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Abstract. The congested clique model is a message-passing model of
distributed computation where k players communicate with each other
over a complete network. Here we consider synchronous protocols in
which communication happens in rounds (we allow them to be random-
ized with public coins). In the unicast communication mode, each player
i has her own n-bit input xi and may send k − 1 different b-bit mes-
sages through each of her k − 1 communication links in each round. On
the other end is the broadcast communication mode, where each player
can only broadcast a single message over all her links in each round.
The goal of this paper is to complete our Brief Announcement at PODC
2015, where we initiated the study of the space that lies between the two
extremes. For that purpose, we parametrize the congested clique model
by two values: the range r, which is the maximum number of different
messages a player is allowed to send in each round, and the bandwidth b,
which is the maximum size of these messages. We show that the space
between the unicast and broadcast congested clique models is very rich
and interesting. For instance, we show that the round complexity of the
pairwise set-disjointness function pwdisj is completely sensitive to the
range r. This translates into a Ω(k) gap between the unicast (r = k− 1)
and the broadcast (r = 1) modes. Moreover, provided that r ≥ 2 and
rb/ log r = O(k), the round complexity of pwdisj is Θ(n/k log r). On the
other hand, we also prove that the behavior of pwdisj is exceptional:
almost every boolean function f has maximal round complexity Θ(n/b).

Finally, we prove that min
(⌈

b′

blog rc

⌉
,
⌈

r′

r−1

⌉ ⌈
b′

b

⌉)
is an upper bound

for the gap between the round complexities with parameters (b, r) and
parameters (b′, r′) of any boolean function.
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1 Introduction

In this paper we study a synchronous, message-passing model of distributed
computation where the underlying communication network is a complete graph.
Therefore, the only obstacle to perform any task is due to congestion. In fact,
the main theoretical purpose of this model, known as congested clique, is to
serve as a basic model for understanding the role played by congestion in dis-
tributed computation [14, 15, 21, 25, 27, 28]. (Besides this, there are interesting
connections between the congested clique model and popular systems such as
MapReduce [20].)

The model is defined as follows. There are k players. Each player has her own
n-bit input xi and they all collaborate in order to compute a joint boolean func-
tion f(x1, . . . , xk). They communicate with each other in synchronous rounds.
More precisely, each of the k players may send up to k − 1 different b-bit mes-
sages through each of her k− 1 communication links. A protocol that computes
f stops when every player knows the output. We use the number of rounds as
the goodness metric to be minimized. The absolute minimum of this parameter
is what we call round complexity . In this paper all protocols are allowed to be
randomized with public coins. More precisely, the k players have access to a
common infinite string of independent random bits. Protocols may return the
wrong answer with probability at most ε, for some fixed, small ε > 0.

Most work on this (unicast) congested clique model considers the joint input
as a graph G by giving to each player i the boolean vector xi ∈ {0, 1}n, which is
the indicator function of her neighborhood in G. Note that in this case n = k and,
therefore, the total number of bits exchanged in each round is bn2. Unfortunately,
due to the huge number of bits transmitted globally per round (even for b = 1),
no lower bound is known for this model. Drucker, Kuhn and Oshman gave in [15]
an explanation for this difficulty. They proved that in this model it is possible to
simulate powerful classes of bounded-depth circuits (and therefore lower bounds
in the congested clique would yield lower bounds in circuit complexity). The
intrinsic power of the (synchronous) congested clique model has allowed some
authors [10, 14, 19, 21] to provide extremely fast protocols for some natural graph
problems (assuming always that b = log n, following the spirit of the CONGEST
model [29]).

In the broadcast version of the congested clique model, each player can only
broadcast a single b-bit message over all her links in each round [15]. This set-
ting is equivalent to the multi-party, number-in-hand computation model, where
communication takes place in a shared blackboard [1, 2, 5–7, 15]. In fact, writing
a messageM on the blackboard is equivalent to broadcastingM. In this setting,
the number of transmitted bits per round decreases from bn2 to bn. Therefore,
obtaining lower bounds using communication complexity reductions becomes
possible. For instance, detecting deterministically a triangle in the input graph
G requires Ω(n/(eO(

√
logn)b) rounds [15]. On the other hand, fast protocols are

also known in the broadcast congested clique model [1, 2, 18, 23].
There is a particular boolean function that we are going to use throughout

this paper. This function, that we call pairwise set-disjointness, is defined below.



Definition 1. Let k = 2k′. Let x = (x1 . . . xk) ∈ ({0, 1}n)k. Each xi is the
indicator vector of a subset Xi ⊆ {1, . . . , n}. Function pairwise set-disjointness
pwdisj is defined by: pwdisj(x) = 1 if ∀1 ≤ i ≤ k′, Xi ∩ Xi+k′ = ∅; and
pwdisj(x) = 0 otherwise.

Our goal is to complete the work of [4], where we initiated the study of the round
complexity of boolean functions according to two parameters of the model:

– The range r: the maximum number of different messages a player can send
over her links in one round.

– The bandwidth b: the maximum size, in bits, of each of these messages.

By analogy with the notation introduced in [15], we denote this model by
clique-rcastr×b. Note that the two extreme cases r = 1 and r = k − 1,
which correspond to the broadcast and the unicast communication modes, are
the cases already considered in the literature. More precisely,

clique-rcast(k−1)×b = clique-Ucastb,
clique-rcast1×b = clique-Bcastb.

Note also that, if the available bandwidth b is too small, then having a big
range r becomes useless, since the number of possible different messages with a
bandwidth b is 2b. More precisely,

∀r ≥ 2b,clique-rcastr×b = clique-rcast2b×b = clique-Ucastb.

Thus, in the sequel, we will assume that r ≤ 2b. We denote by roundr×b(f)
the round complexity of function f . That is, roundr×b(f) denotes the mini-
mal number of rounds needed by any k-player protocol in clique-rcastr×b for
computing f . We also denote,

Uroundb(f) = round(k−1)×b(f),
Broundb(f) = round1×b(f).

A protocol in clique-rcastr×b is said to be a broadcasting protocol if it consists
of every player broadcasting its complete input. Obviously, for any function f ,
there exists a broadcasting protocol which computes f , and we get the universal
bound roundr×b(f) ≤ Broundb(f) ≤ dn/be. In order to understand the role
played by the range r and the bandwidth b in the round complexity of the
congested clique model we define the following ratio.

Γ r×br′×b′(f) =
roundr×b(f)

roundr′×b′(f)
.

The values above obviously depend on k, n and ε. But we omit them in
order to avoid heavy notation. Finally, by taking the uniform probability over

{0, 1}{0,1}kn , we also consider what happens with random boolean functions. For
instance, we compute probabilities such us Pr{Γ r×br′×b′(f) = α}, for fixed α.



1.1 Our results

In Section 2 we compare the broadcast model and the unicast model. For that
purpose we consider the pairwise set-disjointness function pwdisj. We prove that
Uroundb(pwdisj) = O(n/kb) while Broundb(pwdisj) = Ω(n/b). In other
words, Γ 1×b

(k−1)×b(pwdisj) = Ω(k). This gives a large gap between the unicast

and broadcast congested clique models, that grows at least linearly with k.

In Section 3 we prove that the round complexity of pwdisj is completely
sensitive to the range r even in the intermediate values between unicast and
broadcast. More precisely, we prove that for k sufficiently large and for r ≥ 2 such
that rb/ log r = O(k) the following holds: roundr×b(pwdisj) = Θ(n/k log r).
Then, we give some interpretations to this result. In particular, we conclude
that Γ r×log kr′×log k(pwdisj) = Θ(log r′/log r) for every r′ ≥ r ≥ 2. Note that the
logarithmic bandwidth is the most studied case in the congested clique model,
and this result yields a hierarchy of models of different computational power
according to the range r for this case.

In Section 4 we prove that almost every boolean function f satisfies that
Uroundb(f) = Broundb(f) = dn/be , provided that k is sufficiently large and
that 0 ≤ ε ≤ 0.2. In other words, Γ 1×b

(k−1)×b(f) = 1 for almost every f . This

means that the gap we found in Section 2 for function pwdisj is exceptional
and that the power given by having r > 1 is almost always useless. Nevertheless,
as pointed out by Drucker et al. [15], finding for k = n an explicit boolean
function f with the behavior Uroundb(f) = ω(1) is (equivalent to solving) a
long-standing open problem in circuit complexity theory.

The goal of Section 5 is to compare models with different combinations of
range and bandwidth for arbitrary boolean functions f . For doing this we analyze
the ratio Γ r×br′×b′(f). We make the following observation: for almost every function

f we have Γ r×br′×b′(f) = Θ(b′/b). Moreover, if r ≥ r′ or r = 2b then Γ r×br′×b′(f) ≤
db′/be for every boolean function f . The general upper bound we obtain is the

following Γ r×br′×b′(f) ≤ min
(⌈

b′

blog rc

⌉
,
⌈
r′

r−1

⌉ ⌈
b′

b

⌉)
, for r ≥ 2.

1.2 Related work: The asynchronous case

The congested clique model with bandwidth b = 1 –that is, the multiplayer,
number-in-hand, message passing model– was introduced by Dolev and Feder [13].
The main difference with our setting is that the original model was asynchronous.
Hence, protocols, instead of being designed to minimize the number of rounds,
were designed to minimize the number of exchanged bits. The first communica-
tion complexity lower bounds were obtained by Duris and Rolim [16].

Recently, new techniques and new results have been developed, and tight
bounds for the communication complexity of different functions have been ob-
tained. In [30] the authors introduced the symmetrization technique and were
able to prove tight Ω(nk) lower bounds for several direct-sum-like functions such
as coordinate-wise AND or coordinate-wise OR. These lower bounds also apply



in the blackboard communication mode, where players write messages on a black-
board, visible to everybody. (Note that, in the asynchronous setting, the commu-
nication complexity in the blackboard mode gives stronger lower bounds than
the communication complexity in the message-passing, point-to-point mode.)
This symmetrization technique has been used and developed by other authors
as well [26, 31].

It is important to point out that there exists a strict separation between
the blackboard communication mode and the message-passing communication
mode. For instance, the communication complexity for computing the multiparty
set-disjointness function is Θ(n log k+k) in the blackboard communication mode
[9] and it is Θ(nk) in the message-passing communication mode [8]. These re-
sults on set-disjointness were obtained by using information complexity, a theory
introduced in [11]. Information complexity turned out to be an extremely useful
theory for proving communication complexity lower bounds [3, 12, 17].

2 A gap in the round complexity of broadcast versus
unicast

The first question we would like to answer is the following: How much do we
gain if, instead of broadcasting, we have the possibility of sending at least two
different messages in each round? This seems to be a simple question. But it is
a fundamental one if we want to understand the role played by the range in the
congested clique model. For answering this we use the pairwise set-disjointness
function pwdisj defined in Section 1.

Theorem 1. Uroundb(pwdisj) = O(n/kb).

Proof. We prove that Uroundb(pwdisj) ≤
⌈
dn/ke
b

⌉
+ 1. The protocol is as

follows. Let T =
⌈
dn/ke
b

⌉
. For every 1 ≤ t ≤ T , let

wi,j,t = (xi)(j−1)dn/ke+(t−1)b+1, . . . , (xi)(j−1)dn/ke+tb.

Round 1 ≤ t ≤ T . Each player i sends to each player j (including itself)
the b bits of wi,j,t.

Round T + 1. Each player j broadcasts 1 if at all rounds t, all its incoming
messages from player 1 ≤ i ≤ k′ were disjoints with all its incoming messages
from player i+ k′.

Clearly, after T rounds, player j receives (xi)(j−1)dn/ke+1, . . . , (xi)jdn/ke from
every i. Hence, pwdisj(x) = 0 if and only if a 0 is broadcasted by some player
in the last round. Therefore, every player will know the answer after the last
round. ut

Theorem 2. Broundb(pwdisj) = Ω(n/b).



Proof. It is well-known that, in the two party case k = 2, the round complexity
of set-disjointness with error probability ε is Ω(n/b) [22]. If k > 2 we get the
same bound for (pwdisj by considering the instance where x1 = x ∈ {0, 1}n is
given to player 1, x1+k′ = y ∈ {0, 1}n is given to player 2, and the empty set φ,
represented by (0, . . . , 0)T , is given to all the other k − 2 players. ut

Corollary 1. Let k = n. Then, Uround1(pwdisj) = 2 and Broundb(pwdisj) =
Ω(n/b).

Corollary 2. Γ 1×b
(k−1)×b(pwdisj) = Ω(k).

3 A hierarchy of models according to the range

In previous section we proved that the broadcast (r = 1) and the unicast
(r = k − 1) models are fundamentally different in their power to solve one
particular problem. These two models are the two ends of the spectrum of val-
ues of the range r. In this section we prove that the sensitivity to the range is
more general. In particular, we show that the round complexity of pwdisj is
completely sensitive to the range.

Lemma 1. roundr×b(pwdisj) = Ω
(

n
min(kb,rb+dlog rek)

)
.

Proof. We use a reduction from the two-party communication problem disjk′n,
where instances are pairs (x, y) of boolean vectors, each of length k′n. The
communication complexity (bits to be exchanged) of disjk′n is Θ(k′n) [22].
We transform an instance of disjk′n into an instance of pwdisj in the direct
way. From (x, y) we define the input (x1, . . . , xk) of function pwdisj as fol-
lows: x = x1 · · ·xk′ and y = xk′+1 · · ·xk. Obviously, disjk′n(x, y) = 1 ⇐⇒
pwdisj(x1, . . . , xk) = 1.

Let us consider any protocol P that solves pwdisj in TP rounds. If we group
players 1 to k′ into a global player A and players k′+ 1 to k into a global player
B, protocol P would yield a protocol for solving disjk′n. So the question is the
following: How many bits are exchanged between A and B? Let us derive an
upper bound for this.

Consider a player i in A. Player i sends one message of length b to each
player in B, thus he sends k′b bits. However, since r ≤ 2b, the messages sent by
player i to players in B can be compressed as follows (see Figure 1). Since player
i can send up to r different messages, one can consider that she sends to each
player j ∈ B a message numbered from the set {0, 1, . . . , r−1} that identifies the
message m(i, j) sent to player j. These numbers, of dlog re bits each, can be used
to obtain the actual message from a table that contains the r messages, of b bits
each, sent by i. Hence, the total number of bits sent by i to B is upper bounded
by the length of the k′ numbers, dlog rek′ bits, and the size of the message table,
br bits; a total of rb+ dlog rek′ bits.

Let us define β = min(bk′, rb+ dlog rek′). In each round, the number of bits
exchanged between A and B is upper bounded by kβ. Therefore, considering



Destination message number

1 00
2 01
3 00
4 11
5 01

Message number contents

00 11101010
01 01010100
10 00101100

Fig. 1. Summarizing the information sent by a player i: sending the 34 bits represented
in black is enough, as opposed to 40 bits for the concatenation of the messages of each
of the 5 destination players.

that the communication complexity of disjk′n is Θ(k′n), it follows that TPkβ =
Ω(k′n). Therefore, roundr×b(pwdisj) = Ω( n2β ), as claimed. ut

Lemma 2. roundr×b(pwdisj) ≤
⌈

n
kblog rc

⌉
+ 1.

Proof. Consider the same protocol used in the proof of Theorem 1 but with
messages of blog rc ≤ b bits. ut

Putting these together, we get the following theorem.

Theorem 3. For k sufficiently large and for r ≥ 2 such that rb
log r = O(k),

roundr×b(pwdisj) = Θ

(
n

k log r

)
.

Proof. The upper bound follows from the previous lemma. For the lower bound,
it follows from Lemma 1 that

roundr×b(pwdisj) ≥ n

kmin(b, dlog re(1 + 2rb
dlog rek ))

≥ n

kdlog re(1 + 2rb
dlog rek )

,

where the last inequality follows from dlog re ≤ b and 2rb
dlog rek > 0. Since rb

log r =

O(k), we deduce that, for k sufficiently large, there is a constant ∆ > 0 such
that 2rb

dlog rek ≤ ∆, and hence

roundr×b(pwdisj) ≥ n

kdlog re(1 +∆)
= Ω

(
n

kdlog re

)
.

ut

The natural way to interpret Theorem 3 is to parametrize everything by k.
Following the spirit of the CONGEST model [29], we are going to restrict both
the bandwidth and the range by taking b = log k and varying r from 2 to k− 1.
Observe that, when b = log k and r ≤ k − 1, it always holds that rb

log r = O(k).
Hence, the next corollaries are direct consequences of Theorem 3.



Corollary 3. For every n and every constant integer c ≥ 2, we have

roundlog k×log k(pwdisj) = Θ

(
n

k log log k

)
and roundc×log k(pwdisj) = Θ

(n
k

)
In other words, Γ c×log klog k×log k(pwdisj) = Θ (log log k) .

In general, we can state the following corollary.

Corollary 4. For every n and every r′ ≥ r ≥ 2, we have

roundr′×log k(pwdisj) = Θ

(
n

k log r′

)
and roundr×log k(pwdisj) = Θ

(
n

k log r

)

In other words, Γ r×log kr′×log k(pwdisj) = Θ

(
log r′

log r

)
.

4 Most functions have maximal round complexity

From the results presented in the previous sections one may be tempted to
conclude that, in general, increasing the range r increases the power of the
protocols. In particular, one may conclude that the unicast congested clique
model has much more power than the broadcast congested clique model (even
if in the first we restrict the bandwidth to b = 1 while in the latter we allow it
to be b = o(n)). We show here that this fact, which holds for function pwdisj,
holds for very few other functions. More precisely, we are going to prove that
for almost every boolean function f , the broadcasting protocol is optimal. We
start by considering deterministic decision protocols that compute functions f
correctly (i.e., they make no mistake). (The proofs omitted can be found in the
Appendix.)

Lemma 3. The number of T -round deterministic decision protocols in the uni-
cast congested clique model clique-Ucastb is at most 2N(T ), where

N(T ) = 2T (k−1)b+n(1 +
(k + 1)(k − 1)b

2(k−1)b
).

Now, we still consider deterministic protocols, but now we allow them to
make mistakes. We say that a deterministic protocol P computes f with error
ε ≥ 0 if it outputs f(x) for at least (1− ε)2nk of the inputs x of f .

Lemma 4. Let P be a deterministic decision protocol and let P (x) denote the
output of P with input x ∈ {0, 1}nk. Let Mε(P ) be the number of functions f
which are computed by P with an error ε > 0. We have,

Mε(P ) ≤
(

2e

ε

)ε2nk
= 2log(

2e
ε )ε2nk .



We show now that a deterministic protocol P that computes a function f
chosen uniformly at random with error ε requires the maximal number of rounds
dn/be with high probability. Let us extend our notation, so that Uroundεb(f) is
the round complexity of function f when protocols are deterministic and error
ε is allowed.

Theorem 4. For k sufficiently large and for every n, and ε > 0 such that
1− log( 2e

ε )ε > 0, we have

Pr{Uroundεb(f) = dn/be} ≥ 1− 2−2
kn(

1−log( 2e
ε

)ε

2 ).

For ε = 0 (i. e. the case without error), we have

Pr{Uround0
b(f) = dn/be} ≥ 1− 2−2

kn 0.5.

Proof. Since there are 22
kn

different functions f : {0, 1}kn → {0, 1}, we have

Pr{Uroundεb(f) ≤ T} ≤ 2N(T ) maxP Mε(P )

22kn
.

From Lemmas 3 and 4, for ε > 0, we have

Pr{Uroundεb(f) ≤ T} ≤ 2
2T (k−1)b+n(1+

(k+1)(k−1)b

2(k−1)b
)
2log(

2e
ε )ε2nk2−2

kn

≤ 2
−2kn(1−log( 2e

ε )ε−2T (k−1)b+n−kn(1+
(k+1)(k−1)b

2(k−1)b
))
.

For k sufficiently large, the quantity 1 + (k+1)(k−1)b
2(k−1)b can be upper bounded (by

2 for example). Now let us take T = dn/be− 1. Then, we have Tb−n ≤ −b and,
thus

2T (k−1)b+n−kn = 2(k−1)(Tb−n) ≤ 2−b(k−1) ≤ 2−k

Thus, for k sufficiently large, the term, 2T (k−1)b+n−kn(1 + (k+1)(k−1)b
2(k−1)b ) can be

upper bounded by any positive value, in particular by
1−log( 2e

ε )ε

2 . Thus, we get
that

Pr{Uroundεb(f) ≤ dn/be − 1} ≤ 2−2
kn(

1−log( 2e
ε

)ε

2 ).

which is the result since, for any f , one trivially has Uroundεb(f) ≤ Uround0
b(f) ≤

dn/be.
For ε = 0 we proceed on the same way, after noticing that maxP M0(P ) = 1.

ut

Theorem 5. For k sufficiently large, for every n, and 0 ≤ ε ≤ 0.2, there exists

a positive constant c(ε) > 0 such that Pr{Uroundεb(f) = dn/be} ≥ 1−2−2
knc(ε).

Recall that Uroundb(f) is the round complexity of computing function f
with randomized protocols, which may use public coins, with success probability
1 − ε. From the previous results we can prove that most functions have round
complexity dn/be.



Corollary 5. For k sufficiently large and for every n, and 0 ≤ ε ≤ 0.2, there
exists a positive constant c(ε) > 0 such that,

Pr{Uroundb(f) = dn/be} ≥ 1− 2−2
knc(ε).

Proof. The result follows from Theorem 5, and Theorem 3.20 at [24] using the
uniform distribution as the distribution µ of the inputs. ut

The following bound is obvious for any function f .

Γ 1×b
(k−1)×b(f) =

Broundb(f)

Uroundb(f)
≥ min

f
Γ 1×b
(k−1)×b(f) ≥ 1.

Next corollary, which is a direct consequence of Corollary 5, says that previ-
ous inequality is in fact an equality for almost every boolean function.

Corollary 6. For k sufficiently large and for every n, and 0 ≤ ε ≤ 0.2, there
exists a positive constant c(ε) > 0 such that,

Pr{Γ 1×b
(k−1)×b(f) = 1} ≥ 1− 2−2

knc(ε).

5 Comparing models with different combinations of
range and bandwidth for arbitrary boolean functions

In this section we explore the relative round complexities of different modes of
the congested clique model with various combinations of range and bandwidth
Γ r×br′×b′(f) for arbitrary boolean functions f . The first result shows that for most

boolean functions f , Γ r×br′×b′(f) = Θ(b′/b).

Theorem 6. For k sufficiently large and for every n, there is a positive constant
c(ε) > 0 such that

Pr
{
Γ r×br′×b′(f) = dn/be / dn/b′e

}
≥ 1− 2−2

knc(ε)+1.

Proof. From Corollary 5, a function f simultaneously satisfies roundr×b(f) =

dn/be and roundr′×b′(f) = dn/b′e with probability at least 1− 2−2
knc(ε)+1. ut

Now, we show that in fact the typical case shown in the previous theorem is not
far from the worst case, studied in the following sequence of results.

Theorem 7. Let r be such that r ≥ r′ or r = 2b. Then, for every function f ,
Γ r×br′×b′(f) ≤ db′/be .

Proof. Let P’ be a T -round protocol in clique-rcastr′×b′ . From P’ we con-
struct the protocol P in clique-rcastr×b as follows. Consider the message
mt(i, j) sent by player i to player j in round t of P’. For each 1 ≤ ` ≤ db′/be, let
block`t(i, j) be the `th block of length b of mt(i, j). The last block is padded with
0s. For each ` and i, we have: |{block`t(i, j), 1 ≤ j ≤ k ∈ N}| ≤ min{r′, 2b} ≤ r.



Then, during round number (t− 1) db′/be+ ` of P, player i sends to player j
the b bits of blockit(u, v). The inequalities above ensure that P is a well-defined
protocol in clique-rcastr×b. Since P knows the bandwidth b′ it can discard
the padding bits. The total number of rounds executed by P is T db′/be. ut

Theorem 8. Let b ≤ b′ ≤ n, and k sufficiently large. Then, there exists a
function f such that: Γ r×br′×b′(f) = db′/be .

Proof. Let b′ = n. In this case, every function f : ({0, 1}n)k → {0, 1} can be
solved in one round in the model clique-rcastr′×b′ . On the other hand, from
Corollary 5, almost every function f : ({0, 1}n)k → {0, 1} satisfies roundr×b(f) =
dn/be = db′/be. When n > b′, let us define n′ = b′. From Corollary 5, almost ev-

ery function f ′ : ({0, 1}n′)k → {0, 1} satisfies roundr×b(f
′) =

⌈
n′

b

⌉
. Let us take

one such function f ′, and define a new function f : ({0, 1}n)k → {0, 1} as follows:
f(x1, x2....xk) = f ′(y1, y2, ..., yk), where each yi is the vector formed with the n′

first bits of xi. Hence, roundr×b(f) = roundr×b(f
′) = dn′/be = db′/be while

roundr′×b′(f) = 1. ut

Remark 1. When b|b′ is a multiple of b and b′|n, we have dn/be / dn/b′e =
(n/b)/(n/b′) = b′/b = db′/be . When n = b′, we also have dn/be / dn/b′e = db′/be .
Thus, in the previous cases, for r ≥ r′ of r = 2b, the maximal value db′/be for
the value of Γ r×br′×b′(f) is reached with high probability. On the other hand, in
some cases, there exists a small but intriguing gap between the maximal value
db′/be and the value dn/be / dn/b′e reached with high probability. For example,
take b = 2, b′ = 3. For n = 4, we have db′/be = 2 and dn/be / dn/b′e = 1.

Note that Theorem 7 holds when r′ ≤ r or r = 2b. Without this hypothesis
we only get the following weaker, general bound.

Theorem 9. Let r ≥ 2 and r′ ≥ 1. Then, for every function f ,

Γ r×br′×b′(f) ≤ min

(⌈
b′

blog rc

⌉
,

⌈
r′

r − 1

⌉⌈
b′

b

⌉)
.

Observe that the two values of the minimum are complementary, since none
implies the other.
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A Proof of Lemma 3

Lemma 3 The number of T -round deterministic decision protocols in the uni-
cast congested clique model clique-Ucastb is at most 2N(T ), where

N(T ) = 2T (k−1)b+n(1 +
(k + 1)(k − 1)b

2(k−1)b
).

Proof. Let 1 ≤ t ≤ T − 1. At round t, player i can send at most 2(k−1)b different
messages. The choice of player i depends on its input together with the sequence
of messages received during the previous t− 1 rounds; this makes 2(t−1)(k−1)b+n

possibilities. Hence, the behavior of player i at round t is a function from a set
of cardinality 2(t−1)(k−1)b+n to a set of cardinality 2(k−1)b. Considering the k
players acting independently, the number of possible behaviors of the protocol

at round t is at most 2k(k−1)b 2
(t−1)(k−1)b+n

. Now we can count all the possible

behaviors during the T − 1 first rounds. This gives 2
∑T−1
t=1 k(k−1)b 2(t−1)(k−1)b+n

and we can bound the exponent from above as follows.

T−1∑
t=1

k(k − 1)b 2(t−1)(k−1)b+n = k(k − 1)b 2n
2(k−1)b(T−1) − 1

2(k−1)b − 1

≤ k(k − 1)b 2(k−1)b(T−1)+n.

For the last round, one only needs to know the message received by some fixed
player, for instance player 1. In fact, the output of the protocol depends on what
is received in round T by player 1 (the output computed by the other players
are all the same). Therefore, the behavior of player i in the last round T is a
function {0, 1}(T−1)(k−1)b+n → {0, 1}b Hence, globally, the number of possible

behaviors in the last round is at most 2(k−1)b 2
(T−1)(k−1)b+n

.
The final decision of player 1 is a function {0, 1}T (k−1)b+n → {0, 1}. The

number of possible decisions is therefore 22
T (k−1)b+n

. Putting it all together, it
follows that the number of T -round protocols is at most

2k(k−1)b2
(k−1)b(T−1)+n

2(k−1)b2
(T−1)(k−1)b+n

22
T (k−1)b+n

= 2
2T (k−1)b+n(1+

k(k−1)b+(k−1)b

2(k−1)b
)

= 2
2T (k−1)b+n(1+

(k+1)(k−1)b

2(k−1)b
)
.

ut

B Proof of Lemma 4

Lemma 4 Let P be a deterministic decision protocol and let P (x) denote the
output of P with input x ∈ {0, 1}nk. Let Mε(P ) be the number of functions f
which are computed by P with an error ε > 0. We have,

Mε(P ) ≤
(

2e

ε

)ε2nk
= 2log(

2e
ε )ε2nk .



Proof. Let s = b2nkεc. Consider a set S of possible inputs of P , (i.e. S ⊂ {0, 1}nk)
of size s. Given such a set, let FS be the set

FS = {f |f(x) = P (x) for x /∈ S}

If f ∈ FS then f can be computed by P with error ε. Conversely, if f can be
computed by P with error ε, then there exists a set S such that f ∈ FS . Thus

Mε(P ) ≤ 2s
(

2nk

s

)
.

We use the classical bound
(
p
q

)
≤ (peq )q to get

Mε(P ) ≤ 2s
(

2nke

s

)s
≤ 2s

(e
ε

)ε2nk
≤
(

2e

ε

)ε2nk
.

ut

C Proof of Theorem 5

Theorem 5 For k sufficiently large, for every n, and 0 ≤ ε ≤ 0.2, there exists a

positive constant c(ε) > 0 such that Pr{Uroundεb(f) = dn/be} ≥ 1− 2−2
knc(ε).

Proof. For ε > 0, let g(ε) = log( 2e
ε )ε = ε log(2e) − ε log(ε). We have g′(ε) =

log(2e)− log(ε)− 1 thus g′ is decreasing and g′(1) = log(2e)− 1 > 0, from which
we deduce that g′ is positive on ]0, 1] and, therefore, g is increasing in ]0; 1].

Moreover, g(0.2) ' 0.95292462715 < 1. Thus, for 0 < ε ≤ 0.2, g(ε) < 1.
Thus, for 0 < ε ≤ 0.2, Theorem 4 applies and we get the result. ut

D Proof of Theorem 9

Theorem 9 Let r ≥ 2 and r′ ≥ 1. Then, for every function f ,

Γ r×br′×b′(f) ≤ min

(⌈
b′

blog rc

⌉
,

⌈
r′

r − 1

⌉⌈
b′

b

⌉)
.

Proof. First, we have that roundr×b(f) ≤ Uroundblog rc(f). Hence, from The-

orem 7 and since r ≤ 2b, we have that Γ r×br′×b′(f) ≤ Γ 2blog rc×blog rc
r′×b′ (f) ≤

⌈
b′

blog rc

⌉
.

Second, we can assume that r ≤ r′ (because, otherwise, we have
⌈
r′

r−1

⌉
= 1

and we can apply Theorem 7). We will make a refinement of the simulation
used in the proof of Theorem 7. Now, in protocol P, player i sends the messages
block`t(i, j) in d r′

r−1e > 1 rounds. To do so, player i first sorts lexicographically

the (up to) r′ different messages in the set {block`t(i, j), 1 ≤ j ≤ k} (recall that
all these messages have length b.)



Let L be the list of sorted messages. In a first round, player i extracts the
first (up to) r−1 messages from L, excluding the message 1b if it is among them.
Then, she sends the extracted messages to their recipients, and 1b to the other
players. Since 1b cannot be among the extracted messages, players that receive
it know it is a flag meaning “no message”.

For rounds 2 to d r′

r−1e, player i extracts the first (up to) r− 1 messages from

L not sent yet, sends them to their recipients, and 0b to the other players. In
these rounds, it is the message 0b the flag which means “no message” (observe
that if 0k was initially in L it had to be sent in the first round).

After d r′

r−1e rounds, all the messages in L, and hence in block`t(i, ·), have been

sent. Repeating this process for every block `, 1 ≤ ` ≤ d b
′

b e, after
⌈
r′

r−1

⌉ ⌈
b′

b

⌉
rounds protocol P has completed the simulation of one round of protocol P’, as
claimed. ut


