sets is an open set). A topological space may
be denoted by X if there is no ambiguity about the topology on X. Also
recall that a topological space X is compact if, from any set of open sets
whose union is X, one can extract a finite set of open sets whose union is
finite. A function f : X → Y between two topological spaces is continuous
if the inverse image of every open set in Y is open in X. A homeomorphism
is a bijection that is continuous, and whose inverse is also continuous. A
topological path in X is a continuous function P : [0, 1]→ X. The space X is
path-connected if for any pairs x, y of points of X, there exists a topological
path P such that P (0) = x and P (1) = y.

Definition 1. A closed surface Σ is a path-connected7, compact space that
is locally homeomorphic to a disk of R2, (i.e. for each x ∈ Σ, there exists
an open set Sx containing x such that Sx is homeomorphic to an closed disk
of R2, the topology TSx used for Sx being the set TSx = {S ∩ Sx, S ∈ T}.

2.1.2. Construction

Some closed surfaces can be obtained by the following construction. Let
S2 be the 2-dimensional sphere. For k ≥ 0, given 2k disks D1, D2, ...D2k on
the surface of S2, with pairwise disjoint interiors, let us direct clockwise the
boundaries of D1, . . . , Dk, and let us direct counterclockwise the boundaries
of Dk+1, . . . , D2k. Next, let us remove the interior of each disk, and, for
1 ≤ i ≤ k, let us identify (i.e., glue) the boundary of Di with the boundary
Di+k in such a way that directions coincide (see Figure 3). The resulting
topological space is denoted by Tk. In particular, T1 is the torus, and T0 =
S2. For every i, identifying Di and Di+k results in a handle. It follows that
Tk contains k handles.

Another family of closed surfaces is constructed as follows. LetD1, . . . , Dk

be k ≥ 1 disks with pairwise disjoint interiors. Let us again remove the

7Path-connected can actually be replaced by connected (i.e., cannot be partitioned in
two open sets) here, because, under the hypothesis of local homeomorphy to a disk, the
notions of path-connectivity and connectivity are equivalent.

14

Di

Di+k handle

cross-cap

Figure 3: Handles and cross-cap.

Figure 4: The sphere, torus, projective plane, and Klein Bottle.

interior of each disk. For every 1 ≤ i ≤ k, and for every antipodal point v
and v′ of the boundary of Di, let us identify (i.e., glue) the points v and v′ (see
Figure 3). The resulting topological space is denoted by Pk. In particular,
P1 is the projective plane, and P2 is the Klein bottle (P0 is not defined). For
every i, the operation performed on Di results in a cross-cap. It follows that
Pk contains k cross-caps.

The surfaces resulting from the above constructions can thus be orientable
(e.g., the sphere T0 or the torus T1) or not (e.g., the projective plane P1 or
the Klein Bottle P2), as displayed on Figure 4.

2.1.3. Orientability

For defining orientability of a closed surface Σ, we use the notion of
curve, defined as a continuous function C : S1 → Σ, where S1 denotes the
unidimensional sphere (homeomorphic to, e.g., the trigonometric circle). A
curve is simple if it is injective. A simple curve C is orientable if one can
define the left side and the right side of the curve at every point of the curve in
a consistent manner. Specifically, a curve C is orientable if, for every x ∈ C,

15

there exists a neighborhood Nx of x such that Nx r C has two connected
components, one called the left side L(Nx) of Nx, and the other the right
side R(Nx) of Nx, such that, for every x, x′ ∈ C and every y ∈ Σ,

(y ∈ Nx ∩Nx′) ∧ (y ∈ L(Nx)) =⇒ y ∈ L(Nx′).

A closed surface Σ is orientable if every simple curve of X is orientable. It is
easy to check that orientability is a topological invariant. That is, if Σ and
Σ′ are two homeomorphic topological spaces, then Σ is orientable if and only
if Σ′ is orientable.

2.1.4. Genus of a Surface

An orientable closed surface Σ is of genus k if it is homeomorphic to a
closed surface Tk constructed as in Section 2.1.2. The Classification Theorem
of orientable closed surfaces (see, e.g., [10]) states that every orientable closed
surface has a genus. That is, for every orientable surface Σ, there exists a
unique k ≥ 0 such that Σ is of genus k. The fact that every pair of orientable
closed surfaces with the same genus k are homeomorphic, justifies that a
unique notation can be adopted for these surfaces, and any orientable closed
surface of genus k is denoted by Tk. Observe however that two closed surfaces
that are homeomorphic are not necessarily homotopic, i.e., they may not
be continuously deformable into each other (for instance, the torus is not
homotopic to the trefoil knot, although both are homeomorphic).

The genus can also be defined for non-orientable closed surfaces. For
k ≥ 1, a non-orientable closed surface is said to be of genus k if it is home-
omorphic to a closed surface Pk constructed as in Section 2.1.2. Again, the
Classification Theorem of non-orientable closed surfaces (see, e.g., [10]) states
that every non-orientable closed surface has a genus. That is, for every non-
orientable closed surface Σ, there exists a unique k ≥ 0 such that Σ is of
genus k. As for orientable surfaces, every pair of non-orientable closed sur-
faces of genus k are homeomorphic, and a non-orientable closed surface of
genus k is denoted by Pk.

2.2. Graphs Embedded on Surfaces

In this section, we recall standard notions related to graph embeddings
on surfaces, and we refer to Mohar and Thomassen [44] for more details.
Throughout the paper, all considered graphs are supposed to be simple (no
multiple edges, and no self-loops), and connected.

16

2.2.1. Topological Embeddings

Given a graph G = (V,E), and a closed surface Σ, a topological embedding
of G on Σ is given by (1) an injective mapping f : V → Σ, and, (2) a
topological path fe : [0, 1]→ Σ defined for every edge e such that:

� if e = {v, v′} ∈ E, then fe({0, 1}) = {f(v), f(v′)}, and

� if e, e′ ∈ E and e 6= e′, then fe(]0, 1[) ∩ fe′(]0, 1[) = ∅.

The second condition is often referred to as the non-crossing condition.
See Figure 5 for two embeddings of the complete graphK4 on T1. Throughout
the paper, we may identify a vertex v with its representation f(v), and an
edge e with its representation fe (i.e., the image fe([0, 1]) of [0, 1] by fe), even
referred to as f(e) in the following. The set ∪e∈Ef(e) is called the skeleton
of the embedding, and is denoted by Sk(G). Each connected component of
Σ r Sk(G) is an open set of Σ (as complement of a closed set), called a face
of the embedding. In fact, in this paper, we will abuse notation, and often
refer to G instead of Sk(G) when referring to the embedding of G on Σ.

2.2.2. 2-Cell Embeddings

We now recall a slightly more sophisticated, but significantly richer form
of topological embedding, called 2-cell embedding. A 2-cell embedding is a
topological embedding such that every face is homeomorphic to an open disk
of R2.

In a 2-cell embedding of a graph G, the border of a face can be de-
scribed by giving a so-called boundary (closed) walk, that is, an ordered list
(v0, . . . , vr) of non-necessarily distinct vertices ofG, where, for i = 0, . . . , r−1,
{vi, vi+1} ∈ E(G), and {vr, v0} ∈ E(G). The vertices and edges of a face are
the images by the embedding of the vertices and edges of the boundary walk.
The boundary walk is however not necessarily a simple cycle, as an edge
may appear twice in the walk, once for each direction, and a vertex may
even appear many times.

For instance, Figure 5 displays two embeddings of the complete graph K4

on the torus T1. The embedding on the left is not a 2-cell embedding. Indeed,
this embedding results in three faces, including the two faces with boundary
walk (a, b, c) and (a, b, d). The third face is however not homeomorphic to an
open disk (there is a hole in it, resulting from the hole in the torus). On the
other hand, the embedding on the right in Figure 5 is a 2-cell embedding.
Indeed, there are two faces, including the face with boundary walk (a, b, c).

17

a

b

c
d

a

b

c
d

Figure 5: Two embeddings of K4 on the torus T1. The one on the left is not a 2-cell
embedding since the non-triangular face is not homeomorphic to a closed disk. This
situation can occur because K4 is of genus 0, not 1 (see Lemma 2). The embedding on
right is a 2-cell embedding.

The other face is also homeomorphic to an open disk. A boundary walk of
this latter face is (d, a, b, d, c, a, d, b, c). This can be seen by starting from d,
traversing the edge {d, a}, and adopting the “left-hand rule” when entering
a vertex, leading from a to b, then back to d, next to c, etc. Notice that this
boundary walk uses some edges twice. It follows that the closure of a face is
not necessarily homeomorphic to a closed disk, even in a 2-cell embedding.

We complete the section with an observation, which allows us to restrict
our attention to cycles in graphs instead of arbitrary curves in topological
spaces. It also illustrates the interest of 2-cell embeddings (the result does not
necessarily hold for arbitrary embeddings, as illustrated by the embedding
on the left of Figure 5). In the following, contractible means homotopic to a
point.

Lemma 1. For every graph G, and every closed surface Σ, any 2-cell em-
bedding of G on Σ satisfies that every closed curve in Σ is either contractible,
or homotopic to a closed cycle of Sk(G).

The rough reason why the result holds is that, in a 2-cell embedding, any
sub-path of a path traversing a face can be replaced by a sub-path following
the border of the face. (This is not necessarily true for a general embedding).

2.2.3. Genus and non-orientable genus of a Graph

For any graph G, there exists k ≥ 0 such that G can be embedded on Tk,
as any embedding of G in the plane with x pairs of crossing edges induces
an embedding of G on Tx without crossings, by replacing each crossing with
a handle. Also, if G can be embedded on Tk, then G can be embedded on

18

Tk′ for every k′ ≥ k. The genus of a graph G is the smallest k such that
there exists an embedding of G on Tk. Similarly, the non-orientable genus,
or Euler genus of G, is defined as the smallest k such that there exists an
embedding of G on Pk.

The embeddings of graphs of genus k on Tk have a remarkable property
(see, e.g., [56]).

Lemma 2. Every embedding of a graph G of genus k on Tk is a 2-cell em-
bedding.

The same property does not necessarily hold fo graphs with bounded non-
orientable genus. However, some weaker form of Lemma 2 can be established
(see, e.g., [49]).

Lemma 3. For every graph G of non-orientable genus k, there exists a 2-cell
embedding of G on Pk.

The next result is extremely helpful for computing the genus of a graph,
and is often referred to as the Euler-Poincaré formula [52].

Lemma 4. Let G = (V,E), and let Σ be a closed surface of genus k. Let
us consider any 2-cell embedding of G on Σ, and let F be the set of faces of
this embedding. If Σ is orientable then |V | − |E|+ |F | = 2− 2k. If Σ is non
orientable then |V | − |E|+ |F | = 2− k.

Recall that, for d ≥ 0, a graph G is d-degenerate if every subgraph of G
has a node of degree at most d. Degeneracy will play a crucial role later in the
paper, for evenly distributing the information to be stored in the certificates
according to our proof-labeling schemes.

Graphs with bounded genus have bounded degeneracy (see, e.g., [44]
Theorem 8. 3. 1, this result is due to Heawood), as recalled below for
further references.

Lemma 5. For every k ≥ 0, every graph of genus at most k is d-degenerate
with d = max(5, 5+

√
1+48k
2

).
For every k ≥ 1, every graph of non-orientable genus at most k is d-

degenerate with d = max(5, 5+
√

1+24k
2

).

19

2.3. Formal Statement of the Problem

Proof-Labeling Schemes (PLS) are distributed mechanisms for verifying
graph properties. More precisely, let G be a graph family. A PLS for G
is defined as a prover-verifier pair (p,v), bounded to satisfy the following.
Given any graph G = (V,E) whose n vertices are arbitrarily labeled by n
distinct identifiers (ID) picked from a set {1, . . . , nk}, k ≥ 1, of polynomial
range, the prover p is a non-trustable oracle that provides every vertex v ∈ V
with a certificate c(v). The verifier v is a distributed protocol performing a
single round in parallel at all vertices, as follows. Every vertex collects the
certificates of all its neighbors, and must output “accept” or “reject”, on the
basis of its ID, its certificate, and the certificates of its neighbors. The pair
(p,v) is a correct PLS for G if the following two conditions hold.

Completeness: For every G ∈ G, and for every ID-assignment to the ver-
tices of G, the (non-trustable) prover p can assign certificates to the
vertices such that the verifier v accepts at all vertices;

Soundness: For every G /∈ G, for every ID-assignment to the vertices of G,
and for every certificate-assignment to the vertices by the non-trustable
prover p, the verifier v rejects in at least one vertex.

The main complexity measure for a PLS is the size of the certificates
assigned to the vertices by the prover. The objective of the paper is to
design schemes with logarithmic-size certificates, for two classes of graphs:
the class G+

k , k ≥ 0, of graphs embeddable on an orientable closed surface
of genus at most k (i.e., the graphs of genus ≤ k), and the class G−k , k ≥ 1,
of graphs embeddable on a non-orientable closed surface of genus at most k
(i.e., the graphs of non-orientable genus ≤ k).

Remark.. Throughout the rest of the paper, for G ∈ G+
k (resp., G ∈ G−k)

with genus k′ < k (resp., non-orientable genus k′ < k), our proof-labeling
scheme certifies an embedding of G on Tk′ (resp., on Pk′). Therefore, in the
following, k is supposed to denote the exact genus of G.

3. Unfolding a Surface

In this section, we describe how to “flat down” a surface, by reducing
it to a disk whose boundary has a specific form. This operation is central
for constructing the distributed certificates in our proof-labeling scheme. In

20

(a) (b) (c) (d)

Figure 6: Separating and non-separating cycles.

fact, it provides a centralized certificate for bounded genus. The section is
dedicated to orientable surfaces, and the case of non-orientable surfaces will
be treated further in the text.

3.1. Separation and Duplication

Given a 2-cell embedding of a graph G on a closed surface Σ, a non-
separating cycle of the embedding is a simple cycle C in G such that ΣrC is
connected. Figure 6 illustrates this notion: the cycle displayed on (a) is non-
separating, as shown on (b); instead, the cycle displayed on (c) is separating,
as shown on (d). The result hereafter is a classic result.

Lemma 6 (Lemma 11 in [48]). Let G be a graph embeddable on a closed
orientable surface Σ with genus k ≥ 1. For any 2-cell embedding of G on Σ,
there exists a non-separating cycle C in G.

Note that the hypothesis that there is a 2-cell embedding is crucial: a
tree can be embedded on any surface, but has no cycle.

3.1.1. Cycle-Duplication

Let G be a graph embeddable on a closed orientable surface Σ. An ori-
entable cycle is a cycle of G whose embedding on Σ yields an orientable curve.
Given a 2-cell embedding f of G on Σ, let C be a non-separating orientable
cycle of G whose existence is guaranteed by Lemma 6. By definition, the left
and right sides of C can be defined on the neighborhood of C. We denote
by GC the graph obtained by the duplication of C in G. Specifically, let us
assume that C = (v0, . . . , vr). Every vertex w /∈ C remains in GC , as well as
every edge non incident to a vertex of C. Every vertex vi of C is replaced by
a left vertex v′i and a right vertex v′′i . For every i = 0, . . . , r − 1, {v′i, v′i+1}
and {v′′i , v′′i+1} are edges of GC , as well as {v′r, v′0} and {v′′r , v′′0}. Finally, for
every i = 0, . . . , r, and every neighbor w /∈ C of vi in G, if f({vi, w}) meets

21

(a) (b) (c)

C

right

left

C ′ C ′′

φ

φ′ φ′′

Figure 7: Cycle-duplication and the associated surface.

the left of C, then {v′i, w} is an edge of GC , otherwise {v′′i , w} is an edge
of GC . The embedding f of G on Σ directly induces an embedding of GC

on Σ. Figure 7(a-b) illustrates the operation of duplication, and the resulting
embedding on Σ.

The embedding of GC on Σ is however not a 2-cell embedding, as it
contains the face φ between C ′ and C ′′ on Σ, where C ′ = (v′0, . . . , v

′
r) and

C ′′ = (v′′0 , . . . , v
′′
r) (see Figure 7(b)). Formally, φ is the face with boundaries

C ′ and C ′′, and, as such, it is not homeomorphic to a disc. Let ΣC be the
closed surface8 obtained from Σ by removing φ, and by replacing φ with two
faces φ′ and φ′′ with boundary walks C ′ and C ′′, respectively (see Figure 7(c)).
The embedding f of G on Σ induces a 2-cell embedding fC of GC on ΣC .
Also, since C is a non-separating cycle of G in Σ, the surface ΣC is path-
connected, which ensures that GC is connected using Lemma 1.

Moreover, as Σ is orientable, ΣC is also orientable. Indeed, every sim-
ple cycle of ΣC not intersecting φ′ nor φ′′ is a cycle of Σ, and is therefore
orientable. Furthermore, any simple cycle of ΣC intersecting φ′ and/or φ′′

is homotopic to a cycle separated from both boundaries of φ′ and φ′′ by an
open set, and thus is homotopic to a cycle of Σ. It follows that ΣC is a closed
orientable surface, and thus, thanks to Lemma 4, the genus of ΣC is k − 1.

3.1.2. Path-Duplication

Again, let us consider a graph G, an orientable closed surface Σ, and a 2-
cell embedding f of G on Σ. Let χ, ψ be two distinct faces of the embedding,
and let P = (w0, . . . , ws) be a simple path (possibly reduced to a single vertex

8Notice that X\φ, φ′ = φ′∪C ′ (where φ′ denotes the adherence of φ′), and φ′′ = φ′′∪C ′′
are compact sets. Thus ΣC is compact as the union of these three sets.

22

C ′ C ′′
P

v′0

v′1

v′i−1

v′i
w0

v′i+1v′r

ws
v′′j

v′′j+1

v′′j−1

v′′r

v′′0

v′′1

C ′ C ′′
P ′

v′0

v′1

v′i−1

w′′0

v′i+1
v′r

w′′s

v′′j+1

v′′j−1

v′′r

v′′0

v′′1
w′0

w′s

w′1

w′′1 P ′′

Figure 8: Path-duplication.

belonging to the two cycles) between χ and ψ (see Figure 8). That is, P is
such that w0 is on the boundary of φ, ws is on the boundary of ψ, and no
intermediate vertex wi, 0 < i < s, is on the boundary of χ or ψ. The path P
enables to define a graph GP obtained by duplicating the path P in a way
similar to the way the cycle C was duplicated in the previous section. There
is only one subtle difference, as the left and right side of the path cannot
be defined at its endpoints. Nevertheless, the left and right sides of P can
still be properly defined all along P , including its extremities, by virtually
“extending” P so that it ends up in the interiors of χ and ψ. Thanks to this
path-duplication, the two faces χ and ψ of G are replaced by a unique face
of GP as illustrated on Figure 8, reducing the number of faces by one.

Remark.. Cycle-duplication and path-duplication are typically used con-
jointly. A basic example, used for the torus T1 in the next section, con-
sists of, first, duplicating a cycle C, then connecting the two faces resulting
from this duplication by a path P , and, finally, duplicating P for merging
these two faces into one single face. Further, for the general case Tk, k ≥ 1,
k cycles C1, . . . , Ck are duplicated, and 2k − 1 paths P1, . . . , P2k−1 are du-
plicated for connecting the 2k faces φ′1, φ

′′
1, . . . , φ

′
k, φ

′′
k resulting from the k

cycle-duplications, ending up in a unique face φ∗.

3.2. Unfolding the Torus

As a warm up, we consider the case of a graph embedded on the torus T1,
and show how to “unfold” this embedding.

3.2.1. Making a Graph of Genus 1 Planar

Let G be a graph, and let f be a 2-cell embedding of G on X = T1 —
see Figure 9(a) for an embedding of K5 on T1, as an illustrative example.
Let C = (v0, . . . , vr) be a non-separating orientable cycle of G, e.g., the cycle

23

b

a

c

d
e

d

e

C a′

b′
c′ c′′

a′′

b′′C ′

φ′ φ′′
C ′′

P

(a) (b)

(c) (d)

d2

e

a′

b′1

c′ c′′1

a′′

b′′c′′2

d1

b′2

P ′′

φ∗

P ′ b′1
d1

c′′1

a′′

b′′

c′′2d2b′2

a′

c′
B∗

H∗

φ∗

e

Figure 9: Unfolding K5 embedded on the torus T1. After the duplication of the non-
separating cycle C = (a, b, c, a) we create the faces φ′ and φ′′. Then the duplication of the
path P = (c′′, d, b′) merges φ′ and φ′′ into a face φ∗. The resulting graph is planar, and
φ∗ can be seen as the infinite face of its embedding.

(a, b, c) on Figure 9(a). Let C ′ = (v′0, . . . , v
′
r) and C ′′ = (v′′0 , . . . , v

′′
r) be the

two cycles resulting from the duplication of C, e.g., the cycles (a′, b′, c′) and
(a′′, b′′, c′′) on Figure 9(b). The graph GC with two new faces φ′ and φ′′ is
connected. In particular, there exists a simple path P = (w0, . . . , ws) in
GC from a vertex v′i ∈ C ′ to a vertex v′′j ∈ C ′′, such that every intermediate
vertex wk, 0 < k < s, is not in C ′∪C ′′, e.g., the path (c′′, d, b′) on Figure 9(b).
Note that it may be the case that i 6= j. On Figure 9(b), the path (b′′, e, d, b′)
satisfies i = j, but Figure 10 illustrates an embedding of K3,3 on T1 for which
i = j cannot occur (simply because every vertex ofK3,3 has degree 3, and thus
it has a single edge not in the cycle). Duplicating P enables to obtain a graph
GC,P with a special face φ∗, whose boundary contains all duplicated vertices
and only them (see Figure 9(c)). The details of the vertex-duplications, and
of the edge-connections are detailed hereafter.

24

1

5
2

4
3

6

Figure 10: K3,3 embedded on the torus T1.

Connections in path-duplication.. Let P ′ = (w′0, . . . , w
′
s) and P ′′ =

(w′′0 , . . . , w
′′
s) be the two paths obtained by duplicating P . In particular,

the vertices w0 = v′i and ws = v′′j are both duplicated in w′0, w
′′
0 , and w′s, w

′′
s ,

respectively. The edges

{v′i−1, v
′
i}, {v′i, v′i+1}, {v′′j−1, v

′′
j }, and {v′′j , v′′j+1}

are replaced by the edges connecting v′i−1, v
′
i+1, v

′′
j−1, v

′′
j+1 to w′0, w

′′
0 , w

′
s, w

′′
s .

For defining these edges, observe that the path P in T1 induces a path Q =
(vi, w1, . . . , ws−1, vj) in G connecting the vertices vi and vj of C, such that,
in the embedding on T1, the edge {vi, w1} meets C on one side while the
edge {ws−1, vj} meets C on the other side (see Figure 11(a-b)).

Figure 11(b) Let us assume, w.l.o.g., that the edges of C ∪ Q around vi
are in the order

{vi, vi−1}, {vi, vi+1}, {vi, w1}

when visited counter-clockwise in T1. It follows that the edges of C ∪ Q
around vj are in the order

{vj, vj−1}, {vj, vj+1}, {vj, ws−1}

when visited clockwise in T1 (see Figure 11(b)). These orders are transferred
in GC , that is, the edges of C ′ ∪ P around v′i are in counter-clockwise order

{v′i, v′i−1}, {v′i, v′i+1}, {v′i, w1},

while the edges of C ′′ ∪ P around v′′j are in clockwise order

{v′′j , v′′j−1}, {v′′j , v′′j+1}, {v′′j , ws−1},

25

(a) (b)

φ∗

P ′v′i−1

w′′0

v′i+1

w′′s

v′′j+1

v′′j−1

w′0
w′sw′1

w′′1

P ′′

(c)

(d)

v′i

v′i+1

v′i−1 v′′j

v′′j+1

v′′j−1
vj

vj+1

vj−1

vi
vi+1

vi−1

w1 w0

w1

ws

ws−1
ws−1

PP

C ′ C ′′C

w′′s−1w′′1
w′1

v′i+1

v′i−1

w′0

w′′0

w′s

w′′s

v′′j+1

v′′j−1

C ′ C ′′

P ′

P ′′

φ∗
w′s−1

w′′s−1

B∗

B∗H∗

w′s−1

Figure 11: Setting up the connections in path-duplication. A key point, is that vi is
surrounded by the triple (vi−1, vi+1, w1) counter-clockwise while vj is surrounded by
(vj−1, vj+1, ws−1) clockwise. This allows to know where P ′ and P ′′ are respectively
branched on cycles C ′ and C ′′.

as illustrated on Figure 11(b). This guarantees that v′i−1 and v′′j−1 are in the
same side of the path P . More generally, the relative positions of v′i−1, v′i+1,
v′′j−1, and v′′j+1 w.r.t. P are as follows. Vertices v′i−1 and v′′j−1 are on the same
side of P , while vertices v′i+1 and v′′j+1 are on the other side of P (see again
Figure 11(b)). As a consequence, it can be assumed that, in the graph GC,P

resulting from the duplications of both C and P , the vertices v′i−1 and v′′j−1

are connected to the end points of P ′, while v′i+1 and v′′j+1 are connected to
the end points of P ′′. It follows that

{w′0, v′i−1}, {w′s, v′′j−1}, {w′′0 , v′i+1}, and {w′′s , v′′j+1}

are edges of GC,P (see Figure 11(c)).

Unfolding.. The embedding f of G on X = T1 directly induces an embedding
of H∗ = GC,P on ΣC , as illustrated on Figure 11(d). As observed before, the

26

genus of ΣC is one less than the genus of Σ. Since X = T1, it follows that
the embedding f of G on T1 actually induces a planar embedding f ∗ of H∗.
The faces of this embedding are merely the faces of G, plus another, special
face φ∗ whose boundary walk is

B∗ = (w′0, w
′
1, . . . , w

′
s,v
′′
j−1, v

′′
j−2, . . . , v

′′
0 , v
′′
r , . . . , v

′′
j+1, (1)

w′′s , w
′′
s−1, . . . , w

′′
0 , v
′
i+1, v

′
i+2, . . . , v

′
r, v
′
0, . . . , v

′
i−1),

as displayed on Figure 11(d)). For instance, on Figure 9(d), B∗ =
(b′1, d1, c

′′
1, a
′′, b′′, c′′2, d2, b

′
2, a
′, c′). The face φ∗ can be pointed out as special, as

on Figure 11(d), or can be made the external face of the embedding of H∗,
as on Figure 9(d). Our interest for H∗, f ∗, φ∗, and B∗ as far as the design
of a proof-labeling scheme is concerned, resides in the fact that, as shown
hereafter, they form a (centralized) certificate for genus 1.

3.2.2. Certifying Genus 1

Let us first define the notion of splitting.

Definition 2. A splitting of a graph G into a graph H is a pair σ = (α, β)
of functions, where α : V (G)→ 2V (H), and β : E(G)→ 2E(H), such that:

1. the set {α(v) : v ∈ V (G)} forms a partition of V (H);

2. for every e = {u, v} ∈ E(G), β(e) is a matching between α(u) and
α(v).

Note that σ(G) may not be connected, even if G is connected. For every
v ∈ V (G), the vertices α(v) in H are the avatars of v in H. The degree of
a splitting σ = (α, β) of G into H is maxv∈V (G) |α(v)|, and H is said to be a
d-splitting of G whenever d = maxv∈V (G) |α(v)|. A vertex v ∈ V (G) is split
in H if |α(v)| ≥ 2, otherwise it is not split in H. If a vertex v is not split,
we abuse notation by writing α(v) = v, i.e., by referring to v as a vertex
of G and as a vertex of H. For any subgraph G′ of G, we denote by σ(G′)
the subgraph H ′ of H with vertex-set V (H ′) = {α(v) : v ∈ V (G′)}, and
with edge-set E(H ′) = ∪e∈E(G′)β(e). With a slight abuse of notation, for a
splitting σ = (α, β) of G into H, we often refer to σ(v) instead of α(v) for
v ∈ V (G), and to σ(e) instead of β(e) for e ∈ E(G).

Let H be a splitting of a graph G for which there exists a 2-splittting U of
G such that H is a 2-splitting of U . Let f be a planar embedding of H, and
let φ be a face of H embedded on T0. Let B = (u0, . . . , uN) be a boundary

27

walk of φ. Let σG,U and σU,H be the splitting of G into U , and the splitting
of U into H, respectively. Let σG,H = σU,H ◦ σG,U . We say that (G,H,B, U)
is globally consistent if there exist vertices v′0, . . . , v

′
r, v

′′
0 , . . . , v

′′
r , w′0, . . . , w

′
s,

w′′0 , . . . , w
′′
s of H such that

B = (w′0, . . . , w
′
s, v
′′
j−1, . . . , v

′′
0 , v
′′
r , . . . , v

′′
j+1, w

′′
s , . . . , w

′′
0 , v
′
i+1, . . . , v

′
r, v
′
0, . . . , v

′
i−1)

where

� for every vertex u /∈ {v′k, v′′k : 0 ≤ k ≤ r} ∪ {w′k, w′′k : 0 ≤ k ≤ s} of H,
σG,H(u) = u;

� for every k ∈ {1, . . . , s − 1}, σ−1
U,H({w′k, w′′k}) = wk ∈ V (U), and

σG,U(wk) = wk;

� for every k ∈ {0, . . . , r} r {i, j}, σ−1
G,U({v′k, v′′k}) = vk ∈ V (U), and

σU,H(vk) = vk;

� σ−1
U,H({w′0, w′′0}) = v′i ∈ V (U), σ−1

U,H({w′s, w′′s}) = v′′j ∈ V (U),

σ−1
G,U({v′i, v′′i }) = vi ∈ V (G), and σ−1

G,U({v′j, v′′j }) = vj ∈ V (G) (note
that this applies to both cases i = j and i 6= j).

Remark.. The way the vertices of B are listed provides B with a reference
direction, say clockwise. This reference direction is crucial for checking that
the two faces of U with respective boundary walks v′i, v

′
i+1, . . . , v

′
r, v
′
0, . . . , v

′
i−1

and v′′j , v
′′
j−1, . . . , v

′′
0 , v
′′
r , . . . , v

′′
j+1 can be merged for forming a handle. Global

consistency specifies that, for these two faces to be merged, their directions
inherited from the reference direction of B must both be clockwise (cf., Fig-
ure 11(d)). Indeed, while one face is traversed clockwise with increasing in-
dices, the other is traversed clockwise with decreasing indices. This matches
the specification of handles (cf. Figure 3).

By the construction in Section 3.2.1, for every graph G of genus 1,
(G,H∗, B∗, U∗) is globally consistent, where H∗ = GC,P , U∗ = GC , and B∗ is
the boundary walk of φ∗ displayed in Eq. (1). The following result is specific
to the torus, but it illustrates the basis for the design of our proof-labeling
schemes.

Lemma 7. Let H be a splitting of a graph G, and assume that there exists
a planar embedding f of H with a face φ and a boundary walk B of φ. Let
U be a 2-splittting of G such that H is a 2-splitting of U . If (G,H,B, U) is
globally consistent, then G can be embedded on the torus T1.

28

Proof. Using the specifications of the splits, the two sub-paths (w′0, . . . , w
′
s)

and (w′′0 , . . . , w
′′
s) of B can be identified by merging each pair of vertices

w′k and w′′k , k ∈ {1, . . . , s − 1}, into a single vertex wk = σ−1
U,H({w′k, w′′k})

of U , by merging the vertices w′0 and w′′0 into a single vertex v′i of U , and
by merging the vertices w′s and w′′s into a single vertex v′′j of U . The re-
sulting sequence v′i, w1, . . . , ws−1, v

′′
j forms a path in U connecting two faces

φ′ and φ′′, replacing the face φ of the planar embedding f of H, with re-
spective boundary walks (v′0, v

′
1, . . . , v

′
r) and (v′′r , v

′′
r−1, . . . , v

′′
0), where the ver-

tices are ordered clockwise. These transformations preserve the planarity of
the embedding, that is, U is planar. Next, the two cycles (v′0, . . . , v

′
r) and

(v′′0 , . . . , v
′′
r) can be identified, by merging each pair of nodes v′k and v′′k into

a single node vk = σ−1
G,U({v′k, v′′k}) of G. As a result, the two faces φ′ and φ′′

are replaced by a handle, providing an embedding of G on T1.

The outcome of Lemma 7 is that (H∗, f ∗, φ∗, B∗) is essentially a certificate
that G can be embedded on T1 (up to also providing the “intermediate”
splitting U∗ resulting from cycle-duplication). In the next section, we show
how to generalize this construction for deriving a certificate that a graph G
can be embedded on Tk, k > 1.

The process described in the previous section for genus 1 can be general-
ized to larger genus k ≥ 1, as follows. Again, let G be a graph, and let f be
a 2-cell embedding of G on Tk.

3.2.3. The Face-Duplication Phase

Let Σ(0) = Tk. As for the torus, let C1 be a non-separating orientable
cycle of G(0) = G, and let us consider the embedding of G(1) = G

(0)
C1

induced

by f , on the surface Σ(1) = Σ
(0)
C1

of genus k − 1. This operation can be
repeated. Indeed, by Lemma 6, there exists a non separating cycle C2 of
G(1). The graph G(2) = G

(1)
C2

can be embedded on the surface Σ(2) = Σ
(1)
C2

with one face more than the number of faces of the embedding of G(1) on
Σ(1), and thus two more faces than the number of faces of the embedding of
G on Tk. By Lemma 4, Σ(2) has thus genus k − 2. See Figure 1(a-b).

This process can actually be iterated k times, resulting in a sequence of
k + 1 graphs G(0), . . . , G(k) where G(0) = G, and a sequence of k + 1 closed
surfaces Σ(0), . . . ,Σ(k) where Σ(0) = Tk. Each graph G(i) is embedded on the
closed surface Σ(i) of genus k − i, as follows. The embedding of G(0) on Σ(0)

is the embedding of G on Σ, and, for every i = 0, . . . , k−1, the embedding of

29

G(i+1) on Σ(i+1) is induced by the embedding of G(i) on Σ(i), after duplication
of a non-separating cycle Ci+1 of G(i) into two cycles C ′i+1 and C ′′i+1.

The closed surface Σ(k) is of genus 0, i.e. Σ(k) is homeomorphic to the
sphere T0 = S2 (see Figure 1(b)). The graph G(k) is therefore planar, for it
contains k more faces than the number of faces in G, as two new faces φ′i and
φ′′i are created at each iteration i, in replacement to one face φi, for every
i = 1, . . . , k.

3.2.4. The Face-Reduction Phase

The objective is now to replace the 2k faces φ′i, φ
′′
i , i = 0, . . . , k − 1, by

a single face. For this purpose, let us relabel these faces as ψ1, . . . , ψ2k (see
Figure 1(c)) so that, for i = 1, . . . , k,

φ′i = ψ2i−1, and φ′′i = ψ2i.

Let χ1 = ψ1. There exists a simple path P1 between the two faces χ1 and
ψ2. Duplicating P1 preserves the fact that the graph G(k+1) = G

(k)
P1

can be
embedded on the sphere T0. By this duplication, the two faces χ1 and ψ2 are
merged into a single face χ2. Now, there is a simple path P2 between the two
faces χ2 and ψ3 (see Figure 1(d)). Again, duplicating P2 preserves the fact

that the graph G(k+2) = G
(k+1)
P2

can be embedded on the sphere T0, in which
the two faces χ2 and ψ3 are now merged into a single face χ3. By iterating this
process, a finite sequence of graphs G(k), . . . , G(3k−1) is constructed, where,
for i = 0, . . . , 2k − 1, the graph G(k+i) is coming with its embedding on T0,
and with a set of special faces χi+1, ψi+2, . . . , ψ2k. A path Pi+1 between χi+1

and ψi+2 is duplicated for merging these two faces into a single face χi+2,

while preserving the fact that G(k+i+1) = G
(k+i)
Pi+1

can be embedded on the
sphere T0.

Eventually, the process results in a single face φ∗ = χ2k of H∗ = G(3k−1)

(see Figure 1(e)). This face contains all duplicated vertices. The embedding
f of G on Tk induces a planar embedding of H∗ whose external face is φ∗

(see Figure 1(f)).

3.2.5. Certifying Genus at Most k

Conversely, for a graph G of genus k, an embedding of G on Tk can be
induced from the embedding f ∗ of H∗ on T0, and from the boundary walk B∗

of φ∗. The latter is indeed entirely determined by the successive cycle- and
path-duplications performed during the whole process. It contains all du-
plicated vertices, resulting from the cycles C ′1, . . . , C

′
k and C ′′1 , . . . , C

′′
k , and

30

from the paths P ′1, . . . , P
′
2k−1 and P ′′1 , . . . , P

′′
2k−1. Note that the duplication

process for a vertex may be complex. A vertex may indeed be duplicated
once, and then one of its copies may be duplicated again, and so on, de-
pending on which cycle or path is duplicated at every step of the process.
This phenomenon actually already occurred in the basic case of the torus T1

where the duplications of vi and vj were more complex that those of the
other vertices, and were also differing depending on whether i = j or not
(see Section 3.2). Figure 2 illustrates a case in which two cycles Ci and Cj

share vertices and edges in T2, causing a series of duplication more complex
than the basic case illustrated on Figure 1. In particular, a same vertex of
H∗ may appear several times on the boundary walk B∗, and a same edge of
H∗ may be traversed twice, once in each direction.

Let H be a splitting of a graph G, let f be a planar embedding of H,
and let φ be a face of H embedded on T0. Let B = (u0, . . . , uN) be a

boundary walk of φ, and let ~B be an arbitrary reference direction given
to B, say clockwise. Let U = (U0, . . . , U3k−1) be a sequence of graphs such
that U0 = G, U3k−1 = H, and, for every i ∈ {0, . . . , 3k − 2}, Ui+1 is a 2-
splitting of Ui. The splitting of Ui into Ui+1 is denoted by σi = (αi, βi). The
following extends the notion of global consistency defined in the case of the
torus T1. We say that (G,H, ~B,U), is globally consistent if the following two
conditions hold.

1. Path-duplication checking. Let χ2k = φ, with directed bound-
ary walk ~B(χ2k) = ~B. For every i = 0, . . . , 2k − 1, there exist faces

χi+1, ψ
(i)
i+2, . . . , ψ

(i)
2k of Uk+i, with respective directed boundary walks

~B(χi+1), ~B(ψ
(i)
i+2), . . . , ~B(ψ

(i)
2k), and there exist vertices u

(i)
1 , . . . , u

(i)
t ,

v
(i)
1 , . . . , v

(i)
r , w

′(i)
0 , . . . , w

′(i)
s , and w

′′(i)
0 , . . . , w

′′(i)
s of Uk+i such that

�
~B(χi+1) = (w

′(i)
0 , . . . , w

′(i)
s , v

(i)
1 , . . . , v

(i)
r , w

′′(i)
s , . . . , w

′′(i)
0 , u

(i)
1 , . . . , u

(i)
t);

� for every vertex x ∈ V (Uk+i) r ({w′(i)0 , . . . , w
′(i)
s } ∪

{w′′(i)0 , . . . , w
′′(i)
s }), σk+i−1(x) = x;

� for every j ∈ {0, . . . , s}, |σ−1
k+i−1({w′(i)j , w

′′(i)
j })| = 1;

�
~B(χi) = (x, u

(i)
1 , . . . , u

(i)
t , x) where x = σ−1

k+i−1({w′(i)0 , w
′′(i)
0 });

�
~B(ψ

(i−1)
i+1) = (y, v

(i)
1 , . . . , v

(i)
r , y) where y = σ−1

k+i−1({w′(i)s , w
′′(i)
s });

� for j = i+ 2, . . . , 2k, σk+i−1(~B(ψ
(i−1)
j)) = ~B(ψ

(i)
j).

31

2. Cycle duplication checking. Let φ
′(k)
1 = χ1, and, for i = 2, . . . , k, let

φ
′(k)
i = ψ

(0)
2i−1. For i = 1, . . . , k, let φ

′′(k)
i = ψ

(0)
2i . For every i = 1, . . . , k,

there exists faces φ
′(i)
1 , φ

′′(i)
1 , . . . , φ

′(i)
i , φ

′′(i)
i of Ui with respective directed

boundary walks ~B(φ
′(i)
1), ~B(φ

′′(i)
1), . . . , ~B(φ

′(i)
i), ~B(φ

′′(i)
i) such that

�
~B(φ

′(i)
i) = (v′0, v

′
1, . . . , v

′
r, v
′
0) and ~B(φ

′′(i)
i) =

(v′′0 , v
′′
r , v
′′
r−1, . . . , v

′′
1 , v
′′
0) for some r ≥ 2, with |σ−1

i−1({v′j, v′′j })| = 1
for every j = 0, . . . , r;

� for j = 1, . . . , i − 1, σi−1(~B(φ
′(i−1)
j)) = ~B(φ

′(i)
j), and

σi−1(~B(φ
′′(i−1)
j)) = ~B(φ

′′(i)
j).

By the construction performed in Sections 3.2.3 and 3.2.4, for every
graph G of genus k, (G,H∗, ~B∗,U∗) is globally consistent, where U∗ =
(G(0), . . . , G(3k−1)). The following result generalizes Lemma 7 to graphs of
genus larger than 1.

Lemma 8. Let H be a splitting of a graph G, and assume that there exists
a planar embedding f of H with a face φ and a boundary walk B of φ. Let
U = (U0, . . . , U3k−1) be a series of graphs such that U0 = G, U3k−1 = H, and,

for every i ∈ {0, . . . , 3k − 2}, Ui+1 is a 2-splitting of Ui. If (G,H, ~B,U) is
globally consistent, then G can be embedded on the torus Tk.

Proof. Condition 1 in the definition of global consistency enables to re-
cover a collection ψ1, . . . , ψ2k of faces of Uk. These faces are inductively con-
structed, starting from the face φ of the planar embedding f of U3k−1 = H.

At each iteration i of the induction, Uk+i−1 has faces χi, ψ
(i−1)
i+1 , . . . , ψ

(i−1)
2k

obtained from the faces χi+1, ψ
(i)
i+2, . . . , ψ

(i)
2k of Uk+i by separating the face

χi+1 into two faces χi and ψ
(i−1)
i+1 connected by a path, while preserving the

other faces ψ
(i)
i+2, . . . , ψ

(i)
2k . This operation preserves planarity, and thus, in

particular, Uk is planar.
The directions of the boundary walks of the faces ψ1, . . . , ψ2k are inherited

from the original direction given to the boundary walk B. Condition 2 en-
ables to iteratively merge face ψ2i with face ψ2i−1, i = 1, . . . , k, by identifying
the vertices of their boundary walks while respecting the direction of these
walks, which guarantees that handles are created (and not a Klein-bottle-like
construction). The process eventually results in the graph U0 with k handles,
providing an embedding of U0 = G on Tk.

32

Thanks to Lemma 8, the overall outcome of this section is that the tuple

c = (H∗, f ∗, φ∗, B∗,U∗)

constructed in Sections 3.2.3 and 3.2.4 is a certificate that G can be embedded
on Tk. This certificate c and its corresponding verification algorithm are
however centralized. In the next section, we show how to distribute both the
certificate c, and the verification protocol.

4. Proof-Labeling Scheme for Bounded Genus Graphs

In this section, we establish our first main result.

Theorem 1. Let k ≥ 0, and let G+
k be the class of graphs embeddable on an

orientable closed surface of genus at most k. There is a proof-labeling scheme
for G+

k using certificates on O(log n) bits in n-node graphs.

The proof essentially consists of showing how to distribute the centralized
certificate

(H, f, φ,B,U)

used in Lemma 8 for a graph G, by storing O(log n) bits at each vertex of G,
while allowing the vertices to locally verify the correctness of the distributed
certificates, that is, in particular, verifying that (G,H,B,U) is globally con-
sistent. The rest of the section is entirely dedicated to the proof of Theorem 1.
We start by defining the core of the certificates assigned to the nodes, called
histories. Then, we show how to distribute the histories so that every node
stores at most O(log n) bits, and we describe the additional information to
be stored in the certificates for enabling the liveness and completeness prop-
erties of the verification scheme to hold. Recall that the nodes of G are
given arbitrary distinct IDs picked from a set of polynomial range. The ID
of node v ∈ V (G) is denoted by id(v). Note that id(v) can be stored on
O(log n) bits.

4.1. Histories

The description of the certificates is for positive instances, that is,
for graphs G ∈ G+

k . For such an instance G, the prover performs the
construction of Section 3.2.2, resulting in the series of 2-splitting graphs
G(0) = G,G(1), . . . , G(2k−2), G(2k−2) = H∗, a planar embedding f of H∗,

33

and the identification of a special face φ∗ in this embedding, with bound-
ary walk B∗. The successive duplications experienced by a vertex v of the
actual graph G during the face-duplication and face-reduction phases result-
ing in H∗ can be encoded as a rooted binary tree unfolding these duplications,
called history.

For every vertex v of G, the history of v is denoted by h(v). The history
of v is a rooted binary tree of depth 3k − 1 (all leaves are at distance 3k − 1
from the root). For ` = 0, . . . , 3k − 1, the level ` of h(v) consists of the at
most 2` nodes at distance ` from the root. The internal nodes of h(v) with
two children are call binary nodes, and the internal nodes with one child are
called unary.

� For ` = 0, . . . , k − 1, the edges connecting nodes of level ` to nodes of
level `+1 are corresponding to the duplication of the cycle C`+1 in G(`)

(cf. Section 3.2.3), and,

� for ` = 0, . . . , 2k− 1, the edges connecting nodes of level k+ ` to nodes
of level k+ `+ 1 are corresponding to the duplication of the path P`+1

in G(k+`) (cf. Section 3.2.4).

The nodes of h(v) are provided with additional information, as follows.

4.1.1. Vertices and Adjacencies in the Splitting Graphs

For every ` = 1, . . . , 3k−1, every node x at level ` in h(v) is provided with
the vertex u ofG(`) it corresponds to, after the duplications of v corresponding
to the path from the root to x. In particular, each leaf of h(v) is provided
with the single vertex of H∗ = G(3k−1) it corresponds to. Specifically, each
internal node x of h(v) is provided with the set Sx of vertices of H∗ marked
at the leaves of the subtree of h(v) rooted at x. For a leaf x, Sx = {u},
where u is the avatar of v in H∗ corresponding to the path from the root
to the leaf x. Note that, for two distinct nodes at level ` in h(v), we have
Sx ∩ Sy = ∅.

The 3k − 1 splittings successively performed starting from G are 2-
splittings, from which it follows that every vertex of G is split a constant
number of times for a fixed k. The ν ≥ 1 avatars of v ∈ V (G) in H∗ are
labeled (id(v), 1), . . . , (id(v), ν). It follows that the ν leaves of h(v) are re-
spectively labeled (id(v), 1), . . . , (id(v), ν). For every node x of h(v), each set
Sx is a subset of {(id(v), 1), . . . , (id(v), ν)}, and thus these sets Sx can be
stored on O(log n) bits.

34

Every node x of h(v) at level ` ∈ {0, . . . , 3k − 1}, which, as explained
above, corresponds to a vertex of G(`), is also provided with the set Nx of
the neighbors of Sx in G(`). The set Nx has the form Nx = {X1, . . . , Xd} for
some d ≥ 1, where, for i = 1, . . . , d, Xi is a vertex of G(`) corresponding to a
set of avatars in H∗ of some neighbor w of v in G.

Since some vertices v ∈ V (G) may have arbitrarily large degree (up to
n−1), the sets Nx may not be storable using O(log n) bits. As a consequence,
some histories may not be on O(log n) bits, and may actually be much bigger.
Nevertheless, a simple trick using the fact that graphs with bounded genus
have bounded degeneracy (cf. Lemma 5) allows us to reassign locally the set
Nx in the histories so that every node of G stores O(log n) bits only.

4.1.2. Footprints

Every node x of h(v) at level ` ∈ {0, . . . , 3k − 1} is provided with a
(possibly empty) set Fx of ordered triples of the form (X, Y, Z) where X ∈
Nx, Y = Sx, and Z ∈ Nx, called footprints. Intuitively, each footprint
encodes edges {X, Y } and {Y, Z} of G(`) occurring in:

� a boundary walk of one of the faces φ′i or φ′′i , i = 1, . . . , `, if ` ≤ k, or

� a boundary walk of one of the faces χ`−k, ψ`−k+1, . . . , ψ2k, otherwise.

Note that these two edges are actually directed, from X to Y , and from Y
to Z, reflecting that the boundary walk is traveled in a specific direction,
inherited from some a priori direction, say clockwise, given to the boundary
walk B∗ of the face φ∗ = χ2k (hence the terminology “footprints”).

Note that a same vertex of G(`) may appear several times in the boundary
walk of a face, and a same edge may appear twice, once in every direction.
Therefore, a same node x of h(v) may be provided with several footprints,
whose collection form the set Fx, which may be of non-constant size. On the
other hand, for a fixed k, a constant number of boundary walks are under
concern in total, from which it follows that even if a node x at level ` of h(v)
must store a non-constant number of footprints in Fx, each of x’s incident
edges in G(`) appears in at most two footprints of Fx. We use this fact,
together with the bounded degeneracy of the graphs of bounded genus, for
reassigning locally the sets Fx in the histories so that every node of G stores
O(log n) bits only.

35

4.1.3. Types

Last, but not least, for every node x of h(v), each of the two (directed)
edges (X, Y) and (Y, Z) in every footprint (X, Y, Z) in Fx also comes with a
type in

Tk = {C ′1, . . . , C ′k, C ′′1 , . . . , C ′′k , P ′1, . . . , P ′2k−1, P
′′
1 , . . . , P

′′
2k−1},

which reflects when this edge was created during the cycle- and path-
duplications.

Example.. Figure 12 provides examples of histories for some vertices of G in
the case displayed on Figure 11. Figure 12(a-b) display the histories of vi
and vj whenever i 6= j, while Figure 12(c) displays the histories of vi = vj
whenever i = j. In this latter case, the leaves w′0, w

′′
0 , w

′
s, w

′′
s may be labeled

as (id(v), 1), (id(v), 2), (id(v), 3), (id(v), 4), respectively. Then v′i is labeled
Sv′i

= {(id(v), 1), (id(v), 2)}, while v′′i is labeled Sv′′i
= {(id(v), 3), (id(v), 4)},

and root is labeled Svi = {(id(v), 1), (id(v), 2), (id(v), 3), (id(v), 4)}. The
neighborhoods Nx of these nodes x of h(vi) are depending on the graphs
G(0) = G,G(1), and G(2) = H∗. Assuming that B∗ is directed clock-
wise, as displayed on Figure 11(d), the leaf w′0 is provided with footprint
(v′i−1, w

′
0, w

′
1) while the leaf w′′0 is provided with footprint (w′′1 , w

′′
0 , v
′
i+1). Sim-

ilarly, w′s and w′′s are respectively provided with footprint (w′s−1, w
′
s, v
′′
i−1) and

(v′′i+1, w
′′
s , w

′′
s−1), where the various nodes in these footprints are encoded de-

pending on their labels in H∗, which depend on the IDs given to the neighbors
of vi in G. The footprint at v′i is (v′i−1, v

′
i, v
′
i+1), while the footprint at v′′i is

(v′′i+1, v
′′
i , v
′
i−1). In both case, the directions of the edges are inherited from

the initial clockwise direction of the boundary walk B∗. The directed edges
(v′i−1, v

′
i) and (v′i, v

′
i+1) receives type C ′1, while the directed edges (v′′i+1, v

′′
i) and

(v′′i , v
′′
i−1) receives type C ′′2 . The four edges (v′i−1, w

′
0), (w′′0 , v

′
i+1), (v′′i+1, w

′′
s),

and (w′s, v
′′
i−1) are respectively inheriting the types C ′1, C

′
1, C

′′
1 , and C ′′1 of the

four edges (v′i−1, v
′
i), (v′i, v

′
i+1), (v′′i+1, v

′′
i), and (v′′i , v

′′
i−1). The directed edges

(w′0, w
′
1) and (w′s−1, w

′
s) receive type P ′1, while the directed edges (w′′1 , w

′′
0)

and (w′′s , w
′′
s−1) receive type P ′′1 . Observe that the footprints are constructed

upward the histories, while the types are assigned downward those trees.

We now detail how the footprints are constructed in general, and how the
types are assigned to the edges of the footprints.

36

vi

v′i v′′i

w′′0w′0 v′′i

vj

v′′jv′j

w′′sw′sv′j

vi

v′′iv′i

w′′sw′sw′′0w′0

(a) (b) (c)

Figure 12: Examples of histories.

4.1.4. Construction of the Footprints

Let us give an arbitrary orientation, say clockwise, to the bound-
ary walk B∗ of the special face φ∗ of H∗. This orientation induces
footprints (pred(u), u, succ(u)) ∈ Fx given to every leaf x of every his-
tory h(v), v ∈ V (G). The vertex pred(u) ∈ V (H∗) is the predecessor of
the avatar u ∈ V (H∗) of v in H∗, and succ(u) ∈ V (H∗) is its succes-
sor. Note that some leaves x have Fx = ∅, whenever the correspond-
ing node u in H∗ does not belong to the boundary walk B∗. On the
other hand, as a same node can be visited several times when traveling
along the boundary walk B∗, some leaves may be given several footprints
(pred1(u), u, succ1(u)), . . . , (predd(u), u, succd(u)) in Fx, for some d ≥ 1. The
footprints provided to the internal nodes of the histories of the vertices of G
are given in a way consistent with the orientation of B∗. More specifically,
the footprints are constructed upward the histories, as follows.

Hereafter, the symbol “
`−→” stands for the operation performed when going

from level `−1 to level `, or vice-versa, from level ` to level `−1. For instance,
for three sets S, S ′, S ′′ of vertices from H∗, the relation

S
`−→ S ′, S ′′

states that the vertices S ′ and S ′′ of G(`) are the results of a cycle- or path-
duplication experienced by the vertex S occurring from G(`−1) to G(`), i.e.,
the vertex S = S ′ ∪ S ′′ of G(`−1) is split into two avatars, S ′ and S ′′, in G(`).
If ` ≤ k, the split was caused by a cycle-duplication, otherwise it was caused
by a path-duplication. Similarly, for two footprints F ′ and F ′′ at two nodes
at level `, children of a same binary node, the relation

F ′, F ′′
`−→ F

37

states that, when going upward a history, the two footprints F ′ and F ′′ of
level ` generate the footprint F at level `− 1.

Three rules, called Elementary, Extremity, and Vacancy, are applied for
the construction of the footprints. Their role is to “role back” the boundary
walk B∗ of the special face φ∗ in the planar embedding of H∗. Each edge of
the boundary walk B∗ is indeed resulting from some duplication, of either
a cycle or a path. The footprints encode the histories of all edges of the
boundary walk B∗ in all graphs G(`), 0 ≤ ` ≤ 3k − 1, including when the
edges were created (referred to as the types of the edges), and what were
their successive extremities when those extremities are duplicated.

Elementary rule. Assuming X
`−→ X ′, X ′′, Y

`−→ Y ′, Y ′′, and Z
`−→ Z ′, Z ′′,

the elementary rule matches two footprints of two children Y ′ and Y ′′,
and produces none at the parent Y :

(X ′, Y ′, Z ′), (Z ′′, Y ′′, X ′′)
`−→ ⊥.

The Elementary rule applies to the case of cycle duplication, as well as
to the case of path-duplication, but to the internal nodes of the path
only (see Figure 13). When two cycles are merged (as the opposite to
cycle duplication), their faces are glued together, and disappear. Simi-
larly, when two paths are merged (as the opposite of path-duplication),
the resulting path is of no use, and it can be discarded. Note that the
two footprints (X ′, Y ′, Z ′) and (Z ′′, Y ′′, X ′′) are ordered in opposite
directions. This matches the requirement for correctly glueing the bor-
ders of two faces in order to produce a handle (see Figures 3 and 7).
This also matches the way the two copies of a path Pi are traversed
when traveling along the boundary walk B∗ in clockwise direction (cf.
Eq. (1) and Figure 8).

Extremity rule. This rule applies only for levels ` > k. It has two variants,
defined below.

Single extremity rule. Assuming X ′
`−→ X ′, X ′′

`−→ X ′′, Y
`−→ Y, |Y ′′,

and Z
`−→ Z ′, Z ′′, the single extremity rule matches two footprints

of two children Y ′ and Y ′′, and produces one footprint at the
parent Y :

(X ′, Y ′, Z ′), (Z ′′, Y ′′, X ′′)
`−→ (X ′, Y,X ′′).

38

X
Y

Z X ′
Y ′

Z ′ Z ′′
Y ′′

X ′′

C` C ′` C ′′`

`

X Y Z

P`−k

`
X ′ Y ′ Z ′

P ′`−k

X ′′Y ′′Z ′′
P ′′`−k

(X ′, Y ′, Z ′)

⊥

(Z ′′, Y ′′, X ′′)}} } }

type C′`/P
′
`−k type C′′` /P

′′
`−k

Figure 13: Footprint construction, and type assignment: Elementary rule.

Double extremity rule. Assuming X ′
`−→ X ′, X ′′

`−→ X ′′, Y
`−→

Y ′, Y ′′, Z ′
`−→ Z ′, and Z ′′

`−→ Z ′′, the double extremity rule matches
two footprints of two children Y ′ and Y ′′, and produces two foot-
prints at the parent Y :

(X ′, Y ′, Z ′), (Z ′′, Y ′′, X ′′)
`−→
{

(X ′, Y,X ′′), (Z ′′, Y, Z ′)
}
.

The Extremity rule refers to path duplication only (i.e., to levels
` > k), as displayed on Figure 14. It is dedicated to the extremities
of the path considered at this phase (see Figure 8). The Single ex-
tremity rule (cf. Figure 14(a)) handles the standard case in which
the path is not trivial (i.e., reduced to a single vertex), whereas the
Double extremity rule (cf. Figure 14(b)) handles the case in which
the path connecting two faces is reduced to a single vertex Y (i.e.,
the two corresponding cycles share at least one vertex Y). Then
only the vertex Y is split during the path duplication, while its
four neighbors X ′, X ′′, Z ′, and Z ′ remain intact.

Vacancy rule. The vacancy rule simply forwards a footprint upward:

(X ′, Y,′ Z ′)
`−→ (X, Y, Z)

with X
`−→ X ′, X ′′ (resp., Y

`−→ Y ′, Y ′′, and Z
`−→ Z ′, Z ′′), unless X

`−→ X

(resp., Y
`−→ Y , and Z

`−→ Z), in which case X = X ′ (resp., Y = Y ′,
and Z = Z ′).

39

(b)(a)

X ′

Y Z

X ′′

`

X′
Y ′ Z′

X′′

Y ′′Z′′
P`−k

P ′`−k

P ′′`−k

(X′, Y ′, Z′) (Z′′, Y ′′, X′′)} }

type P ′`−k type P ′′`−k

(X′, Y,X′′)

` `

} }

X ′

Y

X ′′

Z ′

Z ′′

`

X ′ Z ′

X ′′ Z ′′

P ′′`−k

P ′`−k

P`−k

Y ′

Y ′′

(X′, Y ′, Z′) (Z′′, Y ′′, X′′)

(X′, Y,X′′) (Z′′, Y, Z′)

` `} }

} } } }

} }

} }

Figure 14: Footprint construction, and type assignment: Extremity rule.

X ′

Y

Z ′

A

B

`

X ′ A′

Z ′ B′

P`−k
Y ′′

C`
Y ′

B′′

A′′

C′`/P
′
`−k C′′` /P

′′
`−k

(X ′, Y, Z ′)}

(X ′, Y, Z ′)

} }

}

` `

Figure 15: Footprint construction, and type assignment: Vacancy rule.

The Vacancy rule handles the case where one of the twin nodes carries
a footprint (X ′, Y ′, Z ′) (resp., (X ′′, Y ′′, Z ′′)), which is copied to the
parent node, after updating the vertices in case the latter experienced
duplications (see Figure 15).

4.1.5. Assigning Types to Footprints

The types in Tk are assigned to the edges of the footprints, downwards
the histories, as follows.

� If the footprints (X ′, Y ′, Z ′) and (Z ′′, Y ′′, X ′′) are matched by applica-
tion of the Elementary rule at level `, then the two (directed) edges
(X ′, Y ′) and (Y ′, Z ′) (resp., (Z ′′, Y ′′) and (Y ′′, X ′′)) of G(`) are given

40

type C ′` (resp., C ′′`) if ` ≤ k, and P ′`−k (resp. P ′′`−k) otherwise. See
Figure 13.

� If the footprints (X ′, Y ′, Z ′) and (Z ′′, Y ′′, X ′′) are matched by applica-
tion of the Single extremity rule at level `, then the two edges (X ′, Y)
and (Y,X ′′) adopt the types of the edges (X ′, Y ′) and (Y ′′, X ′′), respec-
tively, while the two edges (Y ′, Z ′) and (Z ′′, Y ′′) are given type P ′k−`
and P ′′k−`, respectively. See Figure 14(a).

� If the footprints (X ′, Y ′, Z ′) and (Z ′′, Y ′′, X ′′) are matched by applica-
tion of the Double extremity rule at level `, then the four edges (X ′, Y ′),
(Y ′, Z ′), (Z ′′, Y ′′), and (Y ′′, X ′′) adopt the types of the edges (X ′, Y),
(Y, Z ′), (Z ′′, Y), and (Y,X ′′), respectively. See Figure 14(b)

� If the footprint (X ′, Y,′ Z ′) is forwarded upward as (X, Y, Z) by appli-
cation of the Vacancy rule, then (X ′, Y ′), and (Y ′, Z ′) adopt the types
of the edges (X, Y), and (Y, Z), respectively. See Figure 15.

We have now all the ingredients to state what will be proved as sufficient
to certify that a graph G has genus at most k.

4.2. Assignment of the Histories to the Certificates

As it was mentioned in Section 4.1, the history h(v) of a node v of the
actual graph G may not be on O(log n) bits. The reason for that is that,
even if G has a bounded genus k, the node v may have an arbitrarily large
degree. As a consequence, the sum of the degrees of its v’s avatars in each of
the graphs G(0), . . . , G(3k−1) may be arbitrarily large. This has direct conse-
quences not only on the memory requirement for storing the neighborhood
Nx of each node x ∈ h(v), but also on the number of footprints to be stored
in Fx. In both cases, this memory requirement may exceed O(log n) bits.
On the other hand, every graph G of bounded genus is sparse, which implies
that the average degree of G, and of all its splitting graphs G(0), . . . , G(3k−1)

is constant. Therefore, the average memory requirement per vertex v for
storing all the histories h(v), v ∈ V (G), is constant. Yet, it remains that
some vertices v ∈ V (G) may have large histories, exceeding O(log n) bits.

The simple trick under this circumstances (cf., e.g., [25]) is to consider the
space-complexity of the histories not per node of G, but per edge. Indeed,
the space-complexity of the information related to each edge e of G, as stored
in the histories, is constant, for every edge e. For instance, at a node x of

41

level ` in some history h(v), instead of storing Nx at v, one could virtually
store every edge {Sx, Sy}, Sy ∈ Nx, on the edge {v, w} of G, where w is the
neighbor of v in G with avatar Sy in G(`).

Let us define a line proof-labeling scheme as a proof-labeling scheme in
which certificates are not only assigned to the vertices of G, but also to the
edges of G (i.e., to vertices of the line-graph of G). In a line proof-labeling
scheme, the vertices forge their decisions not only on their certificates and on
the certificates assigned to their adjacent vertices, but also on the certificates
assigned to their incident edges. Our interest for the concept of line proof-
labeling scheme is expressed in the following result, after having recalled that,
thanks to Lemma 5, every graph of genus at most k is d-degenerate for some
constant d depending on k.

Lemma 9. Let f : N → N such that f(n) ∈ Ω(log(n)). Let d ≥ 1, and
let G be a graph family such that every graph in G is d-degenerate. If G has
a line proof-labeling scheme with certificate size O(f(n)) bits, then G has a
proof-labeling scheme with certificate size O(f(n)) bits.

Proof. Let (p,v) be line proof-labeling scheme for G. For G ∈ G, the
prover p assigns certificate p(v) to every node v ∈ V (G), and certificate p(e)
to every edge e ∈ V (G). Since G is d-degenerate, there exists a node v of G
with degree dv ≤ d. Let c(v) be the certificate of v defined as

c(v) =
(
p(v),

{
(id(u1),p(e1)), . . . , (id(udv),p(edv)

})
,

where u1, . . . , udv are the dv neighbors of v in G, and, for every i = 1, . . . , dv,
ei = {v, ui}. Since the IDs can be stored on O(log n) bits, and since f(n) ∈
Ω(log n), we get that c(v) can be stored on O(f(n)) bits. This construction
can then be repeated on the graph G′ = G − v, which still has degeneracy
at most d. By iterating this construction, all nodes are exhausted, and
assigned certificates on O(f(n)) bits, containing all the information originally
contained in the node- and edge-certificates assigned by p. We complete the
proof by observing that, for every edge e = {u, v} of G, the certificate p(e)
assigned by p to e can be found either in c(u) or in c(v). This suffices for
simulating the behavior of v, and thus for the design of a standard proof-
labeling scheme for G.

42

r
T

φ
H

1 φ
2

3

4

5

6
7

8 9

10

11
12

1314

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

φ

(a) (b) (c)

Figure 16: Illustration of the PLS for planarity in [25].

4.3. Certifying Planarity

In this section, we show how to certify that H is a planar embedding with
a special face φ with boundary walk B. For this purpose, we just need to
slightly adapt a recent proof-labeling scheme for planarity [25].

Lemma 10. There exists a proof-labeling scheme for certifying that a given
graph H has a planar embedding f , including a face φ with boundary walk B.

Proof. Let H be a planar graph with a planar embedding f . The scheme
for planarity in [25] constructs the certificates as follows (cf. Figure 16). Let
T be an arbitrary spanning tree of H, and let us root T at a vertex r ∈ V (H)
on the outer face φ, as displayed on Figure 16(a). The tree T is “flattened”
into a cycle C in a splitting H ′ of H by replacing every vertex v ∈ V (H)
by as many vertices as the number of times v is visited by a DFS traversal
of T starting from r (see Figure 16(b)). The scheme in [25] certifies the
cycle C, viewed as a path P whose two extremities are avatars of r, with
respective DFS numbers 1 and 2n − 1, plus an edge connecting these two
avatars (see Figure 16(c)). A property of this construction taken from [25] is
that the vertices of H on the outer face φ are those which have at least one
avatar in H ′ such that no co-tree edges “jumps over it” when the vertices are
displayed as on Figure 16(c). For instance, the avatars 1, 4, 6, 10, 12, 13, 15
have no co-tree edges jumping over them, and indeed these avatars are the
ones of the vertices on the boundary of the outer face φ. The scheme of [25]
is precisely based on a local encoding of the “lower edge” jumping over every
avatars in H ′. It follows that this scheme suffices for certifying not only the
planarity of H, but also that φ is a face of H with boundary B.

43

4.4. Local Consistency

Let H be a splitting of a graph G, let f be a planar embedding of H,
and let φ be a face of H with boundary walk B directed, say, clockwise. The
directed boundary walk B is denoted by ~B. Let h(G) = {h(v), v ∈ V (G)} be
a collection of histories for the vertices of G, of depth 3k−1, for some k ≥ 1.
We say that (G,H, ~B, h(G)) is locally consistent if the following holds.

1. There exists a sequence of graphs U0, . . . , U3k−1 with U0 = G, U3k−1 =
H, and, for every 0 ≤ ` < 3k−1, U`+1 is a degree-2 splitting of U`, such
that, for every v ∈ V (G), and for every ` = 0, . . . , 3k − 1, every node
x at level ` of h(v) satisfies that Sx is a vertex of U`, the neighborhood
of Sx defined in Nx is consistent with the neighborhood of Sx in U`,
and the footprints in Fx contains edges of U`. Moreover, if x has two
children x′ and x′′ in h(v), then there are exactly two footprints, one
in Ex′ and one in Ex′′ , for which the Elementary rule or the Extremity
rule was applied, all the other footprints in Ex′ and Ex′′ being subject
to the Vacancy rule. Furthermore, if x has a unique child x′, then all
footprints in Ex′ are subject to the Vacancy rule. Finally, the typing
is consistent with the specified typing rules.

2. The collection of footprints at the leaves of the histories in h(G) can
be ordered as (x0, y0, z0), . . . , (xN , yN , zN) such that, yi = zi−1 = xi+1

for every i = 0, . . . , N , and ~B = (y0, . . . , yN).

3. For every ` = 1, . . . , , 2k − 1, the following must be satisfied:

(a) the collection of footprints at the nodes at level k + ` whose
both edges have type P ′` (resp., type P ′′`) in the histories
in h(G) can be ordered as (X ′0, Y

′
0 , Z

′
0), . . . , (X ′s` , Y

′
s`
, Z ′s`) (resp.,

(Z ′′0 , Y
′′

0 , X
′′
0), . . . , (Z ′′s` , Y

′′
s`
, X ′′s`)), for some s` ≥ 0, such that:

i. for every i = 0, . . . , s`, Yi
k+`−−→ {Y ′i , Y ′′i };

ii. for every i = 1, . . . , s`, Y
′
i = Z ′i−1 and Y ′′i = Z ′′i−1;

iii. for every i = 0, . . . , s` − 1, Y ′i = X ′i+1 and Y ′′i = X ′′i+1;

(b) the collection of footprints at the nodes at level k + ` whose both
edges have type C ′d `+1

2
e if `+ 1 is odd, or type C ′′`+1

2

if `+ 1 is even,

can be ordered as (X0, Y0, Z0), . . . , (Xr` , Yr` , Zr`), for some r` ≥ 0
such that, for every i = 1, . . . , r`, Yi = Zi−1 = Xi+1;

(c) the collection of footprints at the nodes at
level k + ` whose both edges have same type
P ′1, P

′′
1 , . . . , P

′
`−1, P

′′
`−1, C

′
1, C

′′
1 , . . . , C

′
d`/2e, C

′′
d`/2e, or C ′(`+1)/2 if

44

` + 1 is even, can be ordered as (X0, Y0, Z0), . . . , (Xt` , Yt` , Zt`),
for some t` ≥ 0, such that for every i = 1, . . . , t`, Y

′
i = Z ′i−1 and

Y ′′i = Z ′′i−1;

4. For every ` = 1, . . . , k, the collection of footprints at the nodes at
level ` whose both edges have type C ′` (resp., type C ′′`) in the histo-
ries in h(G) can be ordered as (X ′0, Y

′
0 , Z

′
0), . . . , (X ′r` , Y

′
r`
, Z ′r`) (resp.,

(Z ′′0 , Y
′′

0 , X
′′
0), . . . , (Z ′′r` , Y

′′
r`
, X ′′r`)), for some r` ≥ 0, such that:

(a) for every i = 0, . . . , r`, Yi
`−→ {Y ′i , Y ′′i };

(b) for every i = 1, . . . , r`, Yi = Zi−1 = Xi+1;

By construction, (G,H∗, ~B∗, h∗(G)) produced by encoding the unfolding
of the embedding of G on Tk, described in Section 3.2.2, is locally consistent.
The following result shows that the local notion of historical consistency
based on the histories fits with the global notion of historical consistency
used in Section 3.2.2.

Lemma 11. Let H be a splitting of a graph G, let f be a planar embedding of
H, let φ be a face of H with boundary walk ~B directed clockwise. Let h(G) be

a history of all the vertices in G. If (G,H, ~B, h(G)) is locally consistent, then

(G,H, ~B,U) is globally consistent, where U = U0, . . . , U3k−1 is a sequence of

graphs enabling Condition 1 of the historical consistency of (G,H, ~B, h(G))
to hold.

Proof. Thanks to Condition 1, for every 0 ≤ ` < 3k− 1, U`+1 is a degree-2
splitting of U`. Moreover, by the consistence of the footprints and the typing
in the histories, the splitting of from U` to U`+1 is locally consistent at each
node of Ui with the duplication of a cycle whenever ` ≤ k, and with the
duplication of a path otherwise.

Condition 2 in the definition of local consistency guarantees that the foot-
prints at the leaves of the histories are correctly set, that is, they collectively
encode the boundary walk B.

Condition 3 guarantees that, for ` = 1, . . . , 2k−1, starting from χ2k = B,
one can iteratively decompose the boundary walk of the face χ`+1 of Uk+`+1

into a boundary walk of a face ψ`+1 of Uk+`, a boundary walk of a face χ` of
Uk+`, and the duplication of a path in Uk+` connecting χ` to ψ`+1. It follows
that 2k faces ψ1, . . . , ψ2k of U` have been identified. Since, the merging of
the 2k− 1 paths successively identified in the graphs Uk+`, ` = 1, . . . , 2k− 1
preserves planarity, the graph Uk is planar.

45

Moreover, each of the boundary walks of the faces ψ1, . . . , ψ2k is oriented
in a direction inherited from the clockwise orientation of B, as guaranteed
by the Elementary, Extremity, and Vacancy rules satisfied by the footprints,
whose validity are themselves guaranteed by Condition 1. Condition 4 guar-
antees that the 2k faces ψ1, . . . , ψ2k of Uk can be reordered as k pairs (φ′i, φ

′′
i),

i ∈ {1, . . . , k} that can be successively merged for creating handles. More
specifically, for i = k, k−1, . . . , 1, Condition 4 guarantees that the boundary
walks of φ′i and φ′′i are directed such that, by identifying the vertices of Ui

that are split of vertices in Ui−1, a handle is created, resulting in Ui embedded
in Tk−i.

4.5. Existence and Unicity of the Paths and Cycles

Our proof-labeling scheme relies on a collection of paths and cycles in the
graphs G(0), . . . , G(3k−1). The footprints and types encode these paths and
cycles locally. One needs to guarantee the existence and unicity of each path
and cycle, in each graph G(i), i = 0, . . . , 3k − 1. The next lemma, which is
standard, achieve this task.

Lemma 12. Let G be a graph, and let P (resp., C) be a (non-necessary
simple) directed path (resp., cycle) in G. Assume each vertex v of P (resp.,
C) is given a triple (pred(v), v, succ(v)), where pred(v) and succ(v)) are the
predecessor and successor of v in P (resp., C). If v is an extremity of P ,
then pred(v) = ⊥ or succ(v) = ⊥, or both pred(v) = ⊥ and succ(v) = ⊥ in
case P is reduced to v. There exists a proof-labeling scheme with certificates
on O(log n) bits that guarantees the existence and unicity of P .

Proof. Let P be a directed path in G. The proof-labeling scheme uses a
spanning tree T of G rooted at the starting vertex v0 of P . Every vertex v is
given the ID of its parent p(v) in T (v0 has p(v0) = ⊥). The tree T is certified
by providing a certificate to every node v containing a pair (id(v0), d(v)),
where d(v) is the distance from v to v0 in T . Every vertex v checks that it
is given the same root-ID as its neighbors in G, and that d(p(v) = d(v)− 1.
Every node that is given one or many triples (pred(v), v, succ(v)) checks that,
for each of them, pred(succ(v)) = v and succ(pred(v)) = v. (Of course, every
such vertex v also checks consistence of the triples given to it, including the
fact that pred(v) 6= succ(v) unless they are both equal to ⊥, that it is not
given the same successor in two different triples, etc.). If one of the tests is
not passed at a vertex, this vertex rejects, otherwise it accepts. The case of

46

a cycle C is treated the same, where the spanning tree T is rooted at any
vertex of C. It is easy to check that this standard proof-labeling scheme
satisfies both completeness and soundness.

4.6. Verification Procedure

We now have all ingredients for describing our proof-labeling scheme for
G+
k , k ≥ 0. First, we describe the certificates assigned to the vertices of a

graph G of genus k. The main part of the certificate of v is the history h(v), as
constructed in Section 4.1. As mentioned in Section 4.2, a history may require
more than just O(log n) bits. However, Lemma 9 has shown how to resolve
this issue, so that histories can be spread out among the vertices in a way
guaranteeing that every vertex stores O(log n) bits, and, in a single round of
communication with its neighbors, every node v can recover its entire history.
More importantly even, although a vertex v may not be able to recover the
whole history of each of its neighbors in a single round, yet it can recover from
each neighbor w the part of h(w) corresponding to every edge between an
avatar of v and an avatar of w, which is sufficient to check the consistency of
the neighborhoods, footprints, etc., in all graphs G(0), . . . , G(3k−1) used in the
construction. In addition, the certificate of every vertex is provided with the
information enabling to check planarity of H = G(3k−1) (cf. Lemma 10), and
to guarantee the existence and unicity of all the directed cycles C ′i, C

′′
i , i =

1, . . . , k, and all directed paths P ′j , P
′′
j , j = 1, . . . , 2k−1 (cf. Lemma 12). The

vertices can then check local consistency, as specified in Section 4.4. Since
G has genus k, it follows that, whenever the prover assigns the certificates
appropriately, all vertices pass all tests, and therefore all vertices accept.
Completeness is therefore satisfied by the scheme.

Soundness is guaranteed by Lemmas 8 and 11. Indeed, the latter lemma
shows that if the vertices are given certificates that are consistent, and in par-
ticular for which the histories are locally consistent, then global consistency
is also guaranteed. And the former lemma says that if global consistency
is satisfied then the graph can be embedded on Tk. Therefore, if a graph
G cannot be embedded on Tk, then global consistency cannot be satisfied,
which means that the local consistency of the histories cannot be satisfied
either, and therefore, at least one vertex of G fails to pass all tests, and
rejects. This completes the proof of Theorem 1.

47

5. Proof-Labeling Scheme for Bounded Non-orientable genus
Graphs

This section is entirely dedicated to the proof of our second main result.

Theorem 2. Let k ≥ 0, and let G−k be the class of graphs with non-orientable
genus at most k, i.e., embeddable on a non-orientable closed surface of genus
at most k. There is a proof-labeling scheme for G−k using certificates on
O(log n) bits in n-node graphs.

The proof-labeling scheme for G−k is based on the same ingredients as the
one for G+ in Theorem 1 (e.g., Lemma 3 is used in replacement of Lemma 2,
etc.). However, new ingredients must be introduced for handling the cross-
caps from which non-orientable surfaces result. The proof will thus mainly
consist in describing these new ingredients, and in explaining their inter-
actions with the ingredients used for establishing Theorem 1. We start by
defining the notion of doubling performed on cycles.

5.1. Doubling of a Non-Orientable Cycle

Let us assume that we are given an embedding of a graph G on a non-
orientable closed surface Σ of genus k, and let D = (v0, v1, . . . , vp−1, vp = v0)
be a non-orientable cycle of G. Note that a non-orientable cycle is non-
separating. The graph GD is obtained by doubling D, i.e., by multiplying its
length by 2. This doubling of D, and the canonical embedding of GD on a
closed surface ΣD, are obtained as follows (see Figure 17 for an illustration).

� Each vertex vi, 0 ≤ i < p, is split into two vertices v′i and v′p+i in such
a way that D′ = (v′0, v

′
1, v
′
2, . . . , v

′
2p−1, v

′
2p = v′0) is a cycle of GD, which

forms a boundary walk of a face φ of XD.

� The neighbors of each vertex vi in G \ D, 0 ≤ i < p, are shared
between v′i and v′i+p in GD, as follows. The left and right sides of D
can be defined locally, i.e., in the neighborhood of each (embedded)
edge {vi, vi+1} of D. The edges incident to v′i and v′i+1 in GD (and,
by symmetry, the edges incident to v′i+p and v′i+p+1) correspond to the
edges incident to vi and vi+1 on the same side of D in G according
to the local definition of left and right sides in the neighborhood of
{vi, vi+1}.

� The vertices v′i and v′i+p have no other neighbors.

48

vi+1

g

f

e

d

c

vi
b

a

v′i

v′i+1

v′i+p

v′i+p+1

c

b

a

φg

f

e

d

Figure 17: Doubling a non-orientable cycle.

We now show how to unfold Pk, as we did for unfolding Tk in the oriented
case.

5.2. Unfolding Pk for k ≥ 1

Let G be a graph with a 2-cell embedding f on Pk. The unfolding of G has
three phases, and only the first one, called doubling phase is new. The second
phase is a face-duplication phase, and the third phase is a face-reduction
phase, identical to those described in the case of orientable surfaces. The
doubling phase is as follows. Let Σ(0) = Pk, and let D1 be a non-orientable
cycle of G(0) = G. Let us consider the embedding of G(1) = G

(0)
D1

induced

by f , on the surface Σ(1) = Σ
(0)
D1

. There are two cases, both using Lemma 4:

� If Σ(1) is non-orientable, then Σ(1) is homeomorphic to Pk−1;

� Otherwise, Σ(1) is homeomorphic to T k−1
2

.

In the first case, a doubling operation is repeated on G(1), using a non-
orientable cycle D2 of G(1). Doubling operations are performed iteratively
until an embedding on an orientable surface is reached. Formally, there exists
a a sequence of m + 1 graphs G(0), . . . , G(m), m ≤ k, respectively embedded
on closed surfaces Σ(0), . . . ,Σ(m), such that, for 0 ≤ i < m, there exists a
non-orientable cycle Di+1 of G(i) such that G(i+1) = (G(i))Di+1

, and Σ(i+1) =
(Σ(i))Di+1

(up to homeomorphism). Necessarily, for 0 ≤ i < m, Σ(i) =
Pk−i (up to homeomorphism), and Σ(m) = T(k−m)/2, thanks to Lemma 4.
When Σ(m) is reached, G(m) contains m special faces, whose boundary walks

49

are resulting from the successive doubling of D1, . . . , Dm, respectively. The
doubling phase is then completed.

The face duplication phase starts, initialized with the embedding of G(m)

on Σ(m). Let k′ = k−m
2

. The duplication phase is performed, as in Section

3.2.3. Specifically, there exists a sequence of k′+ 1 graphs G(m), . . . , G(m)+k′ ,
respectively embedded on closed surfaces Σ(m), . . . , X ′(m+k′), such that, for
0 ≤ i < k′, there exists a non-separating cycle Ci+1 of G(m+i) such that

G(m+i+1) = G
(m+i)
Ci+1

, and Σ(m+i+1) = Σ
(m+i)
Ci+1

. Necessarily, for 0 ≤ i ≤ k′,

Σ(m+i) = Tk′−i up to homeomorphism, thanks to Lemma 4. In particular,
Σ(m+k′) = T0. When Σ(m+k′) is reached, G(m+k′) contains 2k′ + m special
faces, whose boundary walks are resulting from the successive doubling of
the cycles D1, . . . , Dm, and from the duplications of the cycles C1, . . . , Ck′ .
At this point, the face-duplication phase is completed.

The face-reduction phase starts, as in Section 3.2.4, in order to merge the
2k′ + m = k special faces of G(m+k′) into a single face. Let us denote the
2k′+m = k special faces of G(m+k′) by ψ1, . . . , ψk. Let ψ1 = χ1. There exists
a sequence of paths P1, . . . , Pk−1 such that, for 1 ≤ i ≤ k−1, the duplication
of Pi merges χi and ψi+1 in a single face χi+1. A sequence of planar graphs
G(m+k′), . . . , G(m+k′+k−1) results from these merges, where, for 0 ≤ i < k− 1,

Pi+1 is a path of G(m+k′+i), and G(m+k′+i+1) = G
(m+k′+i)
Pi+1

. For 1 ≤ i ≤ k − 1,

G(m+k′+i) has k− i special faces χi+1, ψi+2, . . . , ψk. In particular, G(m+k′+k−1)

has a unique special face χk−1.
To summarize, as in Section 3.2.2, the embedding f of G in Pk induces a

planar embedding of H∗ = G(m+k′+k−1) whose external face is φ∗ = χk−1. The
boundary of face φ∗ contains all the vertices obtained by splittings resulting
from doublings or duplications.

5.3. Certifying Non-Orientable Genus at Most k

Conversely, for a graph G of non-orientable genus k, an embedding of
G in Pk can be induced from the embedding f ∗ of H∗ on T0, and from the
boundary walk B∗ of φ∗. The latter is indeed entirely determined by the suc-
cessive cycle-duplications, path-duplications, and cycle doublings performed
during the whole process. It contains all duplicated vertices resulting from
the cycles D′1, . . . , D

′
m, the cycles C ′1, . . . , C

′
k′ and C ′′1 , . . . , C

′′
k′ , and from the

paths P ′1, . . . , P
′
k−1 and P ′′1 , . . . , P

′′
k−1.

Now, let H be a splitting of a graph G, let f be a planar embedding
of H, and let φ be a face of H embedded on T0. Let B = (u0, . . . , uN) be

50

a boundary walk of φ, and let ~B be an arbitrary direction given to B, say
clockwise. Let U = (U0, . . . , Um+k′+k−1), with m + 2k′ = k and m ≥ 1, be
a sequence of graphs such that U0 = G, Um+k′+k−1 = H, and, for every i ∈
{0, . . . ,m+k′+k−1}, Ui+1 is a 2-splitting of Ui. The splitting of Ui into Ui+1 is

denoted by σi = (αi, βi). The definition of global consistency of (G,H, ~B,U),
in the case of orientable surfaces, can trivially be adapted to the case of non-
orientable surfaces by revisiting conditions 1 and 2, of Section 3.2.5, in such
a way that the indices correspond to the unfolding of Pk. We thus say that
(G,H, ~B,U) is globally consistent for Pk if the (revisited) conditions 1 and 2
in Section 3.2.5 hold, plus the following additional condition corresponding
to the doubling phase:

� Cycle doubling checking. For every i = 1, . . . , `, there exist
faces φ

′(i)
1 , φ

′(i)
2 , . . . , φ

′(i)
i of Ui with respective directed boundary walks

~B(φ
′(i)
1), ~B(φ

′(i)
2), . . . , ~B(φ

′(i)
i) such that

– ~B(φ
′(i)
i) = (v′0, v

′
1, . . . , v

′
2p−1, v

′
2p = v′0) with, for 0 ≤ j < p,

σ−1
i−1({v′j, v′j+p}) ∈ V (Ui−1);

– for j = 1, . . . , i− 1, σi−1(~B(φ
′(i−1)
j)) = ~B(φ

′(i)
j).

By the construction of Section 5.2, for every graph G of non-orientable
genus k, (G,H∗, ~B∗,U∗) is globally consistent for Pk, where U∗ =
(G(0), . . . , G(m+k′+k−1)). The following lemma is the analog to Lemma 8
for non-orientable surface. Its proof is essentially the same as the proof
of Lemma 8, in which an argument should be added, for handling cycle dou-
blings, that is, for identifying opposite vertices of the cycle D′i in order to
create a cross-cap. The details are omitted.

Lemma 13. Let H be a splitting of a graph G, and assume that there exists
a planar embedding f of H with a face φ and a boundary walk B of φ. Let
m, k′ be integers such that 1 ≤ m ≤ k and m + 2k′ = k, and let U =
(U0, . . . , Um+k′+k−1) be a series of graphs such that U0 = G, Um+k′+k−1 = H,
and, for every i ∈ {0, . . . ,m + k′ + k − 2}, Ui+1 is a 2-splitting of Ui. If

(G,H, ~B,U) is globally consistent for Pk, then G can be embedded on Pk.

Thanks to Lemma 13, the overall outcome of this section is that the tuple
c = (H∗, f ∗, φ∗, B∗,U∗) constructed in Section 5.2 is indeed a certificate that
G can be embedded on Pk.

51

X
Y

Z
`

D′`

D`

X ′

Y ′

Z ′ X ′′

Y ′′

Z ′′

(X ′, Y ′, Z ′)

⊥

(X ′′, Y ′′, Z ′′)}} } }

type D′` type D′`

` `

Figure 18: The cross-cap rule.

5.4. From Centralized Certificate to Local Certificate

The method to distribute the centralized certificates uses the same ap-
proach and the same tools as those used in Section 4 in the orientable case.
Only the differences are pointed out in this section. In the non-orientable
case, the set of types is

Sk = {D′1, . . . , D′`, C ′1, . . . , C ′k′ , C ′′1 , . . . , C ′′k′ , P ′1, . . . , P ′k−1, P
′′
1 , . . . , P

′′
k−1}.

The footprints and their construction are identical to the orientable case,
except that a cross-cap rule is introduced (see Figure 18).

Cross-cap rule. Assuming X
`−→ X ′, X ′′, Y

`−→ Y ′, Y ′′, and Z
`−→ Z ′, Z ′′,

the cross-cap rule matches two footprints of two children Y ′ and Y ′′,
and produces none at the parent Y :

(X ′, Y ′, Z ′), (X ′′, Y ′′, Z ′′)
`−→ ⊥.

The cross-cap rule applies to the case of identifying opposite vertices
of the boundary of a face, in the reverse operation of doubling. The
corresponding face disappears, and their boundaries can be discarded.

The assignments of types to footprints is performed in the same as in Sec-
tion 4, and the same distributed algorithm is used for checking the planarity
of H. An important difference with the orientable case appears in the defi-
nition of the local consistency of distributed certificates (previously defined
in Section 4.4). Again, an additional condition is introduced, for reflecting
the creation of cross-caps.

� For every ` = 1, . . . ,m, the collection of footprints at the nodes at level
` whose both edges have type D′` in the histories in h(G) can be ordered
as (X ′0, Y

′
0 , Z

′
0), . . . , (X ′2r`−1, Y

′
2r`−1, Z

′
2r`−1), for some r` ≥ 1, such that:

52

1. for every i = 0, . . . , r` − 1, Yi
`−→ {Y ′i , Y ′′i+r`

};
2. for every i = 0, . . . , 2r` − 1, Yi = Zi−1 = Xi+1 (where indices are

taken modulo 2r`);

The following lemma is the analog of Lemma 11, but for non-orientable sur-
faces. Its proof is identical to the proof of Lemma 11, with an additional argu-
ment, stating that the conditions added for handling non-orientable surfaces
enable opposite vertices of the face surrounded by D′` in U`, 1 ≤ ` ≤ 2k − 1,
to be identified for creating a cross-cap in U`−1.

Lemma 14. Let H be a splitting of a graph G, let f be a planar embedding
of H, let φ be a face of H with boundary walk ~B directed clockwise. Let h(G)

be a history of all the vertices in G. If (G,H, ~B, h(G)) is locally consistent,

then (G,H, ~B,U) is globally consistent, where U = U0, . . . , Um+k′+k−1 is a

sequence of graphs enabling the global consistency of (G,H, ~B, h(G)) to hold.

5.5. Verification Procedure

The verification procedure is similar to the one described in Section 4.6,
and is therefore omitted.

6. Conclusion

In this paper, we have designed proof-labeling schemes for the class of
graphs of bounded genus, as well as for the class of graphs with bounded
non-orientable genus. All our schemes use certificates on O(log n) bits, which
is optimal, as it is known that even certifying the class of planar graphs
requires proof-labeling schemes with certificates on Ω(log n) bits [25]. The
existence of “compact” proof-labeling schemes (i.e., schemes using certificates
of polylogarithmic size) for other classes of sparse graphs is still not known.
In particular, proving or disproving the existence of such a scheme for H-
minor-free graphs appears to be a challenging problem. Indeed, Robertson
and Seymour’s decomposition theorem states that every H-minor-free graph
can be expressed as a tree structure of “pieces”, where each piece is a graph
that can be embedded in a surface on which H cannot be embedded, plus
a bounded number of so-called apex vertices, and a bounded number of so-
called vortex subgraphs. The decomposition theorem provides a powerful
tool for the design of (centralized or distributed) algorithms. However, this
theorem is not a characterization, that is, there are graphs that are not

53

H-minor-free, and yet can be expressed as a tree structure satisfying the
required properties (surfaces of bounded genus, bounded number of apices,
bounded number of vortices, etc.). It follows that, although Robertson and
Seymour’s decomposition theorem should most probably play a crucial role
for designing a compact proof-labeling scheme for H-minor-free graphs (if
such a scheme exists), this development may require identifying additional
properties satisfied by these graphs.

Recently several papers have tackled the question of certifying minor-
closed classes, with various restrictions. In [22, 28] the authors show meta-
theorems for certification with the corollaries that if the forbidden minors
are paths and planar graphs, respectively, one can certify the class with
logarithmic and polylogarithmic certificates, respectively. Small minors have
also been studied in [9]. Finally, [20] studies the question in the approximate
certification model (in the spirit of property testing) (as introduced in [11]
and studied in [18] for planar graphs).

Acknowledgements.. The first and fifth authors are thankful to Gelasio
Salazar for his very detailed answers to their questions about closed surfaces.
The authors thank the reviewers for the detailed comments.

References

[1] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Compact routing for
graphs excluding a fixed minor. In 19th International Conference on
Distributed Computing (DISC), LNCS 3724, pages 442–456. Springer,
2005.

[2] Yehuda Afek, Shay Kutten, and Moti Yung. The local detection
paradigm and its application to self-stabilization. Theor. Comput. Sci.,
186(1-2):199–229, 1997.

[3] Saeed Akhoondian Amiri, Patrice Ossona de Mendez, Roman Rabi-
novich, and Sebastian Siebertz. Distributed domination on graph classes
of bounded expansion. In 30th ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA), pages 143–151, 2018.

[4] Saeed Akhoondian Amiri, Stefan Schmid, and Sebastian Siebertz. A
local constant factor MDS approximation for bounded genus graphs.
In ACM Symposium on Principles of Distributed Computing (PODC),
pages 227–233, 2016.

54

[5] Saeed Akhoondian Amiri, Stefan Schmid, and Sebastian Siebertz. Dis-
tributed dominating set approximations beyond planar graphs. ACM
Trans. Algorithms, 15(3):39:1–39:18, 2019.

[6] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
stabilization by local checking and correction (extended abstract). In
32nd Symposium on Foundations of Computer Science (FOCS), pages
268–277, 1991.

[7] Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis
Olivetti. What can be verified locally? J. Comput. Syst. Sci., 97:106–
120, 2018.

[8] Marthe Bonamy, Cyril Gavoille, and Michal Pilipczuk. Shorter label-
ing schemes for planar graphs. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 446–462. SIAM, 2020.

[9] Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. Local certifi-
cation of graph decompositions and applications to minor-free classes.
In 25th International Conference on Principles of Distributed Systems,
OPODIS 2021, volume 217 of LIPIcs, pages 22:1–22:17, 2021.

[10] H. R Brahana. Systems of circuits on two-dimensional manifolds. Annals
of Mathematics, 23:144–168, 1922.

[11] Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-
labeling schemes. Theor. Comput. Sci., 811:112–124, 2020.

[12] Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-offs in dis-
tributed interactive proofs. In 33rd International Symposium on Dis-
tributed Computing (DISC), LIPIcs 146, pages 13:1–13:17. Dagstuhl,
2019.

[13] Andrzej Czygrinow and Micha l Hańćkowiak. Distributed almost ex-
act approximations for minor-closed families. In 14th Annual European
Symposium on Algorithms (ESA), pages 244–255, 2006.

[14] Andrzej Czygrinow, Micha l Hańćkowiak, Edyta Szymanska, Wojciech
Wawrzyniak, and Marcin Witkowski. Distributed local approximation
of the minimum k-tuple dominating set in planar graphs. In 18th Int.

55

Conference on Principles of Distributed Systems (OPODIS), pages 49–
59, 2014.

[15] Andrzej Czygrinow, Micha l Hańćkowiak, Edyta Szymanska, Wojciech
Wawrzyniak, and Marcin Witkowski. Improved distributed local ap-
proximation algorithm for minimum 2-dominating set in planar graphs.
Theor. Comput. Sci., 662:1–8, 2017.

[16] Andrzej Czygrinow, Micha l Hańćkowiak, and Wojciech Wawrzyniak.
Fast distributed approximations in planar graphs. In 22nd Int. Symp.
on Distributed Computing (DISC), pages 78–92, 2008.

[17] Vida Dujmovic, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr
Micek, and Pat Morin. Adjacency labelling for planar graphs (and be-
yond). J. ACM, 68(6):42:1–42:33, 2021.

[18] Gábor Elek. Planarity can be verified by an approximate proof labeling
scheme in constant-time. J. Comb. Theory, Ser. A, 191:105643, 2022.

[19] Louis Esperet and Benjamin Lévêque. Local certification of graphs on
surfaces. Theor. Comput. Sci., 909:68–75, 2022.

[20] Louis Esperet and Sergey Norin. Testability and local certification of
monotone properties in minor-closed classes. In 49th International Col-
loquium on Automata, Languages, and Programming, ICALP 2022, vol-
ume 229 of LIPIcs, pages 58:1–58:15, 2022.

[21] Laurent Feuilloley. Bibliography of distributed approximation beyond
bounded degree. CoRR, abs/2001.08510, 2020.

[22] Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. What can be
certified compactly? compact local certification of MSO properties in
tree-like graphs. In Alessia Milani and Philipp Woelfel, editors, PODC
’22: ACM Symposium on Principles of Distributed Computing, pages
131–140. ACM, 2022.

[23] Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy
of local decision. Theor. Comput. Sci., 856:51–67, 2021.

[24] Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and
Mor Perry. Redundancy in distributed proofs. Distributed Comput.,
34(2):113–132, 2021.

56

[25] Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapa-
port, Éric Rémila, and Ioan Todinca. Compact distributed certification
of planar graphs. Algorithmica, 83(7):2215–2244, 2021.

[26] Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complex-
ity theory for local distributed computing. J. ACM, 60(5):35:1–35:26,
2013.

[27] Pierre Fraigniaud, Pedro Montealegre, Rotem Oshman, Ivan Rapaport,
and Ioan Todinca. On distributed Merlin-Arthur decision protocols. In
26th Int. Colloquium Structural Information and Communication Com-
plexity (SIROCCO), LNCS 11639, pages 230–245. Springer, 2019.

[28] Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Tod-
inca. A meta-theorem for distributed certification. In Merav Parter,
editor, Structural Information and Communication Complexity - 29th
International Colloquium, SIROCCO 2022,, volume 13298, pages 116–
134, 2022.

[29] Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized
proof-labeling schemes. Distributed Computing, 32(3):217–234, 2019.

[30] Cyril Gavoille and Nicolas Hanusse. Compact routing tables for graphs
of bounded genus. In 26th Int. Coll. on Automata, Languages and Pro-
gramming (ICALP), LNCS 1644, pages 351–360. Springer, 1999.

[31] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for
planar networks I: planar embedding. In ACM Symposium on Principles
of Distributed Computing (PODC), pages 29–38, 2016.

[32] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for
planar networks II: low-congestion shortcuts, MST, and min-cut. In
27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
202–219, 2016.

[33] Mohsen Ghaffari and Merav Parter. Near-optimal distributed DFS in
planar graphs. In 31st Int. Symp. on Distributed Computing (DISC),
LIPIcs, pages 21:1–21:16. Dagstuhl, 2017.

[34] Mika Göös and Jukka Suomela. Locally checkable proofs in distributed
computing. Theory of Computing, 12(1):1–33, 2016.

57

[35] Miikka Hilke, Christoph Lenzen, and Jukka Suomela. Brief announce-
ment: local approximability of minimum dominating set on planar
graphs. In ACM Symposium on Principles of Distributed Computing
(PODC), pages 344–346, 2014.

[36] Piotr Indyk and Anastasios Sidiropoulos. Probabilistic embeddings of
bounded genus graphs into planar graphs. In Jeff Erickson, editor,
Proceedings of the 23rd ACM Symposium on Computational Geometry,
Gyeongju, South Korea, June 6-8, 2007, pages 204–209. ACM, 2007.

[37] Gene Itkis and Leonid A. Levin. Fast and lean self-stabilizing asyn-
chronous protocols. In 35th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 226–239, 1994.

[38] Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive
distributed proofs. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 255–264, 2018.

[39] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes.
Distributed Computing, 22(4):215–233, 2010.

[40] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What can-
not be computed locally! In 23rd ACM Symposium on Principles of
Distributed Computing (PODC), pages 300–309, 2004.

[41] Christoph Lenzen, Yvonne Anne Oswald, and Roger Wattenhofer. What
can be approximated locally?: case study: dominating sets in planar
graphs. In 20th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 46–54, 2008.

[42] Christoph Lenzen, Yvonne Anne Pignolet, and Roger Wattenhofer. Dis-
tributed minimum dominating set approximations in restricted families
of graphs. Distributed Computing, 26(2):119–137, 2013.

[43] W.S. Massey, J.H. Ewing, F.W. Gerhing, and P.R. Halmos. A Basic
Course in Algebraic Topology. Graduate Texts in Mathematics. Springer
New York, 1991.

[44] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
2001.

58

[45] Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed
verifiers in interactive proofs. In 31st ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1096–115, 2020.

[46] Moni Naor and Larry J. Stockmeyer. What can be computed locally?
SIAM J. Comput., 24(6):1259–1277, 1995.

[47] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs,
Structures, and Algorithms, volume 28 of Algorithms and combinatorics.
Springer, 2012.

[48] Ronald Ortner. Embeddability of arrangements of pseudocircles into the
sphere. European Journal of Combinatorics, 29(2):457–469, 2008.

[49] Torrence D. Parsons, Giustina Pica, Tomaz Pisanski, and Aldo G. S.
Ventre. Orientably simple graphs. Mathematica Slovaca, 37(4):391–394,
1987.

[50] David Peleg. Distributed Computing: A Locality-Sensitive Approach.
SIAM, 2000.

[51] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the
time complexity of distributed minimum-weight spanning tree construc-
tion. SIAM J. Comput., 30(5):1427–1442, 2000.

[52] Henri Poincaré. Sur la généralisation d’un théorème d’Euler relatif aux
polyèdres. C.R. Hebdo. Séances Académie des Sciences, 117:144–145,
1893.

[53] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon
Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer.
Distributed verification and hardness of distributed approximation.
SIAM J. Comput., 41(5):1235–1265, 2012.

[54] Wojciech Wawrzyniak. A strengthened analysis of a local algorithm for
the minimum dominating set problem in planar graphs. Inf. Process.
Lett., 114(3):94–98, 2014.

[55] Wojciech Wawrzyniak. A local approximation algorithm for minimum
dominating set problem in anonymous planar networks. Distributed
Computing, 28(5):321–331, 2015.

59

[56] J. W. T. Youngs. Minimal imbeddings and the genus of a graph. Journal
of Mathematical Mechanics, 12:303–315, 1963.

60

