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Abstract

Let G be a bridgeless connected undirected (b.c.u.) graph. The oriented diameter of
G, OD(G), is given by OD(G) = min{diam(H) : H is an orientation of G}, where
diam(H) is the maximum length computed over the lengths of all the shortest
directed paths in H.

This work starts with a result stating that, for every b.c.u. graph G, its oriented
diameter OD(G) and its domination number v(G) are linearly related as follows:
OD(G) < 9y(G) — 5.

Since -as shown by Corneil, Olariu and Stewart (SIAM J. Discrete Math. 10
(1997) 399)- v(G) < diam(G) for every AT-free graph G, it follows that OD(G) <
9 diam(G) — 5 for every b.c.u. AT-free graph G. Our main result is the improvement
of the previous linear upper bound. We show that OD(G) < 2diam(G)+11 for every
b.c.u. AT-free graph G. For some subclasses we obtain better bounds: OD(G) <
3 diam(G) + 2 for every interval b.c.u. graph G, and OD(G) < 2 diam(G) + &
for every 2-connected interval b.c.u. graph G. We prove that, for the class of b.c.u.
AT-free graphs and its previously mentioned subclasses, all our bounds are optimal
(up to additive constants).
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1 Introduction

In this work we use standard notation as presented in [6]. An orientation of an
undirected graph G is a directed graph whose arcs correspond to assignments
of directions to the edges of G. An orientation H of G is strongly connected if
every two vertices in H are mutually reachable in H by directed paths. The
oriented diameter of a graph G is defined as

OD(G) = min{diam(H) : H an orientation of G}

In 1939 Robbins [16] proved that every undirected graph G admits a strongly
connected orientation if and only if G is connected and bridgeless. Chung et al.
[3] provided a linear-time algorithm for testing whether a graph has a strongly
connected orientation and finding one if it does.

From now on G will always denote a bridgeless connected undirected graph.
We will refer to it simply as a graph.

If a graph G is thought as the plan of the system of two-way streets, then
the orientations of G' can be viewed as arrangements of one-way streets. Some
variants of one-way street assignments were studied in [18-21]. Applications
also appear in different network routing, broadcasting and gossip problems.
(See [2,7,10] for surveys.)

Chvétal and Thomassen [4] initiated the study of OD(G). They focused on the
relation between OD(G) and diam(G) proving that OD(G) < 2(diam(G))?.

Later this problem was studied for various classes of graphs including cartesian
products of graphs, complete and complete bipartite graphs [9,11-14,22].

Our first result, presented in Section 2, proves a linear upper bound for the
oriented diameter OD(G) in terms of the domination number v(G) for an
arbitrary graph G: OD(G) < 9v(G) — 5.

This result motivates us to consider the class of bridgeless connected AT-free
graphs (AT-free from now on). In fact, in this class the domination number
and the diameter are linearly related [5]. Indeed, for every AT-free graph G it
holds that v(G) < diam(G). This implies that OD(G) < 9diam(G) — 5.

In Section 3 we obtain better bounds for the class of AT-free graphs. More
precisely, we prove that OD(G) < 2diam(G) + 11 for every AT-free graph
G. We improve previous bound for some subclasses. For bridgeless connected
interval graphs we obtain OD(G) < 3 diam(G) + %, and for 2-connected
proper interval graphs we get OD(G) < 2 diam(G) + 2. Finally, we show that
each previous bound is optimal up to an additive constant.



2 Dominating sets

In this section we prove a linear relation between the oriented diameter of a
graph G and its domination number.

Lemma 1 Let G and Gp be graphs with Gp being a subgraph of G such
that V(Gp) is a dominating set in G. Then, for every strongly connected
orientation Hp of Gp, there is an orientation H of G such that diam(H) <
diam(Hp) + 4.

Proof. For every connected component Q) of G\ V(Gp) we direct some edges
having ends in @ as follows.

If () consists on one vertex = then z is adjacent to at least two vertices of
V(Gp) (because G is bridgeless). We direct one edge from z and the second
edge towards z. If there are more edges incident to x we direct them arbitrar-
ily. Then, we have assured the existence of vertices u,v € V(Gp) such that
di(z,v) <1 and dy(u,z) < 1.

Suppose that there are at least two vertices in the connected component Q).
Choose a spanning tree 7" in this component rooted in a vertex v. We orient
the edges of this tree as follows. If a vertex x of the tree has odd distance
from v, then we orient all the tree edges adjacent to x towards z. If z has
even distance from v then we orient all the tree edges adjacent to x from x
outwards. Also, for every such vertex x we orient the edges between x and Gp
towards z if the distance from v in the tree is even, and towards Gp otherwise.
The rest of the edges in the connected component () are oriented arbitrarily.

In such orientation H, for every z € V(Q) there are vertices u,v € V(Gp)
such that dgy(z,v) < 2 and dy(u,z) < 2. Therefore, for every z,y € V(G) the
distance between x and y in H is at most diam(Hp) + 4. u

Theorem 2 For every graph G there exists a graph Gp being a subgraph of
G such that V(Gp) is a dominating set of G and |Gp| < 9v(G) — 8.

Proof. The case v(G) = 1 is direct. Let D be a dominating set with |D| =
v(G) > 2. Tteratively, we construct a tree T for k = 1,...,|D|. The tree T} is
composed by one vertex z; in D. Among all the paths S connecting D\ V (T})
with V(T) in G \ V(T}) and with minimum |[S N (V(T}) \ D)|, let P, be a
shortest one. Since D is a dominating set, the length of Py is less or equal
than 3. We define Ty, := Ty U P. Then T := T|p is a tree which contains
the set D and with |T'| < 3|D| — 2.

Let zy € E(T) and let P™ be a shortest path in G — zy connecting the
two subtrees of T' — xy. Since G is bridgeless such path exists. Since D is a



dominating set the path P* has length at most three. Clearly, in T + P*,
the edge zy and the edges in P*Y are not bridges.

For each edge zy in T" we add the path P®™ to T in order to obtain a graph Gp
being a subgraph of G. Since |P*¥| < 4 and two vertices of P* belong to V(T)
we deduce that the new vertices in Gp are at most 2|E(T)| < 2(3|D| — 3).
Finally, |Gp| < 3|D| —2+6|D| — 6 =9|D| — 8. |

Corollary 3 For every graph G, OD(G) < 9v(G) — b.

Proof. Since the graph GGp of Theorem 2 has an orientation Hp with diameter
at most |Gp| —1 < 97(G) — 9, the result follows from Lemma 1. u

3 AT-free graphs

The goal of this section is to prove that for every AT-free graph G, OD(G) <
2diam(G) + 11.

An independent set of three vertices is called an asteroidal triple if every two
of them are connected by a path avoiding the neighborhood of the third. A
graph is AT-free if it does not contain an asteroidal triple. Asteroidal triples
were introduced to characterize interval graphs [15].

A pair of vertices x, y of a graph G form a dominating pair if the vertex set of
every path connecting x with y is a dominating set of G. In their fundamental
paper, Corneil et al. [5] showed that every AT-free graph G has a dominating
pair. A dominating pair of an AT-free graph can be detected by a simple linear
time algorithm, called 2LexBFS [5].

Since a shortest path P between a dominating pair is a dominating set in an
AT-free graph G, it follows that v(G) < |P| < diam(G). From Corollary 3
we conclude that OD(G) < 9diam(G) — 5. In this section our concern is to
improve this linear upper bound.

A chord of a cycle C' is an edge joining two non-consecutive vertices of C. A
chordless cycle in G is a cycle of length more than three that has no chords.
It is easy to see that an AT-free graph does not contain chordless cycles of
length more than 5. We use this property several times in the following proofs.

Let u and v be two vertices of a graph G. For a (u,v)-path R and vertices
z,y € V(R) we denote by zRy the subpath of R between z and y. We also
denote uRy by Ry and xRv by zR.

Lemma 4 Let G be an AT-free graph. Let u,v be two vertices of G. Then



there are two edge-disjoint (u,v)-paths with one of them being a shortest path.
Proof. We call good a vertex x € V(G) if the following two conditions hold.

(1) The vertex z belongs to some shortest (u,v)-path P.
(2) There exists a (u, z)-path S, , which is edge-disjoint with the path P.

Notice that dg(u, z) < dg(u,v) for every good vertex x # v. We have to show
that v is good.

Let x be a good vertex having, among all the good vertices, maximum distance
to u. Let P be a shortest (u,v)-path to which = belongs. Let S, , denote some
(u, x)-path edge-disjoint with P. We claim that z = v.

Let us assume = # v. We split P into Pz and zP. Let s € V(S, ) be the
neighbor of z in the path S, , and let y € V(P) be the neighbor of z in the
path zP. Since y is not a good vertex it is not adjacent to any vertex in the
path S, .. Let us denote by @) a shortest (u, y)-path avoiding the edge zy. Let
z be the last vertex in () which belongs to Px. Since y is not a good vertex,
z # x. Let w denote the neighbor of z in z@). The path P is a shortest path,
therefore w # y. Since V(wQ) NV (yP) # () and no vertex in yP is good, no
vertex in z() is adjacent to a vertex in S ;.

It follows that w is adjacent to y. Otherwise, the set {w,y, s} would be an
asteroidal triple. We conclude that z is the neighbor of z in the path Pz
because the path P is a shortest (u, v)-path.

The path P’ obtained from P by replacing the edges zz and zy by the path
2() is also a shortest (u,v)-path. Moreover, y belongs to P' and there exists
an edge-disjoint (u,y)-path S’ obtained from S by adding the vertex y and
the edge zy. Therefore, y is a good vertex with dg(u,y) > dg(u, z). [ |

Let G be an AT-free graph and let u,v be a dominating pair. By Lemma 4
there exist two edge-disjoint (u, v)-paths, P and S, such that P is a shortest
(u, v)-path. Without loss of generality we can assume that S is a shortest path
among all the (u, v)-paths edge-disjoint with P. Notice that the set of vertices
of both paths P and S are dominating sets. This property will be used in the
rest of the paper without explicit mention.

In order to prove the main theorem of this section we show first that the
paths P and S are, roughly speaking, “close enough”, and that the length of
the path S is proportional to that of P.

Let p1 = u,po, ..., p1p,, = v be the vertices of P and let sy = u,s5...,5,,41 =
v be the vertices of S. We define, for all 7 € {2,...,1p + 1},

a(i) = min{j € {1,2, ..., ls+ 1} : 5; € (N[pi_1] U N[pi]) \ V(P)}



b(i) =max{j € {1,2,...,ls + 1} : s; € (N[pi1] U N[pi]) \ V(P)}

Lemma 5 The indices a(i) and b(i) are well-defined, for all i € {2,...,lp +
1}. Moreover, a(2) =2 and b(lp + 1) = Is.

Proof. We only have to show that ; := (V(S)\V(P))N(N[p;_1]JUN[p;]) # 0,
for every ¢ = 2,...,lp + 1. Since the vertices sy and s;, are not in V(P)
neither 2y nor €, is empty. Clearly a(2) = 2 and b(lp + 1) = ls. For sake
of contradiction, let 3 < ¢ < lp be such that ; = (. Since S and P are
edge-disjoint (u,v)-paths there is a subpath S’ = s},... s, of S connecting
{p1,-..,pi—o} with {p;iy1,...,p,41}, which only meets P in its end vertices.
Let t < i — 2 be the largest integer such that s, is adjacent with p; and let
m > i+ 1 be the smallest integer such that s._, is adjacent to p,,. Then
S" = pi, sy, 8 _1,Dm 1S & (pt, pm)-path edge-disjoint with P. Since P is
a shortest path the length of S” is at least the length of the path p,Ppy,.
Then C := S" U p;Pp,, is an induced cycle of length at least 2(m — t) >
2(i +1— (i — 2)) = 6. Therefore C' contains an asteroidal triple which is a
contradiction. ]

By the definition of a(7) and since at most one of any two consecutive vertices
in V'(S) belongs to V(P), no vertex in {s, ..., 54()} is equal to p;_; or p;.

Lemma 6 Let G be an AT-free graph and let u,v be a dominating pair. Let
P, S, a(i) and b(i) be defined as above. Then,

(1) {51, s Saiy-1} OV NUDis-Bps1Y] = 0, for every i € {3, ... lp}.
(2) {Svi)+1s---» Sig+1y N N[{p1,..pi—1}] =0, for every i € {2,...,1p — 1} .
(8) a(i) < b(i) < a(i) + 6, for everyi € {2,...,lp + 1}.

Proof.

(1) For sake of contradiction let us assume that the intersection is not empty
and let m < a(i) be the smallest index for which s,, is in the intersection.
Since 7 > 3 and P is a shortest path s,, # p;, then m > 2. We claim that
neither s, nor s,,_; belong to V(P).

Since P is a dominating path and s,, is the first vertex adjacent to the

set {pi,...,Pip+1}, the vertex s,,_1 is adjacent or equal to some vertex in
{p1, .-, pi_1}. But since s,, 1 is not adjacent to p;, it cannot be equal to
Pi-1-

First, let us assume that s,,—; € V(P). Then it belongs to {p1, ..., pi—2}-
In this case s, ¢ V(P). By the definitions of a(i) and m, it is adjacent
to some vertex p; in {p;i1, ..., Pip+1}- That contradicts the fact that P is
a shortest path. Hence, s,,_1 ¢ V(P).

Now let us assume that s, = py for some k € {1,2,...,lp + 1}. Since
Sm is adjacent to the set {p;,...,pi,+1}, we conclude k£ > i — 1. Since
Sm—1 18 not adjacent to this set, we get £ < ¢ — 1, thus k£ =7 — 1. But



since $,,—1 is not in V' (P), we get a contradiction with m < a(7).

Having proven the claim, let us define p’ to be the first vertex in
{piy -y Pip+1} adjacent to s, and p” to be the last vertex in {p1,...,pi—1}
adjacent to s,,—;. Notice that from the definition of a(i), p' # p; and
P’ #pi1.

Since the path (p”, Sy_1, Sm, ") has length three we deduce that p" =
pi—o and that p’ = p;,1. Since P is a shortest path and from the choice
of m we deduce that the cycle p”, p;_1,p:, 7', Sm, Sm—1 of length six is
chordless and it would contains an asteroidal triple.

(2) It follows by symmetry from the part (1).

(3) Let us assume that (i) > a(i)+7. Then no vertex in {p; 1, p;} is adjacent
to both z := s4;) and y := sy(;). Hence, z and y have different neighbors
in {p;_1,p;}. Let us call s, one of the vertices s4(;)43 OT Sq(i)+4 Which is not
in V(P). Then t — a(i) > 3 and b(:i) — ¢ > 3 and then s; has no neighbor
in {p;_1,pi}. We get a contradiction by proving that Q := {x, s;,y} is an
asteroidal triple. In fact, z, s;,y ¢ V(P). Since S is a shortest path € is
an independent set. From the definition of a(z) and b(7) there is a path of
length at most three from z to y passing though the set {p;_1, p;}. Since
s has no neighbor in {p;_1, p;} we conclude that 2 is an asteroidal triple.

Lemma 7 Let G be an AT-free graph. Let u,v be a dominating pair. Let P,
S, a(i) and b(i) defined as before. For all 3 < i < lp the following properties
hold.

(1) ds(u, sa@w)) < 3dp(u,p;) — 4.
(2) ds(v, sp(sy) < 3dp(v,pi—1) — 4.

Proof.

(1) We just need to prove that a(i)—1 < 3(i—1)—4. From Lemma 6 we deduce
that the set {s1,...,5q)—1} is dominated by the set {pi,...,p;—1}. Since
S is a shortest (u,v)-path edge disjoint with P, the vertex p; dominates
exactly the vertices s; = p; and sy. By the same reason, every vertex p;,
for j = 2,...,7 — 2, dominates at most three vertices in {s1,..., Sq()-1}-
Finally, the only vertex in {si,...,Sa@-1} which could be dominated
by p;_1 is p;_o. But this vertex has already been considered. Therefore
a(i)—1<2+3(i—3)=33G—1)—4.

(2) It follows by symmetry from the part (1).

In the next lemma we prove that if we have a linear upper bound like those
proved in Lemma 7 then it is possible to obtain a linear upper bound for



OD(G) in terms of diam(@G). Since in Section 4 we shall improve the bound
of Lemma 7 for some subclasses of AT-free graphs (Lemmas 11 and 13) we
prove the lemma in a general form.

Lemma 8 Let G be an AT-free graph. Let u,v be a dominating pair of G and
let P, S, a(i) and b(i) be defined as before. If there exist constants o and [
satisfying for every 3 <1 < lp

(1) ds(u, Sa@w)) < adp(u,p;) + B.
(2) ds(v, sp(sy) < adp(v,pi—1) + .

then G has an orientation H such that

diam(H) < @t diam(G) + § + =5 + ZH, where ¢a) = | — 1).

Proof. Let i be an integer with 3 < ¢ < [p. Let p; be a vertex in {p; 1,p;}
adjacent to s,). If p; ¢ V(S) we denote by e the edge s,;)p;. Otherwise e = §.
We define an orientation H in the subgraph G' := G[P U S] as follows. We
orient Pp; from u to p; and p; P from v to p;. We orient Ssq) from s, to u
and s,(;yS from s, to v. If s,(;)p; has not been already oriented (e # 0), we
orient it from p; to s,(;). All the remaining edges in G’ are oriented from V'(S)
to V(P). Let us denote L := dp(u,v).

The distance in H from = # s, to p; is equal to dy(x,p;) + du(pj, pe)
where p; dominates z or it is equal to z. If e = suz;)p; then dy(sqg),pr) =
1 + du(Se(i)—1,pt)- Then for all z € V(G') we have that dg(z,p;) < max{l +
dp(u,py), 1 + dp(ps,v)}. Since dp(u,p;) =t — 1, dp(v,p;) = L — (t — 1) and
te{i—1,i} we get

dy(z,p;) < max{i, L —i+ 3} (1)
The distance in H from p; to x, dg(p:, x), satisfies:
dr(pe, ) <1+ ds(Sa@i), ¥) when z € V(S) \ V(P).

di(pe, ©) <14 ds(Sa(i)s Sa@)) + 2 when x = p; with j < t.
di(pe, ©) <14 ds(Sa(i)s Sa(j+1)) + 2 when x = p; with j > t.

Then dg(p, v) < max{3 + ds(Sa), 1), 3 + ds(Sa@),v)}. From the hypothesis
and Lemma 6 (3) we have:

o ds(u, Sqs) < adp(u,p;) + 8 =a(i—1)+f.
L] dS(Sa(z')7 ’U) < dS(Sb(i)—Ga U) <6+ de(pi_l, U) + B =6+ O!(L — (Z — 2)) + ﬂ

Therefore



dy(p, ) <3+ + max{a(i —1),6 + a(L — (1 — 2))} (2)
From inequalities 1 and 2 we deduce that for every z,y in G,
di(z,y) <3+ 8 —a+ f(1)
where
f(@) :=max{i(a+ 1)+ dy, —i(a—1) + do,i(a — 1) + ds, —i(a + 1) + d4}

and d; = 0,dy = 6+ a(L + 3),d3 = (L+3) and dy = L+ 9 + a(L + 3).
Then f is a piecewise linear function. We have that d; < d3 < dy < d4 and
—(a+1) < —(e—1) <0< a—-1< a+ 1. Moreover, the solutions of the
equations i(a+1)+d; = i(a—1)+d3 and —i(a—1)+dy = —i(a+1)+d, are the
same: z13 = L;L?’ and the solution of the equation i(a+1)+d; = —i(a—1)+d,
is &2 + 3 > 43 Hence f is given by

—i(a+1)+ds i€[0,52)
f@) =% —ila—1)+dy ie[L3 LB 43
ila+1)+d; ZE[L+3 E’L]

Let ¢(«) = |2 — 1|. Then either i := L+3+¢() or iy = %@H is an
integer and both belong to the interval [552, 52 4 3] Since f(iy) < f(i1), we
get that dy(z,y) <3+ —a+ f(i1). We ﬁnally obtain dg(z,y) < 2L +
B8+ 1_‘2(”‘)a + 21+§>(”). Since (u,v) is a dominating pair V(P) is a dominating
set in G. Moreover G’ contains V(P). Then from Lemma 1 we conclude that
G has an orientation with diameter at most a+1L +8+ 1= ¢( @ oy + 29+¢( @) m

Theorem 9 For every AT-free graph G, OD(G) < 2diam(G) + 11,

Proof. From Lemma 7 we know that dg(u, s.i)) < 3dp(u,p;) — 4 and that
ds (v, sp6)) < 3dp(v,pi—1) — 4. Then by taking o = 3 and f = —4 in Lemma 8
we get that ¢(3) = 1. Then OD(G) < 2diam(G) + 2 —4 = 2diam(G) + 11. m

4 Better upper bounds for classes of interval graphs.

In this section we improve the upper bound of Theorem 9 for the following
subclasses of AT-free graphs: interval, proper interval and 2-connected proper
interval graphs.

A graph G is an interval graph if it is the intersection graph of a finite family
{I1,...,I,} of intervals of the real line. An interval graph G is a proper in-
terval graph if in the family {I1,...,I,}, no two intervals I; and I; properly
contain each other. An interval graph G is a unit interval graph if in the family



{I1,...,I,} each interval I; has unit length. A graph G is chordal if it has no
induced cycles of length greater than three. A claw is a tree with three leaves
and four vertices. A graph G is claw-free if it contains no induced claws.

Moreover, we have the following characterizations.

e A graph G is interval if and only if G is AT-free and chordal [15].
e A graph G is proper interval if and only if G is unit interval [17].
e A graph G is proper interval if and only if G is interval and claw-free [23].

In the following the paths P and S, as well as a(i) and b(i), are defined as in
the previous section.

A k—balloon G’ in G is a subgraph of G which consists of a cycle C of length
k and a vertex z ¢ V(C) adjacent to a unique vertex v, in C. If G has an
induced k—balloon with £ > 4 then the cycle C' is an induced cycle of length
greater than three and the closed neighborhood of v, in G is a claw. Therefore,
G is neither chordal nor claw-free.

When we defined (i) and b(7) in Section 3 we already showed that in an
AT-free graph G, every pair of consecutive vertices of P has some neighbor in
V(S)\ V(P). If we add the property of being chordal or claw-free, each vertex
of P has such a neighbor. Moreover

Lemma 10 Let G be an AT-free graph. Let P, S, a(i) and b(i) defined as
before and lp > 4. If G is chordal or claw-free then for allt=3,...,lp

(1) the verter sq@y is adjacent to p;_.
2) the vertex sy s adjacent to p;.
(i)

Proof.

(1) Let us assume that s, is not adjacent to p;_, for some i = 3,...,lp. We
show that GG has an induced k balloon with & > 4 or an asteroidal triple.
From the definition of a(7) the vertex s, is adjacent to p;.

Let us suppose that s,;—1 ¢ V(P). From the definition of a(i) the
vertex s,(;)-1 is not adjacent to p;_;. From Lemma 6 there exists ¢ <i—2
such that sq(;) 1 is adjacent to p;. Let ¢ be the largest index with this
property. If py, ..., pi—1, Di, Sa(i), Sa(i)—1, Pi+1 1S a not an induced k—balloon
then s,(;) is adjacent to p;11. Since py, Sa(i)—1, Sa(i), Pi+1 15 a path of length
three and P is a shortest path we deduce that ¢ = ¢ — 2. But then
{Pi=1, Sa(i)-1, Pi+1} is an asteroidal triple.

Then sqz:-1 € V(P). From Lemma 6 sq¢;)-1 = p; with ¢ <4 — 2. Since
P is a shortest path the vertex s, is not adjacent to {p1,...,p;—3}. Then
t =i — 2 and {pi_2, Pi—1,Di, Pi+1, Sa(i) } is an induced 4-balloon in G.

(2) Tt follows by symmetry from the part (1).

10



Lemma 11 Let G be an AT-free graph. If G is chordal or claw-free then for
all3<i<lIp

(1) dS(ua Sa(’i)) < QdP(’uHPZ) - 2.
(2) ds(v, sp(iy) < 2dp(v,pi-1) — 2.

Proof.

(1) We prove the property by induction. We have to prove that a(i) — 1 <
2(i—1) — 2, that is a(z) < 2(i — 1) — 1. We first prove that a(3) < 3. For
sake of contradiction let us assume that a(3) > 3. Then the vertices s,
and s3 are adjacent neither to ps nor to ps. Hence they do not belong to
V(P). From Lemma 6 we deduce that s3 is adjacent to p;. Then we obtain
a (u, v)-path shorter than S edge-disjoint with P which is a contradiction.

Let us assume that a(i) < 2(i—1)—1 for 3 <i < lp—1. We prove that
a(i+1) < 2i—1 by showing that a(i+1) < a(i) + 2. From Lemma 10 we
know that s,;1) 1s adjacent to p; and s,(;) is adjacent to p; ;. We assume
that a(i + 1) > a(i). From the definition of a(i) the vertex s, is not
adjacent to p;. Now, if s4(;41) is adjacent to p;_1 or s,i41) is adjacent to
Sa(i) OF Sa(i+1)—1 is adjacent to s,(;) then a(i+1) < a(i)+2. We will obtain a
contradiction by assuming that s,;1) is not adjacent to p;_1, Sa(i+1) is not
adjacent to s,(;) and sq(i4+1)—1 is not adjacent to sq(;). If s4(;11)-1 is adjacent
to p;—1 then p;_1,Di, Sa(it1)s Sa(i+1)-1, Sas) 1S an induced 4-balloon. Then
Sa(i+1)—1 is not adjacent to p;_;. Thus {s4(), Sa(i+1)—1,P;} is an asteroidal
triple.

(2) It follows by symmetry from the part (1).

Theorem 12 Let G be an AT-free graph. If G is chordal or claw-free then
OD(G) < 3 diam(G) + 2.

Proof. From Lemma 11 we know that dg(u, e4)) < 2dp(u,p;) — 2 and that
ds(v, sp)) < 2dp(v,pi—1) — 2 for all 3 < i < lp. Then by taking o = 2 and
B = —2 in Lemma 8 we get that ¢(2) = 2. Then OD(G) < 3 diam(G) — 2 —
14+ 3 = 2diam(G) + 2. u

Lemma 13 Let G be an AT-free graph. If G is claw-free and 2-connected then
foralli e {3,...,lp}

%(dp(u,p,) + 1)
%(dp(v,pv,l) +1).

11



Proof.

(1) Let us denote G = G — E(P). For every 1 < i < lp — 1 we prove the
following properties

(a) da(pi, pit2) < 3.

(b) dg(pi, pivs) <6, #1lp — 1.

Let ¢ be with 1 < i < lp — 1. Among all the paths connecting {p1, ..., p;}

and {pis2, ..o, Dip+1} In G\piy1 let @ = {q1, ..., ¢} be a shortest one. Then

q2,---,qr—1 € V(G)\ V(P) and hence E(Q) N E(P) = 0.

(a) Since P is a shortest path if » = 3 then ¢; = p; and g3 = p; o which
proves the statement. Let us assume that r > 4. Then g3 ¢ V(P).
We shall prove that g3 is adjacent to p;1» and that g¢» is adjacent
to p;. Since @) is a shortest path the vertex g3 is not dominated
by {p1,...,p:}. Let p; be the first vertex in {pi;1,..., Pip+1} Which
dominates gs. Since ¢3 is not adjacent to p; we deduce that p;,; also
dominates g3 otherwise we get an induced claw {p;_1,ps, Pri1,q3}-
Since the path g1, g, g3, p1+1 has length 3 we deduce that 1 +1 <¢ <
i+2 and then 142 € {t,t+ 1} that is p;,» is adjacent to g3. We now
prove that g, is adjacent to p;. Since P is a shortest path the vertex
g2 can not be adjacent to any p; with j < ¢ — 1. The set {p1,...,p;}
dominates ¢ then gy is adjacent to p; or to p;_1. If g9 is not adjacent
to p; then it is adjacent to p; 1 and we get that {p; o, p;i 1,0, 2}
is an induced claw. Then (p;, 2, q3, pir2) is a path of length three
between p; and p;.o with no edges in F(P).

(b) Let 1 < i < lp—1. Let @ be defined as above. We already know that
the vertex ¢3 in @) is adjacent to p;io. If g3 is adjacent to p;.3 then
we obtain the conclusion. Otherwise ¢z is adjacent to p;,;. Therefore
de(pispiv1) < 3. Using the first property for ¢ + 1 we obtain the
conclusion.

From previous properties we deduce that dga(u,p;) < 3%, for all odd

integer ¢ € {3,...,lp} and that ds(u,p;) < da(u,pi—s) + da(Pi—s, pi) <

3% +6 < 3%, for all even integer i € {4,...,lp}. Since S is a shortest

(u,v)-path edge disjoint with P we conclude the result.

(2) It follows by symmetry from (1).

Theorem 14 Let G be an AT-free graph. If G is claw-free and 2-connected
then OD(G) < & diam(G) + %.
Proof. From Lemma 13 we know that dg(u, sa@)) < %dp(u,pi) + 2 and that
3
2

2
ds (v, spi)) < %dp(v,pi_l) + % Then by taking « = 2 and 8 = % in Lemma 8
we get that ¢(2) = 3.

12



Therefore OD(G) < 2diam(G) — 3+ 16 + 3 = 2 diam(G) + £. |
Corollary 15 Let G be a graph.

e If G is an interval graph then OD(G) < 2 diam(G) + 2.
e If G is a proper interval graph then OD(G) < 3 diam(G) + 2

2
e If G is a 2-connected proper interval graph then OD(G) < 2 diam(G) + £.

5 Tightness results

Here we show that all our upper bounds are tight up to additive constants.
For this purpose we exhibit families of graphs reaching the upper bounds.
Moreover, in the case of AT-free graphs the exhibited family belongs to the
class of cocomparability graphs (known to be a subclass of AT-free graphs [8])

Theorem 16 For every d > 3 there is a

e cocomparability graph G with diam(G) = d and OD(G) > 2diam(G) — 1.

e proper interval graph G with diam(G) = d and OD(G) > 2 diam(G).

e 2-connected proper interval graph G with diam(G) = d and OD(G) >
2 diam(G).

Proof. See the constructions of Figures 1, 2 and 3. [ |

\J 2% \ % \ % \J \ % \ %

Fig. 1. A cocomparability graph with OD(G) > 2diam(G) — 1.

Fig. 2. A proper interval graph with OD(G) > 2 diam(G).
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P

Fig. 3. A 2-connected proper interval graph with OD(G) > 2 diam(G).

The previous examples in Figure 1 and Figure 2 contain a lot of cut vertices,
thus the question whether the bounds could possibly be improved if we require
the graph to be k-connected for some k£ > 2 arises.

We need the operation of replacing a verter v by a complete graph Kj in
a graph G. This is done by deleting the vertex v, adding k new vertices
V1, V2, . .-,V adding an edge between each pair v;,v;,¢ # j, and adding all
edges v;y for all neighbors y of v in G and all 1 <7 < k. Note that if G is a
proper interval graph, or interval graph, or cocomparability graph, or AT-free,
then the graph obtained is also a proper interval graph, or an interval graph,
or a cocomparability graph, or AT-free, respectively. Moreover, the diameter
of the new graph equals that of G.

Let G be a graph and F C E(G). A partial F-orientation of G is a graph
obtained by orienting all the edges in F', and replacing every other edge by
two antiparallel arcs.

Lemma 17 Let G be a graph and W C V(G). Let us call G' the graph re-
sulting from replacing each verter w € W by a complete graph with at least
two vertices. Assume that each vertex w € W is replaced by a complete graph
with at least two vertices, the resulting graph is called G'. Let F' be the set of
those edges of G between non members of W. Then the minimum diameter
of a strongly connected orientation of G' is greater or equal to the minimum
diameter of a strongly connected partial F-orientation of G.

Proof. Let H' be an optimum orientation of G'. By orienting all the edges in
F like in H', we get a partial F-orientation H of G. The “projection” of every
directed path in H' is a directed path in H, whence diam(H) < diam(H'). &

Theorem 18 For every k and for every d > 3 there is a k-connected

(a) cocomparability graph G with diam(G) > d and OD(G) > 2diam(G) — 1
(b) interval graph G with diam(G) > d and OD(G) > 2 diam(G)

(c) proper interval graph G with diam(G) > d and OD(G) > 2 diam(G)
Proof. The case k = 2 is shown in Figures 3, 4 and 5. The set of vertices

of these graphs can be divided in two sets: V(P) and V(S), where P is the

14



shortest path between the ends v and v and S is a (u, v)—path vertex-disjoint
with P. For k > 3 we replace every vertex in V' (S) by a k-complete graph
obtaining a k + 1 connected graph. The proof is finished by taking F' = E(P)
and W = V/(S) in Lemma 17. u

S

P

Fig. 4. A 2-connected cocomparability graph with OD(G) > 2diam(G) — 1.

S
P
Fig. 5. A 2-connected interval graph with OD(G) > 2 diam(G).
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