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Abstract

Fixed points are fundamental states in any dynamical system. In the case of gene regulatory
networks (GRNs) they correspond to stable genes profiles associated to the various cell types.
We use Kauffman’s approach to model GRNs with random Boolean networks (RBNs). In this
paper we explore how the topology affects the distribution of the number of fixed points in ran-
domly generated networks. We also study the size of the basins of attraction of these fixed points
if we assume the a-asynchronous dynamics (where every node is updated independently with
probability 0 < o < 1). It is well-known that asynchrony avoids the cyclic attractors into
which parallel dynamics tends to fall. We observe the remarkable property that, in all our sim-
ulations, if for a given RBN with Barabasi—Albert topology and a-asynchronous dynamics an
initial configuration reaches a fixed point, then every configuration also reaches a fixed point.
By contrast, in the parallel regime, the percentage of initial configurations reaching a fixed point
(for the same networks) is dramatically smaller. We contrast the results of the simulations on
Barabasi—Albert networks with the classical Erdos—Rényi model of random networks. Every-
thing indicates that Barabasi—Albert networks are extremely robust. Finally, we study the mean
and maximum time/work needed to reach a fixed point when starting from randomly chosen
initial configurations.
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1. Introduction

A Random Boolean Network (RBN) is a model of a GRN. This model was introduced by
Kauffman in 1969 [34] and it corresponds to a directed graph composed by N genes (nodes)
where each of these genes can be either expressed (state 1) or not expressed (state 0). Each
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gene v receives K randomly chosen genes as input (/ nodes pointing to v). In other words,
the dynamics is defined locally. Kauffman proposed to choose, independently for each node
v, any of the 22" possible functions f, : {0,1}* — {0,1} with equal probability. Finally, a
global dynamics f : {0,1}" — {0, 1} was defined by applying the local functions in parallel
(sometimes this is referred to as synchronous updates). Kauffman found, through simulations,
the existence of a phase transition at K = K. = 2 (from an ordered phase to a chaotic phase).
He also suggested that the number of attractors grows exponentially with /V in the chaotic phase,
proportional to N in the ordered phase, and proportional to v/ at the critical value K, = 2.

Kauffman’s model (and some natural generalizations) motivated a lot of work carried out
mainly by physicists. They tackled problems arising from Kauffman’s definitions both analyti-
cally and numerically: the critical in-degree value [10, 20], the number of attractors [13, 16, 20],
the length distribution of the attractors [5, 12], etc. Robustness with respect of different pertur-
bations has been studied. For example in [26, 54] they consider noise in function evaluation,
while in [37, 35, 44, 53] they consider node state perturbations. In [52] a negative correlation
between modularity (a topological property) and robustness was found. Oscillating behavior and
the period of the oscillations is related to the existence and length of rings in the networks [46].
The fact that regulatory networks arose from an evolutionary process imposes some topological
properties on them, as it is described in [41]. Evolution of robustness under selective pressure is
described in [45] and approaches to design robust networks can be found in [36, 40, 48]. In [50]
the effect on robustness of assigning update functions to nodes based on local topological prop-
erties is analyzed. All these publications assume synchronous updates. In [8] other deterministic
update schedules are analyzed.

From the biologists’ point of view, a fundamental challenge of the post-genomic era is the
possibility of simulating the dynamics of real genetic networks. The enormous amount of
available data of molecular interactions within the cell made it possible to examine critically
the original RBN model. The first observation was that the topology assumption was inade-
quate. Contrasting the uniform topology assumed in the original RBNs, it has been shown that
real genetic networks exhibit a scale-free topology [4, 14, 25, 43]. In such topologies a small
fraction of the genes are highly connected whereas the majority of the genes are poorly con-
nected [2, 51]. Therefore, RBNs dynamics with scale-free topology started to be intensively
studied [6, 15, 29, 32, 42]. As a good example of topological features influencing the dynam-
ics of a GRN, it is shown in [46] that oscillating behavior and the period of the oscillations are
related to the existence and length of rings in the network.

Another criticism of Kauffman’s model was that nodes were updated in parallel. Exper-
imental results confirmed a rather intuitive fact: that genes transition between expressed and
non-expressed states at different times [18, 22]. Informally, there is no global clock that allows
transition to happen only at ticks. Therefore, RBNs with scale-free topology and asynchronous
dynamics is a natural model to be analyzed [17]. We would also like to point out that asynchrony
in the classical RBN model has also been studied in [28, 30, 39, 46, 49].

Our contribution. Fixed points are fundamental states in any dynamical system. In the
case of GRNs they correspond to stable gene expression profiles associated to the various cell
types. This interpretation has been used for modeling europhil differentiation [31], expression
patterns of the segment polarity genes in Drosophila melanogaster [3], flower organ specification
in Arabidopsis thaliana [7], etc.

The goal of this paper is to study the existence of fixed points in RBNs with Barabasi—Albert
topology. Notice that a state being a fixed point does not depend on the timing (i.e. synchronous
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vs. asynchronous) of the update rule. In fact, in a fixed point every gene is in a stable state with
respect to its local input. Therefore, there is no way to change such global configuration. In that
sense, a fixed point is a very robust object of a network, despite the fact that its basin of attraction
can change depending on how the update rule is implemented.

Once the topology of the network is (randomly) generated some nodes will have only outgo-
ing arcs. These were called source nodes by Albert [4] and we will use the same terminology
here. Since their states do not depend on the state of any other node we fix their values arbitrarily.
In this paper we prove that, for every given assignment to the input nodes, the expected number
of fixed points is exactly one (for every topology).

Now the main (and natural) question arises. Given a RBN, how can we actually find its
fixed points? It is clear that testing all the 2V configurations is impossible. For answering
the question we come back to the issue of asynchrony. In fact, in 1994 Bersini and Detours
studied an asynchronous version of the cellular automaton Game-of-Life [11]. They observed
that the introduction of asynchrony modified the dynamics from a behavior with long transients
to a behavior with fixed points. This is rather intuitive: asynchrony is a way to avoid the cycle
attractors the deterministic (parallel) implementation tend to fall into. Roughly speaking, given
a RBN we implement the a-asynchronous dynamics for different values of o (0 < v < 1) [24].
This means that each gene is updated independently with probability « at each time step. When
« varies from 1 down to O the dynamics evolves from the fully deterministic synchronous regime
to a more asynchronous regime. When ao = 0 we choose randomly only one node at each step.

Our simulations show that RBNs with Barabdsi—Albert topology for which there exist fixed
points every initial configuration converges to a fixed point when 0 < v < 1. On the other hand,
when o = 1, the percentage of initial configurations that reached a fixed point varies greatly from
one network to another. In some cases the percentage is close to 0. In average (considering all
the networks we use) the percentage is ~28.9%. It’s worthwhile to note that the tendency to fall
into a fixed point is interesting from different points of view. Biologists would be interested in
the implications of choosing different update rules in their models, while the problem of finding
fixed points is of independent interest for a theoretician. If anything, our experiments show that
asynchronous updates provide a very robust heuristic to find fixed points. This contrasts with a
more analytic approach, such as the algorithms presented in [16, 21].

In order to find properties which could be associated exclusively to the topology of the net-
work we compare the results of the simulations on Barabasi—Albert networks with the results
on the classical Erd6s—Rényi model of random networks [23]. The main difference with the
Barabasi—Albert topology is that here we generated networks for which the percentage of ini-
tial configurations converging to a fixed point is close to 0. Finally, we study the mean and
maximum time/work needed to reach a fixed point when starting from randomly chosen initial
configurations.

Therefore, a remarkable and distinguishable dynamical property arise on RBNs with Barabdasi
Albert topology: robustness of convergence under asynchronous update. This fact could provide
some insight about why such topologies are ubiquitous in GRN. Furthermore, asynchronous up-
dating could be a natural mechanism present in GRNs in order to avoid cyclic dynamics [49].
We limited our study to Barabasi—Albert topologies, which are a particular case of small-world
networks. This, combined with additional choices we made for the boolean network generation
algorithm, resulted in scale-free GRNs which are in the ordered phase regime. We observe that
changing from a synchronous (o = 1) to an asynchronous(o < 1) update rule dramatically in-
creases the “stability” of the networks in terms of the fraction of trajectories that reach eventually
a fixed point. Because of reasons we will state in Section 2.2, we choose parameters to generate
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Erdds—Rényi topologies that produce GRNs lying on the boundary between the chaotic and or-
dered phase regions. These networks also become more stable when switching from synchronous
to asynchronous updates, but the effect is not as marked as in the Barabdsi—Albert networks. We
defer considering other families of small-world topologies and scale—free exponents that induce
GRNss in the chaotic phase regime to future research.

2. Network model

A Random Boolean Network (RBN) corresponds to a directed graph composed by IV genes
(nodes) where each of these genes can be either expressed (state 1) or not expressed (state 0).
We will refer to the nodes of a RBN as vy, vs,...,vn. We define Kf" as the in-degree of node
v; and K¢“! as the out-degree of node v;. Every zero in-degree node is called a source node,
while every non-zero in-degree node is called an internal node. A configuration of the network
is a vector s € {0, 1}* that associates a binary state to each of the nodes.

2.1. Dynamics

We assign to each gene v; a local transition rule ¢; : {0,1}%"+1 — {0,1}. Informally,
the value of ¢; depends on the state of the K" input nodes together with the state of v; itself.
source nodes always remain in the same state. More precisely, if K" = 0, then ¢;(0) = 0
and ¢;(1) = 1. For each internal node v; we construct randomly its local transition function
as follows. Call k the in-degree of v; (i.e, k = Kf"). There are 22" possible functions of the
form f : {0,1}* — {0,1}. A straightforward approach is to choose one of these functions
from a uniform probability distribution. Nevertheless, before selecting a function, we should
rule out those which do not strictly depend on all of its arguments (otherwise we would not
be respecting the network topology). To define this concept precisely, we say that a function
f:{0,1}* — {0,1} strictly depends on its arguments iff for all j € {1,2,--- k}, there ex-
ist x1, g, - - s Lj—1,Tj41," " , Tk € {0, 1} such that f(xl,J?g, LT, O,Z‘j_H, s ,Jik-) 75
flz1, 22, - ,2j-1,1, 241, -+ ,xx). We fix function ¢; by selecting one (randomly) among
all those functions strictly depending on all of its arguments.

The global update rule is characterized by a real parameter a € [0, 1]. We denote the global
transition rule by @, : {0, 1} — {0,1}V, and we define it through the following protocol:

1. Select each internal node independently with probability . We call selected nodes this set
of randomly chosen internal nodes. For the special case o = 0 we select randomly a single
internal node (i.e, the set of selected nodes is a singleton).

2. Update in parallel all the selected nodes (applying the local transition rule in all the nodes
belonging to such set). Do not change the state of the other nodes (input nodes and non-
selected nodes).

Lets; € {0,1}" be a configuration of a RBN at time ¢ € N. A stochastic trajectory, starting
from the initial configuration sy, is the sequence sg, s1, Sg, . . ., where s; = ®,,(s;_1).

The parameter v can be thought of as a measure of parallelism in the update process. The
strictly sequential-random policy rule is captured by a = 0, where only one internal node is
updated at each step. Similarly, by making v = 1, we represent the full parallel-deterministic
policy rule, where all the internal nodes are updated at each step. If « = 1 we call the resulting
trajectory the deterministic trajectory of the system. A configuration s is a fixed point of a RBN
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iff Pr{®,(s) = s}=1. This is equivalent to say that ®;(s) = s. Therefore, s is a fixed point
regardless of the choice of a.

We measure time simply by counting the applications of ®,,. Therefore, the time to go from
So to st in a trajectory is 7'. This notion of time neglects the fact that the computational effort
to evaluate ®, depends on «.. The expected number of ¢’s to be evaluated is Ny where Ny is
the number of internal nodes. Thus, we define the work to go from state s to s to be 7" for all
a > 0. For the special case o = 0 we define the work as NLIT.

When considering the dynamics of the network with aw = 1, it is clear that the trajectory will
eventually become cyclic. Note that if the system reaches a fixed point, the length of the period
is 1. Both the time to enter the cycle and the period are bounded by 2V, where N7 is the number
of internal nodes. However, if a < 1, the idea of cycle is insufficient to describe a trajectory that
does not reach a fixed point. Instead, we have a set of configurations which are visited infinitely
often. This greatly complicates the numerical determination of any eventual convergence to a
fixed point. We therefore select a somewhat arbitrary time horizon to interrupt our simulations.

Notice that, given an initial configuration s, the set of configurations reachable from sy by
repeated applications of @, is a subset of the set of configurations potentially reachable from sg
by repeated applications of ®, when o < 1. In other words, the stochastic trajectory can visit a
larger portion of the state space than the deterministic one.

A remarkable feature of selecting the local update functions randomly, as we did, is that we
can predict, in a statistical sense, the number of fixed points in the network. This is a particular
case of a fact stated in [47] (Equation 35), where they analyze the expected number of attractors
of arbitrary length L. We include our own derivation to make the paper self-contained. Besides,
since we are using asynchronous updates, cases where L > 1 are irrelevant. This allows us to
write a much shorter and elementary proof.

Consider an arbitrary configuration s € {0, 1}*. What is the probability of s to be a fixed-
point? First notice that s is a fixed point if and only if s; = @;(s;,, .. - ,siki) for every ¢ €
{1,...,N}, where v;,,...,v;, are the input nodes of v;.

It follows from the definition of the ¢;’s functions, that

Pr{s(si,, ... 81) = 0} = Pr{o(si,, ..., s0) = 1} = %
for every internal node v;. The reason for that is the following: if a function ¢; strictly depends
on all of its arguments then the complementary function (the one where we replace 1’s with 0’s
and 0’s with 1’s) also does. On the other hand, Pr{¢;(s;) = s;} = 1 for every source node v;.
Therefore, the probability of s to be a fixed-point is 27V’ where N is the number of internal
nodes.

Let X be the Boolean random variable that equals 1 if the configuration s is a fixed point
and O otherwise. The expected number of fixed points is

Y EBX)= Y 27 Nr=2VW

sc{0,1} N s€{0,1}N

Note that N — Ny = Ng is the total number of source nodes of the network. If we fix
all these source nodes to some arbitrary value in the initial configuration, then the expected
number of fixed points goes down to 1. In fact, in that case, the number of effective different
configurations is 2V ~~& = 277 and the expected number of fixed points becomes 2V ~N1 = 1
instead of the original 2V N1,



Until this point, neither the definitions nor the theorem we just described make assumptions
about the topology of the RBN. Note that the theorem is only about the expectation of the number
of fixed points, and gives no further information about the probability distribution of them. As
we will see later on, the topology of the network does influence this distribution. In the following
subsection we will describe two families of topologies that have been studied in the literature.

2.2. Topology

We start describing here a process by which we construct a directed BA network with N
nodes and average in/out-degree equal to k. Let Ny and k be positive integers such that £ <
Ny < N. The process starts from a directed clique with Ny nodes (i.e, No(Ny — 1) arcs).
Call these nodes vy, v2, ..., vn,. The process now involves N — Ny growth stages, numbered
No+1,Ng+2,...,N. At each stage, a single node is added to the network.

Call v; the node added at stage 7. We will also add k edges to the growing network. We toss
a fair coin and proceed as follows:

1. In the case of heads we add k edges pointing from k different nodes in {vy,...v;_;} towards
v;. These k nodes are selected randomly following a preferential attachment rule such that
the probability of v; to be selected is proportional to KJ‘?“t + 1.

2. In the case of tails we add k edges pointing from v; to k different nodes in {v1,...v;_1}.
These k nodes are selected randomly following a preferential attachment rule, such that the
probability of v; to be selected is proportional to K j”‘ + 1.

We will refer to the process just described as the BA algorithm because it is based on previous
work by Barabdsi and Albert [9]. Following [32], we started with a clique of size Ny = 5 and
average in/out-degree k = 2 to create the topology using the BA method. If a RBN has a
topology created by the BA algorithm, we will call it a BA network. An interesting property of
BA networks is that the scale—free exponent is 3, regardless of the value of k. This exponent has
an important influence on the dynamics, as was shown in [5].

The BA method, as defined here, never creates an edge from some node to itself. The same
assumption is present in [9] and [32] and is pervasive in the literature. It is noteworthy that the
theorem proved in Subsection 2.1 does not require a special topology. Therefore, it still applies
to networks where auto-regulation is present. Thus, for given values for the input nodes, the
expected number of fixed points would still be 1. However, it is conceivable that the probability
distribution of the number of fixed points will change.

In the next sections, we compare the results on BA networks with the classical Erdos—Rényi
model of random networks [23] (random directed graphs). By doing so we intend to find proper-
ties which could be associated exclusively to the topology of the network. This type of compari-
son to assess the influence of topology is common in this field of research, see for example [29].
Random networks of this well-known Erddos—Rényi family can be easily generated. Let p be
a real number in the [0, 1] interval. Each potential link (v;,v;) is selected independently with
probability p. Therefore, the expected number of links in the Erdés—Rényi network is pn(n — 1),
where n is the number of nodes in the Erdos—Rényi network. We will call this process the ER
algorithm. If a RBN has a topology created by the ER algorithm, we will call it an Erdds—Rényi
network or ER network, for brevity.

Conceptually, to make such comparison “fair,” we have to adjust the parameters used by
the generation algorithm so the networks generated have some common statistical properties. It
seems reasonable to preserve both the number of internal nodes and the average in-degree. The
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first parameter determines the number of states the system can be in, after the state of the source
nodes have been fixed. The average in-degree is a measure of connectivity and density. Formally,
if we run the topology generation BA algorithm presented for BA networks with parameter NV
(recall that Ny = 5 and k£ = 2) we will obtain a BA network G 4. The average in-degree is
k = 2. Call N the expected number of internal nodes of G 4. Similarly, if we run the topology
generation ER algorithm with parameters n and p, we will obtain a graph Ggr.

The problem we wish to solve is: Given N7 find n and p such that the expected in-degree of
nodes in G g is 2 and the expected number of internal nodes of Ggp is N;. Therefore,

p-(n—1)=2 (1)
n-(1—(1—p)" ") =Ny )

_2

FromEqn 1, p = CEE

Substituting in Eqn 2:

n- <1 _ <1 _ mfl)y_l) N, 3)

The only unknown is n, and although this equation is hard to solve in closed form, the right
hand side behaves linearly in the asymptotic sense. Using simple calculus techniques, we can
estimate the solution to Eq 3 as:

1
1—e2

n=(N;—2-¢?) 4)

The asymptotic approximation is so good that the rounding of n to an integer is the biggest
source of error even for small values, say 10, of N;. Therefore, for practical purposes, Eq 4
gives the exact answer. To use this formula you have to know Ny, though. In spite of Ny
being determined by [V, it is not straightforward to find out an explicit formula. To obtain an
approximation, we can simply generate a suitable number of networks using the BA algorithm
and estimate NN as the average of the number internal nodes over all the generated graphs.

3. Experiments

We programmed a simulator using about 700 lines of portable ANSI C. We ran a number of
pseudo-random experiments. The main goal was to study the influence of the parameter « in the
dynamics of the networks. More precisely, we were interested in answering, for a given network,
the following questions as a function of a:

1. Are there fixed points?
2. If yes,

a) how many?
b) what fraction of trajectories converge to a fixed point?

3. If we restrict the analysis to those trajectories that converged to a fixed point,

a) what is the average time (number of iterations) until a fixed point is reached?
7



b) what is the average work (total number of operations) ! until a fixed point is reached?

We setup the time horizon to 50000 iterations. This number seems to yield a robust deter-
mination of whether the network eventually reaches a fixed point or not. For the BA networks
we ran the BA algorithm using parameters N = 100 and £ = 2. We generated 50 networks.
For each network we generated 1000 initial configurations. The states were generated randomly,
but the values corresponding to source nodes were set to zero. More precisely, to generate the
initial configuration s of a network N, if K/ = 0 then the i-th component of s was set to zero.
Otherwise, the i-th component of s was generated randomly by tossing a fair coin.

Each one of the 50 x 1000 pairs network/initial configuration was used as a starting point for
11 simulations, each one using a different value of a. The values of a were 0,0.1,...,0.9,1. We
ran each one of the 50 x 1000 x 11 simulations until the trajectory converged to fixed point or
the time horizon was reached.

For the networks using the Erdos—Rényi topology we had to compute the input parameters
for the ER algorithm (n and p). To estimate Ny, we generated 10000 graphs using the BA
algorithm, with & = 2 and N = 100. Then we divided the total number of internal nodes by
10000, which yielded N; = 62.745. By using Eq 4, we determined n = 72. From Eq 1 we
obtained p = 0.028196.

With the two parameters, we repeated the process we used for the BA networks: We cre-
ated 50 random networks and, for each one, we generated 1000 initial conditions. We also used
the same values for o and the same time horizon for the simulations. We verified that the BA
algorithm indeed produces graphs with vertex degrees that follow a power law probability dis-
tribution. Figure 1 shows the relative frequency of each degree, for the 50 BA networks. The
diagram, in log-log coordinates, shows a high similarity with a straight line. This is what we
expect from a power-law distribution. The noise for the higher vertex degrees is not surprising,
as highly connected vertices are rare and hence the population size is small.

1

> o01®
c
3
5 By ® In-degree
E 0.01 -% Out-degree
;;3 !'i

0.001 >

Degree

Figure 1: Relative frequency of vertex degrees in the 50 BA networks

INotice that, for o = 0, the amount of work per iteration is minimal (only 1 node is updated). On the other extreme,
when a = 1, the amount of work per iteration is maximal (all the internal nodes are updated in parallel in each iteration).
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4. Results and analysis

4.1. Number of fixed points

For both the BA and the Erdos—Rényi families we computed the number of fixed points
found per each network and we summarize the results in Figures 2 and 3. The vertical axis of the
histograms represent relative frequency over the 50 networks tested. Note that in 15 out of the
50 generated BA networks, no fixed point was found. More precisely, for all «, none of the 1000
trajectories was absorbed into a fixed point within the 50000 iterations used as time horizon. The
number of ER networks for which no fixed-point was found is 23.

06 0.6

05 0.5

02 0.2
0.1 0.1
: E e 0 - -
3 4 0 1 2 3 4

Figure 2: Frequency of number of fixed points  Figure 3: Frequency of number of fixed points
for BA networks. for ER networks.

We proved analytically in Section 2 that the expected number of fixed points for any network
is 1. Unfortunately, the actual distribution is hard to compute and therefore we use histograms as
a base for a numerical approximation. We can see in Figure 2 that for BA network the most likely
number of fixed points is 1. If we use the relative frequencies to approximate probabilities, then
the estimated expected number of fixed points is 1.08, which is close to the theoretical prediction.

By contrast, for the Erdos—Rényi model, we can see in Figure 3 that the distribution gets
more skewed and 0 becomes the most likely value. The estimation of expected number of fixed
points in this case yielded 0.88. This estimation is close to 1 if we consider we are using only 50
networks and the number of potential fixed points is about 2N1 with N; ~ 63, as we described
in Subsection 2.2.

4.2. Fraction of converging trajectories

We begin by focusing our analysis on those 35 BA networks for which we were able to prove
the existence of fixed points (by finding them). Recall that we used 1000 initial configuration
per network. If @« < 1 (i.e, « = 0,0.1,...,0.9) out of the 350000 stochastic trajectories we
computed, 100% of them reached a fixed point. Despite the fact that for all these 35 networks
we were also able to find at least one converging trajectory when o = 1, the situation in this case
changed dramatically. In fact, out of the 35000 deterministic trajectories we simulated for those
35 networks, only ~28.9% of them reached a fixed point. Notice also that the percentage of
deterministic trajectories that reached a fixed point varied greatly form one network to another.
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We present the percentages for each network in Figure 5. Every single trajectory that did not
reach a fixed point ended in a cycle within the time horizon. For presentation purposes, we
included the analogous diagram for o < 1 in Figure 4.

o . .
% of simulations that converged, by network % of simulations that converged, by network

BA a<1.0 BA a=1.0
100 100
90 90
8 80
70 70
60 60
® 50 R 50
40 40
30 30
” : 1l
10 10
0 0 ----llllllllIIIIIIIIII
The 35 networks The 35 networks

Figure 4: Percentage of simulations that con-  Figure 5: Percentage of simulations that con-
verged when o < 1 for each of the 35 BA net-  verged when o = 1 for each of the 35 BA net-
works with at least one fixed point. works with at least one fixed point.

We immediately notice that a higher proportion of simulations reached a fixed point when
a < 1 than when o = 1. This is not unexpected as the non-determinism in the stochastic
trajectories is a way to avoid the cyclic attractors the deterministic trajectories tend to fall into.
The remarkable property is that, if for a given network a single trajectory with o < 1 converged
to a fixed point, then all the trajectories with ac < 1 also converged (although not necessarily to
the same point). Also note that all the fixed point discovered through fully parallel updates were
also discovered with the o < 1 simulations. This indicates that stochastic updates can be used as
a robust method to detect the existence of fixed points.

For the ER networks we computed the same statistics as we did for the BA networks, were
applicable. There were 27 out of the 50 networks were we found at least a fixed point. Interest-
ingly, only 21 of those fixed points were detected by deterministic trajectories. The breakdown
of percentages of converging trajectories by network for the case ao = 1 is presented in Figure 7.
Every single trajectory that did not reach a fixed point ended in a cycle within the time horizon.
The breakdown of percentages by network for the case a < 1 is presented in Figure 6. We notice
immediately the difference between Figures 6 and 4: For some Erdos—Rényi networks with fixed
point not all stochastic trajectories converged to a fixed point while all trajectories converged in
the BA networks case, as we already described before.

To emphasize the differences in the qualitative behavior we look more closely at two particu-
lar networks. We selected one ER network for which the percentage of trajectories that converged
(considering all @ < 1) was about 50%. Recall that 1000 initial configurations were used, 10
values of o were tried and one trajectory per o was simulated. That means that about 5000 out
of 10000 trajectories converged to a fixed point for that particular network. The histogram in
Figure 9 shows that the choice of the initial configuration changes the probability of reaching a
fixed point. The heights of the bars represent numbers of initial configurations. The horizontal
axis is the percentage of trajectories (starting from one particular initial configuration) that con-
verged to a fixed point. For instance, for the ER network, we can deduce the following: 160

10



% of simulations that converged, by network % of simulations that converged, by network

ER a<1.0 ER a=1.0
100 100
90 90
80 80
70 70
60 60
X 50 X 50
40 40
30 30
20 20
) w lll
0d—m ol — - =mmmlll
The 27 networks The 21 networks

Figure 6: Percentage of simulations that con-  Figure 7: Percentage of simulations that con-
verged for each of the 27 ER networks where  verged for each of the 21 ER networks where
a fixed point was found. a fixed point was found.

initial configurations converged in 40% of the simulations. Since for each initial configuration
we ran exactly 10 simulations there is no need to associate intervals with bins. For contrast, we
show in Figure 8 the analogous histogram for an arbitrary BA network with a fixed point.
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Figure 8: Histogram of number of initial config-  Figure 9: Histogram of number of initial config-
urations that lead to a converging trajectory fora  urations that lead to a converging trajectory for
single BA network which had at least one fixed  a single ER network which had at least one fixed
point (o < 1). point (o < 1).

Another difference between the influence of parallelism when updating BA or ER networks
is seen comparing Figures 2, 3 and 10. Figure 10 shows the difference in number of fixed points
found depending on « being 1 or less than 1. The columns that describe the @ < 1 case represent
the same values found in the histogram in Figure 3. The columns that describe the o = 1 case
in Figure 10 show that fewer fixed points were discovered. This, again, strongly suggests that
using partially parallel updates is a sensible strategy to find fixed points. It also indicates that
the set of discovered fixed points somehow depends on the choice of a. For BA networks, we
also discriminated between o = 1 and o < 1 cases. For these networks though, in both cases
the histograms were identical to the one in Figure 2. This indicates that the convergence to fixed
points is fairly insensitive to the choice of a.. This property shows a form of robustness of BA
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networks.
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Figure 10: Frequency of number of fixed points for ER networks for the « = 1 and o < 1 cases.

4.3. Time and work until convergence

For BA networks, Figures 11 and 12 represent the mean and maximum time/work to reach the
fixed point for only the simulations that reached it. This means, for & < 1, each column gives the
average and maximum over 35000 simulations, while for & = 1 the values were computed over
a smaller sample because only ~28.9% of the runs ended before the time horizon was reached.
This makes the values of the rightmost column of each figure somewhat incomparable with the
others.

In Figure 11 we note how the average time changes with .. The qualitative behavior of the
results are in part intuitive. If o = 0 we expect the time to be high, since not much work is done
per iteration. We also expected the time to increase when « approaches 1, because the system
becomes more deterministic and tends to imitate the behavior of the o = 1 case. Therefore, the
cycles of the deterministic trajectories become metastable regions of the stochastic trajectories.

Note that the average number of iterations for « = 1 is smaller than for all the values for
a < 1. The comparison is not fair, though, because the parallel update rule is not a reliable way
to find fixed points. With respect to the amount of work, we can notice, as expected, that small
values of a become very competitive (see Figure 12). One possible explanation for the parallel
simulations outperforming the ov < 1 cases (neglecting the lack of robustness, of course) is as
follows: The o = 1 updates are prone to solve only the “simple instances” of the problem. That
is, only very stable fixed points located close to the initial configurations are likely to be found.

To make a fair comparison between the o« < 1 and o = 1 situations, we recompute the
statistics but only for the cases where the deterministic model found a fixed point. This means,
we considered only the pairs (network G, initial configuration s) such that the deterministic
trajectory of G starting from s reached a fixed point. Figures 13 and 14 show the results. From
comparison against Figures 11 and 12 we notice that the average times of the simulations for
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networks networks

a < 1 actually decreased. This supports the hypothesis of & = 1 working mostly for simple
instances of the problem. The differences in running time may not be considered substantial
though and the problem requires further study.

For ER networks, Figures 15 and 16 are the mean and maximum times/work to reach the
fixed point for only the simulations that reached it. This means, for & < 1, each column gives the
average and maximum over 27000 simulations, while for o = 1 the values were computed over
a smaller sample because only ~24% of the runs ended before the time horizon was reached.
In this case we did not compute the averages/maximums for the stochastic model restricting the
networks and initial conditions to those that reached a fixed point with deterministic updates.
There was no qualitative difference between the results for BA networks (Figures 11 and 12)
and the times for ER networks. Data suggests that ER networks are slower to converge than BA
systems.

4.4. Discussion

The mathematical concept of fixed points play a central role in Systems Biology. For exam-
ple, as stated in [38], “Huang and coworkers [31] provided the first evidence that mammalian
cell types might correspond to attractors of a high dimensional dynamical system.”

We will make the case that RBNs, as defined here, have a behavior that resembles that of
natural networks. In fact, it is well known that gene expression/repression changes according to
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external signals, such as temperature or availability of nutrients and/or oxygen. This can be mod-
eled easily by setting the values of input nodes depending on the external signals. Considering
only the case of rapid responses to external challenges, for example to achieve homeostasis, we
will also assume that gene expression state is (after the transient) mostly function of the external
signals. This is consistent with the assumtions in [27]. In terms of the model this means the fixed
point should be function of the values of the input nodes. Although stochasticity sometimes plays
an important role in cell dynamics [33], for purposes of discussion we will assume that for each
set of external signals there should be one or a small number of fixed points. Another property is
stability, meaning the fixed point should have a large basin of attraction. Another desirable fea-
ture is that the fixed point(s) should be reached “quickly.” By quickly, we mean that the number
of transitions should be small compared to the total number of possible configurations. Finally,
the behavior of the model should not depend dramatically on the choice of a.

Our simulations with asynchronous updates on BA networks showed all properties men-
tioned above. The theorem in Subsection 2.1, together with the histogram in Figure 2 show that
the number of fixed points is, with high probability, close to one. The fact that all trajectories
converged, as shown in Figure 4 indicated that the model is robust regardless of the choice of «,
as long as it is less than 1. With respect to the speed of convergence, the average number of iter-
ations to reach a fixed-point is small compared to the number of possible configurations, which
was about 2°3 in all the numerical experiments. Our results contrast with those presented in [19],
were they show that the behavior of their asynchronous RBNs was highly sensitive to changes in
the way or randomly picking up the nodes to be updated. This does not contradict our findings as
their assigning of update functions to vertices and their algorithm to create the topology differs
from ours. In particular, they were assigning to every node a generalization of cellular automata
rule 126. An anonymous reviewer suggested that perhaps the difference in behavior between
the BA and ER GRN could be explained by the former being in the ordered phase, and the later
being in the chaotic phase. This is an interesting possibility. Since BA networks have a free scale
exponent of 3 and, using the same notation as in [5], we chose update rules with uniform proba-
bility p = 1/2, our BA GRN are well in ordered phase. Our ER GRNs have a mean connectivity
value k = 2. Therefore, by Equation (8) in [5], they are on the boundary between the ordered
and chaotic phases. This could explain the qualitative differences in behavior and prompts for
further research.

Of course, the goal of the model is to provide insight on biological processes. The most
remarkable observation is that the three aforementioned properties appeared in the simulations
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without requiring any kind of deliberate design. The network topologies, the dynamics and ver-
tices to be updates were selected at random. Yet, the behavior was as desired, as long as the
network was BA and o« < 1. This suggests that the prevalent scale—free topologies in natural
GRNSs [4] could be a major factor in robustness of living cells. Also note that updating nodes
picked randomly is not the only way of adding non-determinism to a RBN. In [55], they consid-
ered the existence of noise while evaluating the (synchronous) update rules and they analyzed the
shift among multiple basins of attraction resulting from this stochastic perturbation. They present
the idea that some biological processes may rely on the relative stability of network states. It is
conceivable that topological properties of the network affect the expected passage time (from one
basin to another) just as it affects the distribution on the number of fixed points, so more study
on this is necessary.

As an aside, finding fixed points of a Boolean network is equivalent to finding satisfying
assignments to Boolean formulas. This is the well known SAT problem in Computer Science,
and it is believed to be computationally hard if we consider the worst case running time [1].
However, the results shown in Figures 12, 14 and 16, which imply fast convergence, suggest
that the asynchronous update rule provides us with an efficient heuristic to find fixed points or
satisfying assignments.

5. Conclusions

We analyzed the tendency to reach a fixed point, the number of iterations and the work needed
to converge to it for different families of Boolean networks and update policies. We summarize
our results as follows:

a) Using partial parallelism (i.e, « < 1), the likehood of the trajectory to reach a fixed point
increases. This happens regardless of the topology.

b) For BA networks the choice of « is not very important from the convergence point of view, as
long as it is less than one. We base this conclusion on the fact that we could not find a simple
example of a network not converging to a fixed point provided that it has 1.

¢) For BA networks the choice of « is not very important from the work point of view, as long
as it is less than one. This follows from the analysis of the filtered case. The work is about
the same as in the av = 1 case, while full parallelism increases the likehood of being trapped
in a cycle.

d) For ER networks the choice of « is relevant from the work point of view, when it is less than
1. The set of points discovered seems to be somehow dependent on the choice of .

e) The combination of BA networks and using @ < 1 for the updates was enough to impose
dynamical properties which are similar to those observed in nature.
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