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Abstract

The goal of this paper is to show why the framework of communication complex-
ity seems suitable for the study of cellular automata. Researchers have tackled
different algorithmic problems ranging from the complexity of predicting to the
decidability of different dynamical properties of cellular automata. But the dif-
ference here is that we look for communication protocols arising in the dynamics
itself. Our work is guided by the following idea : if we are able to give a protocol
describing a cellular automaton, then we can understand its behavior.
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1. Cellular automata

Throughout this paper we restrict our study to one-dimensional cellular
automata. These are infinite collections of cells arranged linearly, each having
a state from a finite set. The dynamics of the system is governed by a local rule
applied uniformly and synchronously to the lattice of cells.

A cellular automaton (CA) is a triple A = (S, r, f) where:

e S is a (finite) state set,
e 1 is the neighborhood radius,
o f:8%F!l 5 S is the local transition function.

A coloring of the lattice Z with states from S (i.e. an element of S%) is
called a configuration. To A we associate a global function G acting on configu-
rations by synchronous and uniform application of the local transition function.
Formally, G : S — S? is defined by:

G@)e=f(@oery oy Togr)

for all z € Z. Several CA can share the same global function although there are
syntactically different (different radii and local functions). However, as we will
see below (section 3), the main property we are interested in (namely, commu-
nication complexity) is independant of the particular choice of the syntactical
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representation. Moreover, an important part of the paper (Section 4) focuses
on elementary CA, which is a fixed syntactical framework.

After n time steps the value of a cell depends on its own initial state together
with the initial states of the rn left and rn right neighbouring cells. More
precisely, we define the n-th iteration of local rule f™ : {0,1}2™*! — {0,1}
recursively: f! = f and, for n > 2,

fn(z—rn c. 21,2051 - - - Zrn) = fnil(f(z—rna R Z—rn—i—QT) e f(zrn—QTa cey Zrn))

Finally, we call P-complete a cellular automaton such that the problem of
predicting F™ on all configurations of size 2rn + 1 is P-complete.

Our work is motivated by the following idea: if we are able to give a simple
explicit description of f™ (for arbitrary n), then we can understand the behavior
of the corresponding CA.

2. Communication complexity

Communication complexity is a model introduced by A. C.-C. Yao in [16],
and designed at first for lower-bounding the amount of communication needed
in parallel programs. In this model we consider two players, namely Alice and
Bob, each with arbitrary computational power and talking to each other to
decide the value of a given function.

For instance, let f: X xY — Z be a function taking pairs as input. If we
give first elements of pairs to Alice, and second to Bob, the question communi-
cation complexity asks is “how much information do they have to communicate
to each other in the worst case in order to compute f 77.

More precisely, we define protocols, which specify, at each step of the com-
munication between Alice and Bob, who speaks (Alice or Bob), and what he
says (a bit, 0 or 1), as a function of their respective inputs.

This simple framework, and some of its variants we discuss in this arti-
cle, appear to us as a relevant way to study CA. The tools of communication
complexity suggest experiments to test hypothesis about properties of CA (see
Section 4).

Definition 1. A protocol P over domain X XY and range Z is a binary tree
where each internal node v is labeled either by a map a, : X — {0,1} or by a
map b, :' Y — {0,1}, and each leaf v is labeled either by a map A, : X — Z or
by a map B, : Y — Z.

The value of protocol P on input (z,y) € X XY is given by A,(x) (or
B,(y)) where A, (or B,) is the label of the leaf reached by walking on the tree
from the root, and walking left if a,(x) = 0 (or b,(y) = 0), and walking right
otherwise. We say that a protocol computes a function f: X XY — Z if for
any (z,y) € X XY, its value on input (x,y) is f(x,y).

Intuitively, each internal node specifies a bit to be communicated either by
Alice or by Bob, whereas at leaves either Alice or Bob determines the final value
of f since she (or he) has received enough information from the other.

Remark. In our formalism, we don’t ask both Alice and Bob to be able to give
the final value. We do so to be able to consider protocols where communication
is unidirectional (see below).



Definition 2. We denote by cc(f) the deterministic communication complezity
of a function f : X XY — Z. It is the minimal depth of a protocol tree computing

1.

We study functions with the help of their associated matrices. In such ma-
trices, rows are indexed by elements in X, columns by elements in Y. They are
defined by M, ; = f(i,j) € Z. For elementary CA, we represent the n-th iter-
ation function of f™ : {0,1}2"*! — {0,1} as f" : {0,1}" x {0,1}"*1 — {0,1}.
For instance, Figure 1 represents the matrix of elementary CA rule 178, when
we give n bits to Alice (rows) and n + 1 bits to Bob (columns); i.e. when
X ={0,1}" and Y = {0, 1}""1. We denote as Mjtq such a matrix.

Figure 1: Matrices of rule 178, for n = 6 (left) and n = 7 (right)

From the study in [7], we know that a protocol for a function induces a
partition of the matrix of this function into monochromatic generalized rectan-
gles (i.e. cartesian products of subsets of X and Y). So a lower bound for the
deterministic communication complexity of a function ¢ is given by log, Cp(¢),
where Cp(¢) stands for the partition number of ¢, i.e. the number of rectangles
needed in a minimal partition of the matrix into monochromatic rectangles.

Moreover, we call one-round communication complexity, denoted by ccq, the
communication complexity when restricted to protocols where only one person
(Alice or Bob) can speak. Precisely, a one-round protocol is a tree where either
all internal nodes have labels of type a, and all leaves labels of type B, (Alice
speaking to Bob who then gives the final answer), or all internal nodes have
labels of type b, and all leaves labels of type A, (Bob speaking to Alice who
gives the final answer).

Definition 3. The one-round deterministic communication complexity of a
function f : X XY — Z, denoted by cc1(f), is the minimal depth of a one-round
protocol tree computing f.

This restriction is justified by the ease of experimental measures on the com-
munication complexity of cellular automata it allows. More precisely, according
to Fact 1, simply counting the number of different rows in a matrix gives the
exact one-round communication complexity of a rule, while measuring the de-
terministic communication complexity of a function implies being able to find
an optimal partition of its matrix into monochromatic rectangles.

Fact 1 (from [7]). Let f be a binary function of 2n wvariables and M; €
{0,1}2"%2" its matriz representation, defined by My¢(z,y) = f(zy) for x,y €
{0,1}". Let d(My) be minimum between the number of different rows and the
number of different columns in My. We have ccq(f) = [log(d(My))] .



When several rounds are allowed, the communication complexity is con-
nected to the rank of matrices. In fact, for an arbitrary boolean function f, we
have the following bounds (see [7]):

rank(My) > cc(f) > log(rank(My))

Moreover, the following conjecture appears in [10] :

Open Problem 1. Is there a constant ¢ > 1 verifying, for any function f :
ce(f) € O(log(rank(M;))®).

Experimentally, the rank of matrices is the only parameter we computed in
order to evaluate the multi-round communication complexity of CA. But it did
not give tight bounds and the matrices to be considered are exponentially large.

A theorem by J. Hromkovi¢ and G. Schnitger [5] upper bounds the commu-
nication complexity of Turing computations:

Theorem 1. For a language L C {0,1}* and a nondeterministic TM A recog-
nizing this language, we have

Ta(n) € Q(ce(xa(L))?)

Where T'a(n) is the time required by A to recognize L and xy, is the characteristic
function of L restricted to length n.

The proof uses the crossing sequence argument, introduced by Cobham [1]

3. Communication Complexity in Cellular Automata

We are interested in the sequence of iterations (f™),, of the local rule of CA.
So we won’t consider the communication complexity of a single function but the
sequence of complexities associated to the family (f™),,.

Another important point is the choice of how the input is split into 2 parts.
We consider any possible splitting into 2 connected parts and take the worst
case. Formally, given a CA local rule f:S?"*! — S, we denote by f; (with
0 <4 <2r+1) the function f;: 5% x $"+1=% — §. We also define fI* for all
n>1and all 7 with 0 <7 <2rn+ 1.

Definition 4. The communication complezity cc(A) of A is the function

n+— max cc(f
0<i<2rn-+1 ("),

where f and r are the local rule and radius of A. We define in a similar way
the one-round communication complexity ccy(A).

Remark. This definition with arbitrary splitting of input is a slight modification
of the definition proposed by E. Goles and I. Rapaport in [3], where the central
cell is fized, and Alice and Bob recieve exactly the same number of input cells.

Maximal communication complexity can be reached by cellular automata.

Proposition 1 ([3]). There is a CA A such that cc(A) € Q(n).



3.1. Separation results

One could ask whether counting the number of different rows is a really accu-
rate measure, and how large is the gap between the cost of one-round protocols
and the cost of protocols where several rounds are allowed. We already know
from [7] that the gap between one-round protocols and multi-round protocols
can be exponential. The following fact shows that we get the same exponential
gap if we restrict ourselves to functions predicting CA.

Proposition 2. There exists a CA A such that ccq1(A) is an exponential in

cc(A).

Proof sketch. For general functions in {0,1}* x {0,1}* — {0,1}, there is one
canonical function satisfying this relation between cc; and cc : consider the
complete binary tree with height i and label all its leaves and nodes with 0 or
1. The path associated to such a labeling is defined as follows : upon arriving
on a node labeled with a 0 (resp. a 1), define the next node of the path as the
root of the left (resp. right) subtree. The final value of the function is the label
of the last node of the path (i.e. a leaf).

In this tree, give all odd levels to Alice and even ones to Bob. An easy multi-
round protocol solves it in communication complexity h : in each turn, either
Alice or Bob tells each other the label of the current node, giving to the other
one the direction to follow (left or right) to get to the next node. It is a known
fact from [7] that this problem cannot be solved with a one-round protocol in
0(2™) rounds.

We describe how a CA can encode this problem on figure 2, in terms of
signals. The top of the tree is encoded on the sides of the initial configurations,
and the final values (leaves) are at the center. The squares delimit the levels
of the tree. Clearly, odd levels are on the left, while even ones are on the right
side of the configuration.

The general behavior of this CA is to select data from the bottom of the tree.
The green signals represent the data, the dashed ones represent data already
selected, and the black ones are the selectors. All of them can carry the values
0 or 1. dotted signals separates the levels, transforming dashed signals into
green ones. Black signals are selectors, they carry the values 0 (resp. 1) and
transform into red signals carrying the value of the first (resp. second) green
signal crossed.

At each step, the set of “selected” leaves is halved by selections by black
signals. Since these signals select the “correct” (i.e. left of right, depending on
their label) subtree, the last leaf remaining is the actual value of this instance
of the tree problem. O

The problem with the previous proof is that we build an artificial and com-
plicated CA, with many states and an unclear local rule. A more accurate
question is : Are there elementary CA with a low multi-round communication
complexity, but a high lower bound for one-round protocols? We leave this as
an open problem.

Considering the recent results by D. Woods and T. Neary [8], a very natural
question one could ask is the following: What do computational properties of
CA, such as P-completeness, imply on the its communication complexity? As
shown by the following proposition, one can build P-complete cellular automata
with arbitrarily low communication complexity.
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Figure 2: A cellular automaton computing the tree problem, and the corresponding tree

Proposition 3. For any k > 1, there exists a P-complete CA A such that
cc(A) € O(n'/¥).

Proof sketch. Consider any Turing machine M. We construct a CA A able to
simulate M only slowly but still in polynomial time: it takes n* steps of A to
simulates n steps of M. Hence, by a suitable choice of M, A is P-complete.

First it is easy to construct a CA simulating M in real time. We encode
each symbol of the tape alphabet of the Turing machine by a CA state, and
add a “layer” for the head, with ’—’ symbols on its left and ’«—’ symbols on its
right. We guarantee this way that there can be only one head : if a ’—’ state
is adjacent to a ’«’ state without head between them, we propagate an “error”
state destroying everything.

We then add a new layer to slow down the simulation: it consists in a single
particle (we use the same trick to ensure that there is only one particle) moving
left and right inside a marked region of the configuration. More precisely, it
goes right until it reaches the end of the marked region, then it adds a marked
cell at the end and starts to move left to reach the other end, doing the same
thing forever. Clearly, for any cell in a finite marked region, seeing n traversals
of the particle takes Q(n?) steps. Then, the idea is to authorize heads moves in
the previous construction only at particle traversals. This way, n steps of M
require n? time steps of the automaton. By adding another layer, one can also
slow down the above particle with the same principle and it is not difficult to
finally construct a CA A such that n steps of M require n* time steps of A.

Now, the communication complexity of A is O(n'/*) because on any input
of size n, either the “error” appears, or a correct computation of O(nl/ k) steps
of M occurs. Distinguishing the two cases takes only constant communication.
Moreover, in the case of a correct computation, it is sufficient to determine the
initial position of particles, the sizes of marked regions (cost O(log(n)), and the
initial position of the Turing heads as well as the O(n'/*) surrounding states. [J

3.2. Upper bounds

We propose here a first scheme of complexity classes in cellular automata,
based on their communication complexity. What we actually measure is 2°(/)
This is mainly justified by experiments : the protocols we got for cellular au-
tomata with D(f) = 2logn seemed much more sophisticated than those in
logn. This is also justified by the fact that what we actually compute is either



the number of different rows or columns, or the number of rectangles in the
matrices. Thus, in the rest of this article, we will use the terms bounded or
constant for CA with communication complexity bounded by a constant, linear
for CA with communication complexity logn + O(1), quadratic for CA with
communication complexity 2logn + O(1), and so on.

In this section, we give some well-known properties of CA that induce a
bounded communication complexity. The results below are adaptations of ideas
of [3] to the formalism adopted in the present paper.

Proposition 4. Let A be any CA of local function f. If there is a function
g : N — N such that f™ depends on only g(n) cells, then cc(A) < g(n)/2.

Following the work of M. Sablik [13], one can characterize the set of CA
having a bounded number of dependant cells (i.e. a bounded function g(n)):
they are exactly these CA which are equicontinuous in some direction (theorem
4.3 of [13]). This set contains the nilpotent CA (a CA is nilpotent if it converges
to a unique configuration from any initial configuration, i.e. f™ is a constant
for any large enough n).

Corollary 1. If A is equicontinuous in some direction then ccq(A) is bounded.

Another set of CA with that property is the set of linear CA. A CA A with
state set S, radius r and local global rule G is linear if there is an operator &
such that (S, @) is a semi-group with neutral element e and for all configurations
c and ¢’ we have:

G(c® ) =G(c) ® G(c),
where @ is the uniform extension of @ to configurations.
Proposition 5. If A is linear then ccq(A) is bounded.

The proof appears in [3] in a different setting. The idea is that there is a
simple one-round protocol to compute linear functions: Alice and Bob can each
compute on their own the image the function would produce assuming the other
party has only the neutral element as input, then Alice or Bob communicate
this result to the other who can answer the final result by linearity.

3.8. Simulation and universality

Since the pioneering work of J. von Neumman [15], universality in CA has
received a lot of attention (see [11] for a survey). Historically, the notion of
universality used for CA was more or less an adaptation of the classical Turing-
universality. Later, a stronger notion called intrinsic universality was proposed:
a CA is intrinsically universal if it is able to simulate any other CA. This defi-
nition relies on a notion of simulation which is formalized below.

The base ingredient is the relation of sub-automaton. A CA A is a sub-
automaton of a CA B, denote A C B, if there is an injective map ¢ from S 4 to
Sp such that 7o G4 = Gg o7, where 7 : Sﬁ — SLZ; denotes the uniform extension
of ¢.

A CA A simulates a CA B if some rescaling of A is a sub-automaton of
some rescaling of B. The ingredients of the rescalings are simple: packing
cells into blocs, iterating the rule and composing with a translation. Formally,



given any state set () and any m > 1, we define the bijective packing map
b+ Q% — (Q™)" by:

Vz € Z: (b(c))(z) = (c(m2),...,c(mz +m — 1))

for all ¢ € Q%. The rescaling A<™!"*> of A by parameters m (packing), t > 1
(iterating) and z € Z (shifting) is the CA of state set @™ and global rule:

bmoazonL\ob;nl.

With these definitions, we say that A simulates B, denoted A < B, if there are
rescaling parameters my, ma, t1, to, 2; and 2o such that A<™1:f1:21> [ B<maste,za>
We can now naturally define the notion of universality associated to this

simulation relation.

Definition 5. A is intrinsically universal if for all B it holds B < A.

This definition of universality may seem very resctrictive. In fact, many so-
called universal CA (i.e. Turing-universal CA) are also intrinsically universal
(see [11] and [2] for the particular case of Game of Life), although there is still
a gap for one-dimensional CA (the elementary CA 110 is Turing-universal and
no elementary CA is known to be intrinsically universal). Moreover, intrinsic
universality appears to be very common in some classes of CA (see [14]).

But, most importantly, by completely formalizing? the notion of universality,
we facilitate the proof of negative results.

We are going to show that the tool of communication complexity is precisely
a good candidate to obtain negative results. The idea is simple: if A simu-
lates B then the communication complexity of A must be ’greater’ than the
communication complexity of B.

More precisely, we consider the following relation of comparison between
functions from N to N:

(bl < ¢2 — 3@,,8,"/ > 17vn eN: (bl(an) < ﬁ¢2(’}/n)
Proposition 6. If A < B then cc(A) < cc(B).

Proof sketch. We consider successively each ingredient involved in the simula-
tion relation:

Sub-automaton: if 4 C B then each valid protocol to compute iterations of B
is also a valid protocol to compute iterations of A4 (up to state renaming).

Iterating: the complexity function of A? is n +— ¢(t - n) if ¢ is the complexity
function of A.

Shifting: this operation only affects the splitting of inputs. Since we always
take in each case the splitting of maximum complexity, this has no influ-
ence on the final complexity function.

2There is actually no consensus on the formal definition of Turing-universality in CA (see [2]
for a discussion about encoding/decoding problems).



Packing: let A be CA with local rule f and states set S. Consider any
sequence of valid protocols (P;), one for each splitting of inputs of f7,
and denote by h: (S™)" x (S™)F¥~% — S™ some splitting of the nth iter-
ation of the local rule of A<™1.0> By definition of packing map b,,, a
valid protocol for h is deduced by simultaneous application of protocols
Pj, ..., Pjim—1 (for a suitable choice of j), each being used to determined
one component of the resulting value of h which belongs to S™. It follows
that cc(h) < m - cc(f™).

Therefore we have: cc(A) < cc (A<™H*>) cc (A<™H*>) < cc(A) andif AC B
then cc(A) < cc(B). O

From Proposition 1, we derive the following necessary condition for intrinsic
universality. It is one of the main motivations to study communication com-
plexity of CA, both theoretically and experimentally.

Corollary 2. If A is intrinsically universal then cc(A) € Q(n).

4. The one-round communication complexity of ECA

In this section we concentrate on elementary cellular automata (ECA) :
dimension one, two states, and radius = 1. And we split the input as follows
o f:{0,1}" x {0,1}"*! — {0,1}. Since any ECA has the same (one-round)
communication complexity as its reflex and its conjugate, we propose here a
classification of the 88 nonisomorphic ECA. Since we only consider one-round
communication complexity here, Fact 1 allows us to consider matrices associated
to functions and study the number of their different rows or columns.

Therefore, for the sake of clarity, the name we give to classes of ECA is
related to the number of different rows and columns (instead of the one-round
communication complexity, which is the logarithm of the previous).

4.1. Bounded (by a constant)

As shown above, several results allow us to bound the (one-round) commu-
nication complexity of many CA.
The ECA proved to be in this class are the following 44 ones: 0, 1, 2, 3, 4,

5, 7, 8,10, 12, 13, 15, 19, 24, 27, 28, 29, 32, 34, 36, 38, 42, 46, 51, 60, 72, 76,
78, 90, 105, 108, 128, 130, 136, 138, 140, 150, 156, 160, 162, 170, 172, 200, 204
(and all their reflexes, conjugates, and reflex-conjugates).

4.2. Linear

Consider for instance rule 178, which has been studied recently by D. Reg-
nault [12] using percolation theory. The author considered the case where each
cell has an independent probability p to be updated in each step. He studied
Rule 178 because it “exhibited rich behavior such as phase transition”. Despite
its complexity, this CA was amenable to formal analysis: the proofs were based
on a coupling between its space-time diagram and oriented percolation on a
graph.

It is not difficult, using the methods of [7], to prove that the communication
complexity of CA 178 grows as ©(n). Notice that in order to get such a result we



must find, on one hand, a communication protocol (upper bound) of complexity
~ log(n) and, on the other hand, to exhibit a “fooling set” (i.e. a set C of
configurations such that for any couple (z,y) of configurations of C, z and y
are necessarily in two distinct monochromatic rectangles) of size in Q(n).

The ECA Rule 178 is given by the following local rule :

0 1 0 0 1 1 0 1
000 001 010 011 100 101 110 111

There is a very simple protocol P in logn+ 1 bits for it: if we call ¢ the value
of the central cell at the beginning (Bob knows it), then Bob sends the length
of the longest string of cells with value ¢, starting from the left of his part, to
Alice.

Proposition 7. Protocol P is correct for ECA Rule 178.

Proof. First remark that configurations 01 and 10 map to each other for any
values of their right or left neighbour (which we can see in figure 3 where un-
determined cells are represented in gray), and thus stay stable. So once Alice

Figure 3: Evolution of 01 and 10 for rule 178

knows where the first 01 or 10 occurs, she can assume w.l.g. that the rest of
Bob’s part are only zeros (the final result is the same). But then, she also knows
the beginning of Bob’s part, so she can compute the final result of Rule 178. [

Proposition 8. Protocol P is optimal even as a multi-round protocol.

Proof. To show this, we use the results of [7] and exhibit a fooling set. Let
C = {(0"=2=110% hecn=2k) 0 < 2k <n —1,c € {0,1}}

First remark that the result of Rule 178 on configurations of the form

077,72]67 1 102k562k66n72k

is always n mod 2, while for any i # j, the result of 0" ~2~110%¢c?iec" =% is
n+1 mod 2.

For the case ¢ = 1, this is shown by our previous remark on stable config-
uration. For ¢ = 0, this is a simple remark on the space-time diagrams of rule
178.

Then |C| =2 |n/2], and thus no deterministic protocol, even multiround,
could predict rule 178 in less than logn + 1 rounds. O

Remark. The same argument can be used for rule 50 (and thus also 179).

We believe that the linearity of Rule 178 and the fact that it is amenable to
other types analysis is not a coincidence.

10



4.8. Quadratic

As soon as we move up in our hierarchy the underlying protocols become
rather sophisticated. In fact, for Rule 218, we prove in [4] that if ¢ = 0 then Alice
needs to send 2 positions of her string (2 times log(n) bits). The difference in
the difficulty between sending 1 position (©(n) behavior) and 2 positions (0 (n?)
behavior) is huge.

We encountered Rule 218 when trying to find a (kind of) double-quiescent
palindrome-recognizer. Despite the fact that it belongs to class I (according to
Wolfram’s classification), it mimics Rule 90 (class III) for very particular initial
configurations.

Behind the following “proofs” there are lots of lemmas that we are not even
stating. Therefore, the purpose here is just to give an idea of how we proceed.
We are considering the case when the central cell is 0. We write f instead of

f218~

Definition 6. We say that a word in {0,1}* is additive if the 1s are isolated
and every consecutive couple of 1s is separated by an odd number of 0s.

Notation 1. Let a be the mazimum index i for which x; ...x10 is additive. Let
B be the maximum index j for which Oy, ...y, is additive. Let &' = x4 ... 21 €
{0,1}* and y' = y1...ys € {0,1}P.

Notation 2. Let ! be the minimum index i for which x; = 1. If such index does
not exist we define | = 0. Let v be the minimum index j for which y; = 1. If
such index does not exist we define r = 0.

Proposition 9. There exists a one-round f-protocol Py with cost 2[log(n)]+1.

Proof. Recall the Alice knows x and Bob knows y. Py goes as follows. Alice
sends to Bob «, I, and a = f*(2/,0,0%). The number of bits is therefore
2[log(n)] + 1.

If I = 0 then Bob knows (by definition of [) that z = 0™ and he outputs
f™(0™,0,y). If r = 0 his output depends on «. If @« = n he outputs a and if
a < n he outputs 1. We can assume now that neither [ nor r are 0. The way
Bob proceeds depends mainly on the parity of |l +r — 1].

Case |l +r —1]| is odd. If |« — 8| > 1 Bob outputs 1. If « = 8 = k he outputs
a+ f*(0%,0,y).

Case |+ 1 —1| is even. Bob compares r with [. If { > r — 1 then Bob outputs
fr(n=i+1oi=1 0, y) if [ > r + 3 and 1 otherwise. If [ < r — 3 then he outputs
a= f*',0,0% if r = o+ 1 and 1 otherwise. O

Now we exhibit lower bounds for the number of different rows of the corre-
sponding matrix. If these bounds appear to be tight then, from Fact 1, they
can be used for proving the optimality of our protocol.

Proposition 10. The cost of any one-round f-protocol is at least 2[log(n)] —5.
Proof. Consider the following subsets of {0,1}". First, S3 = {1"73000}. Also,

S5 = {1"7°00000, 1"~°01000}.

In general, for every k& > 2 such that 2k + 1 < n, we define

11



Sopy1 = {1"72R=10% 11 U {1772F710910%] @ odd, b odd, b > 3, a + b = 2k}.

Let z,...21 € Sop41 and Z,, ... %1 € S21}+1 with k # k. Tt follows that the
rows of M;" indexed by ,,...x; and Z,, ..., are different.

Let t =z ...01, T = &y ... 31 € Sopa1 with & # Z. It follows that there
exists y = y1 ...yn € {0,1}" such that f™(x,0,y) # f™(Z,0,y). O

4.4. Non-polynomial

Our experiments suggested the existence of (at least) two subclasses of this
class of “hard” ECA.

e Automata with a high one-round communication complexity but a low
matrix rank (suggesting a low multi-round communication complexity),
meaning they are easy to predict with several actors and a protocol be-
tween them, but the exact influence of each cell of the initial state is hard
to determine. We do not know whether this class really exists among
ECA, but our experiments suggest that rule 30 may be a candidate.

e Automata that are “intrinsically hard”, meaning that they do not have a
deterministic protocol in the previous classes.

5. Conclusion and perspectives

Input splitting. When defining the communication complexity in CA we
consider the worst case for splitting the inputs for each n. We believe that
the sequence (s, ), of such worst-case splittings is meaningful and raises several
interesting questions: Is s, unique for each n? If it is the case, what is the
function n +— s,7 Is it linear, thus showing a direction of maximal ’information
exchange’ along time? What is the meaning of such a direction?

Higher dimensional CA and multi-party protocols. We focused our
study on the model where Alice and Bob need to communicate to predict a given
CA. There are also other models of protocols with k players, but the difficulty of
experimentation would probably not be the same. A greater number of players
seems more natural for dimension 2 or more, since we can partition the set of
dependant cells into adjacent regions. But the two-player framework could also
be applied to higher dimensional CA.

Nondeterministic protocols. A possible generalization of our definitions
of protocols is to allow Alice and Bob to take nondeterministic steps in the
protocol tree. This gives us other interesting tools and measures, for instance the
notion of a cover of a matrix, which seems linked to circuits. We can find in [7] a
link between nondeterministic protocols and the minimal number of rectangles
needed to cover a matrix with possible intersections between rectangles.

Probabilistic protocols. Another relevant generalization of communica-
tion complexity for the study of CA is randomized complexity, where errors
are allowed. In this model, Alice and Bob are allowed to toss a coin before
communicating (see [6] regarding one-round randomized complexity and [9] for
many-round). Allowing randmoness just changes the notion of complexity and
can be applied to deterministic CA, but it may make sense to use this framework
for stochastic CA (see for instance [12]).
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