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Abstract

In previous works we found necessary conditions for a cellular automaton (CA)
in order to be intrinsically universal (a CA is said to be intrinsically universal
if it can simulate any other). The idea was to introduce different canonical
communication problems, all of them parameterized by a CA. The necessary
condition was the following: if Ψ is an intrinsically universal CA then the com-
munication complexity of all the canonical problems, when parameterized by Ψ,
must be maximal. In this paper, instead of introducing a new canonical prob-
lem, we study the setting where they can all be used simultaneously. Roughly
speaking, when Alice and Bob –the two parties of the communication complexity
model– receive their inputs they may choose online which canonical problem to
solve. We give results showing that such freedom makes this new problem, that
we call Ovrl, a very strong filter for ruling out CAs from being intrinsically
universal. More precisely, there are some CAs having high complexity in all the
canonical problems but have much lower complexity in Ovrl.

Key words: communication complexity, intrinsic universality, cellular
automata.

1. Introduction

Universality and completeness are central issues in the theories of compu-
tation and computational complexity. In fact, understanding universality and
self-reproduction in cellular automata became a key problem since the pioneer-
ing work of John von Neumann [28]. A one-dimensional cellular automaton
(CA) is said to be intrinsically universal if it is able to simulate any other (see
[25] for a survey). On the other hand, a CA is said to be Turing universal if it
can simulate a universal Turing machine. Of course, if a CA is intrinsically uni-
versal then it is also Turing universal. In contrast with the Turing universality
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notion –for which there is no consensus on its formal definition [10]– the in-
trinsic universality notion can be completely formalized [10, 21, 25]. Therefore,
proving negative results appears to be a much more approachable problem.

In the quest for small intrinsically universal CAs [23], Ollinger and Richard
built an intrinsically universal CA having four states and radius one [26]. On the
other hand, Cook proved that the elementary CA Rule 110 (two states, radius
one) is Turing universal [8] (the proof is based in the simulation of cyclic tag
systems). Despite the fact that being intrinsically universal can be a very com-
mon property among the CAs [3, 27], the existence of an elementary intrinsically
universal CA remains open.

By using results and tools of communication complexity theory, we have
previously introduced an approach to prove negative results (i.e., to rule out
particular CAs from being intrinsically universal) [11, 12, 13]. The idea of
applying communication complexity has also been used for proving lower bounds
in other models of computation: Turing machines [1, 2], VLSI circuits [20],
boolean circuits [15, 18], decision trees [16], and more.

In previous works [13, 4] we developed the following technique. We defined
a computational problem PΦ parametrized by a CA Φ. We split the input into
two parts: one given to Alice and the other given to Bob. Then, we viewed such
problem as a communication problem. We proved that the existence of a CA
Ψ for which the communication complexity of PΨ is greater than the one of PΦ

corresponds to a certificate of the fact that Φ is not intrinsically universal.
Five of such canonical problems (which must satisfy some technical prop-

erties) have been useful for ruling out different CAs from being intrinsically
universal: Pred, Cycl, SInv, TInv and CInv.

1.1. Our contribution
Roughly, it is clear that the main goal of our approach is to find a problem P

having a small set of CAs Ψ’s for which the communication complexity of PΨ is
maximal. In such a way, P will be a good filter for ruling out CAs from being in-
trinsically universal. Instead of finding new problems like P, the idea developed
in this paper is to use the canonical ones simultaneously. More precisely, we give
the following freedom to Alice and Bob: depending on the input they receive,
they choose the problem to solve. By definition, this new problem –which we
denote Ovrl– will be much simpler (in terms of communication complexity)
than all the canonical ones. Therefore, for a non intrinsically universal CA Φ
it will be much more likely to obtain a result saying that OvrlΦ has a small
communication complexity (and this result will serve as a certificate). In fact,
given an input, in order to solve OvrlΦ it suffices to find any canonical problem
P for which PΦ is simple.

It is known that a necessary condition for a CA Φ to be intrinsically uni-
versal is the P-completeness of the prediction problem PredΦ when viewed
as a classical computational problem [24]. It was a very important result the
one obtained by Neary and Woods [22] in which they proved that Pred is P-
complete for the elementary CA Rule 110. But it is not known yet whether
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CA Rule 110 is intrinsically universal. Since it is not difficult to find non in-
trinsically universal CAs for which Pred is P-complete [9], we think that our
approach is a very promising alternative for proving negative results. In fact,
there exist CAs whose prediction problem is P-complete but for which the
communication complexity is not maximal [13].

In addition, we also would like to point out that the idea of letting Alice and
Bob choose the problem they solve is, to our knowledge, new in the communi-
cation complexity area.

1.2. Basic definitions
1.2.1. Communication complexity (see [19])

For a function f : X × Y → Z, the main question in the communication
complexity setting is how much information do Alice and Bob need to exchange,
in the worst case, in order to compute f(x, y), with Alice knowing only x ∈ X
and Bob only y ∈ Y . This communication problem f is solved by a protocol,
which specifies, at each step of the communication between Alice and Bob, who
speaks (Alice or Bob), and what she/he says (a bit, 0 or 1), as a function of
her/his respective input.

Formally, a protocol P over a domain X × Y with range Z is a binary tree
where each internal node v is labeled either by a map av : X → {0, 1} or by a
map bv : Y → {0, 1}, and each leaf ℓ is labeled either by a map Aℓ : X → Z or
by a map Bℓ : Y → Z.

The value of protocol P on input (x, y) ∈ X×Y is given by Aℓ(x) (or Bℓ(y))
where Aℓ (or Bℓ) is the label of the leaf reached by walking on the tree from the
root, turning left if av(x) = 0 (or bv(y) = 0), and right otherwise. We say that
a protocol computes a function f : X × Y → Z if, for every (x, y) ∈ X × Y , its
value on input (x, y) is f(x, y).

Intuitively, each internal node specifies a bit to be communicated either by
Alice or by Bob, whereas at the leaves either Alice or Bob determines the value
of f when she/he has received enough information from the other party.

We denote by cc(f) the (deterministic) communication complexity of a func-
tion f : X × Y → Z. It is the minimal depth of a protocol tree computing f .

Definition 1. Given a function f : X × Y → Z, a subset R = A×B ⊆ X × Y
is called f-monochromatic rectangle (in short, monochromatic rectangle) if f is
constant on R.

One approach for proving lower bounds on the communication complexity
of an arbitrary function f is based on the so-called fooling sets.

Definition 2. Given a function f : X × Y → Z, a set F ⊆ X × Y is a fooling
set for f if there exists z ∈ Z such that:

1. For every (x, y) ∈ F , f(x, y) = z,
2. For every distinct pairs (x1, y1) and (x2, y2) in F , either f(x1, y2) ̸= z or

f(x2, y1) ̸= z.
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The usefulness of fooling sets is given by the following lemma.

Lemma 3. If F is a fooling set of size t for f then cc(f) ≥ log2(t).

Previous notions can be generalized to relations.

Definition 4. A relation R is a subset R ⊆ X × Y × Z. The associated com-
munication problem is the following: Alice receives x ∈ X, Bob receives y ∈ Y
and they have to find a z ∈ Z such that (x, y, z) ∈ R.

A protocol P computes a relation R if for every legal input (x, y) ∈ X × Y
the protocol reaches a leaf marked by a value z such that (x, y, z) ∈ R. Note
that an input (x, y) is called legal if there exists at least one z ∈ Z such that
(x, y, z) ∈ R (otherwise, (x, y) is called illegal).

We denote by cc(R) the (deterministic) communication complexity of a re-
lation R ⊆ X × Y × Z. It is the minimal depth of a protocol tree computing
R.

Definition 5. Given a relation R ⊆ X × Y ×Z, a subset R = A×B ⊆ X × Y
is called monochromatic rectangle if there exists a value z such that for every
(x, y) ∈ A×B either (x, y, z) ∈ R or (x, y) is illegal.

Now we introduce two classical communication problems used in next sec-
tion: EQ,DISJ : {0, 1}n × {0, 1}n → {0, 1}. EQ(x, y) = 1 iff x = y and
DISJ(x, y) = 1 iff xi · yi = 0 for all 1 ≤ i ≤ n. It is well-known that the
best possible protocol for both problems is the one consisting in sending the
whole input from one party to the other. In other words, their communication
complexity is Θ(n).

1.2.2. Intrinsic universality in CAs (see [23])
A (one-dimensional) CA is defined by its local rule ϕ : A2r+1 → A (where

A corresponds to the set of states and r denotes the radius of the local rule).
We denote by Φ : AZ → AZ the global rule induced by ϕ following the classical
definition Φ(x)i = ϕ(xi−r, . . . , xi+r). The t-step iteration of the global function
is denoted by Φt : AZ → AZ. Note that a global function Φ can be represented
by different local functions. All properties considered in this paper depend
only on Φ and are not sensitive to the choice of a particular local function.
However, to avoid useless formalism, we use the following notion of canonical
local representation: (ϕ, r) is the canonical local representation of Φ if ϕ has
radius r and it is the local function of smallest radius having Φ as its associated
global function. We say that a CA Φ1 is a sub-automaton of a CA Φ2, and we
denote Φ1 ⊑ Φ2 if, after renaming the states, we can identify the transitions of
Φ1 in Φ2. Formally, Φ1 ⊑ Φ2 if there is an injective map ι from A1 to A2 such
that ι ◦Φ1 = Φ2 ◦ ι, where ι : AZ

1 → AZ
2 denotes the uniform extension of ι and

Ai is the set of states of the CA Φi. Note that ι is the uniform extension of ι if
ι(· · ·x−1x0x1 · · ·) = · · · ι(x−1)ι(x0)ι(x1) · · ·, for every (xi)i∈Z ∈ AZ

1 .
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We say that a CA Φ2 simulates a CA Φ1 if some rescaling of Φ2 is a sub-
automaton of some rescaling of Φ1. The ingredients of the rescalings are simple:
packing cells into blocks, iterating the rule and composing with a translation.

Formally, given any state set A and any m ≥ 1, we define the bijective
packing map γm : AZ →

(
Am

)Z by:

∀i ∈ Z :
(
γm(x)

)
(i) =

(
x(mi), . . . , x(mi + m− 1)

)
,

for all x ∈ AZ. We define the shift map as σ : AZ → AZ, where σ(x)i = xi+1,
for each configuration x ∈ AZ.

The rescaling ⟨m, t, z⟩ of Φ by parameters m (packing), t ≥ 1 (iterating) and
z ∈ Z (shifting) is the CA with set of states Am and global rule:

γm ◦ σz ◦ Φt ◦ γ−1
m .

The fact that the above function is the global rule of a CA follows from
Curtis-Lyndon-Hedlund theorem [17] because it is continuous and commutes
with the shift. With these definitions, we have the following.

Definition 6. We say that Φ2 simulates Φ1, denoted Φ1 4 Φ2, if there exist
rescaling parameters m1,m2, t1, t2 ∈ N and z1, z2 ∈ Z such that

Φ⟨m1,t1,z1⟩
1 ⊑ Φ⟨m2,t2,z2⟩

2 .

We can now naturally define the notion of universality associated to this
simulation relation.

Definition 7. Ψ is intrinsically universal if for all Φ it holds that Φ 4 Ψ.

2. Overlapping in the communication complexity model

We start this section by formalizing the idea of letting several parties (in
particular, Alice and Bob) choose which problem to solve.

Definition 8. Let {fi : X × Y → Zi}ki=1 be a family of functions. We define
the overlapping f1 ⊎ · · · ⊎ fk of such family as the relation that follows:

(x, y, (z, i)) ∈ f1 ⊎ · · · ⊎ fk ⇐⇒ fi(x, y) = z.

In other words, f1 ⊎ · · · ⊎ fk asks about some index i pointing towards a
problem fi together with the answer z ∈ Zi to such problem. The commu-
nication complexity of f1 ⊎ · · · ⊎ fk corresponds to the amount of information
Alice and Bob need to exchange in order to find a correct answer. Obviously,
cc(f1 ⊎ · · · ⊎ fk) ≤ mini=1,...,k cc(fi).

We introduce now a generalization of the classical fooling set notion.

Definition 9. Let {fi : X × Y → Zi}ki=1 be a family of functions. F ⊆ X × Y
is called a fooling set if, for all 1 ≤ i ≤ k, there exists a value zi ∈ Zi such that:
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• For every (x, y) ∈ F , fi(x, y) = zi.

• For every two distinct pairs (x1, y1) and (x2, y2) in F , either fi(x1, y2) ̸=
zi or fi(x2, y1) ̸= zi.

Proposition 10. If {fi : X × Y → Zi}ki=1 has a fooling set F of size t, then:

cc(f1 ⊎ · · · ⊎ fk) ≥ log2 t.

Proof. Analogous to the case k = 1 [19]. 2

Example 11. Consider functions EQ and DISJ which were defined in the In-
troduction. Recall that cc(EQ), cc(DISJ) ∈ Θ(n). In order to clarify our defi-
nition we are going to show that cc(EQ ⊎DISJ) ∈ Θ(log n).

For the upper bound consider the following protocol. If x = 0 . . . 0 then Alice
sends a 0 to Bob; otherwise she sends a 1. If Bob received a 0 or if y = 0 . . . 0
then he answers DISJ(x, y) = 1; otherwise he sends the position i corresponding
to the leftmost 1 in y. Finally, Alice compares xi with yi. If xi = yi then she
answers DISJ(x, y) = 0; otherwise she answers EQ(x, y) = 0. Obviously, the
complexity of the protocol is O(log n) because of the number of bits needed to
encode index i.

For the lower bound, we are going to prove that the set F = {(x, x) ∈
{0, 1}n×{0, 1}n :

∑n
i=1 xi = 1} is a fooling set. Let (x, x), (x′, x′) ∈ F such that

x ̸= x′. Then, DISJ(x, x) = DISJ(x′, x′) = 0 and EQ(x, x) = EQ(x′, x′) = 1,
but DISJ(x, x′) = 1 and EQ(x, x′) = 0. Note that |F| = n and therefore
cc (EQ ⊎DISJ) ∈ Θ(log n).

A natural question arises from previous example: Is it true that for every
function f with cc(f) ∈ Θ(n) there exists another function g with cc(g) ∈ Θ(n)
such that cc(f ⊎ g) ≪ cc(f)? For answering this question we introduce the
parameter δ(f).

Definition 12. Given a function f : X × Y → Z, we define the parameter
δ(f) = log2 max {|A| : A×B ⊆ X × Y is a monochromatic square}, where A×
B is a monochromatic square if it is a monochromatic rectangle and |A| = |B|.

Proposition 13. Let f : X × Y → Zf and g : X × Y → Zg. It follows that
cc(g) ≤ cc (f ⊎ g) + δ(f).

Proof. Let P be a protocol for f ⊎ g. We can see such protocol as a tree of
height h where the set of leaves L = Lf ∪Lg is such that Lf are the answers to
f and Lg the answers to g. Obviously, the set of inputs Rℓ ⊆ X × Y that ends
in the leaf ℓ ∈ L corresponds to a monochromatic rectangle of the function it
answers.

Now, from P, we can construct another protocol P̃ that solves g (see Fig-
ure 1). Suppose that with P we arrive to a leaf ℓ that answers g (i.e., ℓ ∈ Lg).
If this is the case, no modification is done. In the other case, we know that
ℓ ∈ Lf and Rℓ is an f -monochromatic rectangle (this is a well-known property
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of protocol trees [19]). Note that with respect to g the rectangle Rl is not neces-
sarily monochromatic. Such rectangle has length or width less or equal to 2δ(f).
Then, the complexity of the subproblem g|Rℓ

is less or equal to the logarithm
of the smaller side of Rℓ with the trivial protocol that communicates the whole
input. Replacing every leaf that answers g with that subprotocol, we construct
a new protocol P̃ where all the leaves belong to Lg. Such protocol solves g and
the height of its tree is less or equal to h + δ(f). Taking the minimum over all
the protocols that solve f ⊎ g we get that cc(g) ≤ cc(f ⊎ g) + δ(f). 2

induced

rectangle

fg

δ(f)

h+ δ(f)
h

g g

f

f

f

g

g g

g

g

g g

f

f

f

g

Figure 1: Construction of protocol P̃.

Now we are in position to give an answer to the question whether for every
function f such that cc(f) ∈ Θ(n) there exists another function g such that
cc(g) ∈ Θ(n) and cc(f ⊎ g)≪ cc(f). The answer, as it is stated in Proposition
15, is negative. More precisely, we are going to prove the existence of a function
f∗ such that δ(f∗) ≤ log n+1. For proving this we are going to use (by relaxing
and manipulating upper and lower bounds) a well-known, non trivial result
from Ramsey theory. More precisely, we are going to identify a monochromatic
square with a bipartite monochromatic complete subgraph.

Proposition 14. [7] for all k sufficiently large:

log k − 1 ≤ log log b(k) ≤ log k + 1,

where b(k) denotes the minimum number such that for every edge bicoloring of
the graph Kb(k),b(k) there exists a monochromatic subgraph Kk,k.

Proposition 15. There exists a function f∗ : {0, 1}n × {0, 1}n → {0, 1} such
that, for every other function g : {0, 1}n × {0, 1}n → {0, 1} with cc(g) ∈ Θ(n),
we have cc(f∗ ⊎ g) ∈ Θ(n).

Proof. We use the lower bound for b(k) of Proposition 14. Then, identifiying
functions f : {0, 1}n × {0, 1}n → {0, 1} with bicolorings of the graph K2n,2n ,
b(k) with 2n and log k with δ(f), we have that there exists f∗ such that δ(f∗) ≤
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log n + 1 (for all n sufficiently large). Then, by Proposition 13, cc(f∗ ⊎ g) ∈
Ω(n− log n) and the result follows. 2

Remark 1. By using the upper bound for b(k) from Proposition 14, and the
same identification of the proof above, we have that every f : {0, 1}n×{0, 1}n →
{0, 1} satisfies that δ(f) ≥ log n− 1 (for all n sufficiently large).

3. Communication problems in CAs

We first consider classical computational input-output problems of the form
P : A+ → Z whose inputs are words over some alphabet A and outputs are
elements of a finite set Z. Given such type of problems P, we define, for any
n, its restriction to words of length n, i.e., we consider the restricted problem
P|n : An → Z. The key idea of the communication approach is to split the input
into two parts. More precisely, for any 1 ≤ i < n, we define P|in : Ai×An−i → Z.
Therefore, for every x ∈ Ai and y ∈ An−i, we have P|in(x, y) = P|n(xy). Then,
we can consider the communication complexity cc

(
P|in

)
of the ith split function

P|in. Note that, when the lengths of x and y are known, we simply write P(x, y)
instead of P|in(x, y). Now we can define the communication complexity of P as
follows.

Definition 16. Let P : A+ → Z be a computational problem. The communica-
tion complexity of P, denoted CC(P), is the function n 7→ max1≤i<n cc

(
P|in

)
.

Having this, we proceed to define five problems induced by CAs. These prob-
lems are related to prediction, existence of cycles, spacial-invasion, temporal-
invasion and controlled-invasion.

Definition 17. Predl
Φ [13]. (The CA Φ and l ∈ N are fixed parameters). The

input of Predl
Φ is a word x ∈ A+. The output is the word z ∈ A+ that results

after iterating
⌊
|x|−l
2r

⌋
steps (where r is the radius) the CA Φ starting from x.

Intuitively, we apply Φ to the finite word x until ending up with a word shorter
than 2rl + 1.

Definition 18. Cyclk
Φ [13]. (The CA Φ and k ∈ N are fixed parameters).

The input of Cyclk
Φ is a word x ∈ A+. Let px = . . . xxx . . . ∈ AZ be the

x-periodic configuration. Clearly, the evolution of Φ starting from px becomes
periodic (in time) after a finite number of steps. The output of Cyclk

Φ consists
in determining whether the length of this ultimate (temporal) period is less or
equal to k (the answer 1 means yes and the answer 0 means no).

Definition 19. SInvu
Φ [13]. (The CA Φ and u ∈ A+ are fixed parameters).

The input of SInvu
Φ is a word x ∈ A+. Let pu = . . . uuu . . . ∈ AZ and let

pu(x) ∈ AZ be the configuration obtained by putting the word x at the origin
over pu. The output of SInvu

Φ consists in determining whether the differences
between pu and pu(x) will expand to an infinite width as times tends to infinity
when applying Φ (the answer 1 means yes and the answer 0 means no). See
Figure 2.
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extremal differences

u u u u u u u u uu

0

x y

Figure 2: SInvu
Φ(x, y).

Definition 20. TInvu
Φ [4]. (The CA Φ and u ∈ A+ are fixed parameters). The

input of TInvu
Φ is a word x ∈ A+. Let pu and pu(x) be defined as in Defini-

tion 19. The output of TInvu
Φ consists in determining whether the differences

between pu and pu(x) persist forever when applying Φ (the answer 1 means yes
and the answer 0 means no).

Definition 21. CInvu
Φ [4]. (The CA Φ and u ∈ A+ are fixed parameters).

The input of CInvu
Φ is a word x ∈ A+. Let pu and pu(x) be defined as in

Definition 19. The output of CInvu
Φ consists in determining whether the differ-

ences between pu and pu(x) persist forever but remain bounded to a finite width
1 ≤ w <∞ when applying Φ (the answer 1 means yes and the answer 0 means
no).

Remark 2. For all CA Φ and for all word u:

CInvu
Φ(x) = [TInvu

Φ(x) ∧ ¬SInvu
Φ(x)] .

4. Elementary CA Rule 184

The goal of this section is to illustrate with a concrete example the power
of the overlapping operation. For such purpose we are going to consider the
elementary CA Rule 184, denoted by Φ184, which has been used as a model for
traffic flow and ballistic annihilation [6], among others.

xt+1
i 1 0 1 1 1 0 0 0

xt
i−1x

t
ix

t
i+1 111 110 101 100 011 010 001 000

Table 1: Elementary CA Rule 184.

We are going to prove that, despite the fact that:

∃u ∈ A+,CC
(
SInvu

Φ184

)
,CC

(
TInvu

Φ184

)
∈ Θ(log n),
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when we overlap the two problems the communication complexity decreases
dramatically. More precisely,

∀u ∈ A+,CC
(
SInvu

Φ184
⊎TInvu

Φ184

)
∈ O(1).

The CA Φ184 has a set of states A = {0, 1} and its local rule is defined in
Table 1. We can understand space-time diagrams of Φ184 as particles and an-
tiparticles moving with speed 1 in a a background p01 = ∞01∞ = . . . 010101 . . .
[5]. Formally, a particle is the interstice (the gap) between two consecutive 1s
(white cells) and an antiparticle is the the interstice (the gap) between two con-
secutive 0s (black cells). Therefore, as shown in Figures 3, 4, and 5, a particle
can be seen as a pattern 11 which moves to the left while an antiparticle can be
seen as pattern 00 moving to the right. Note that a block of ℓ consecutive 1s
(0s) corresponds to a block of ℓ− 1 consecutive particles (antiparticles) moving
to the left (right). The key property of this CA is that when a particle collides
with an antiparticle both signals annihilate. Therefore, a key property of the
initial configuration is the number and position of particles and antiparticles.

Let u be a word in A+. We denote by #11(u) the number of particles in u
and by #00(u) the number of antiparticles in u, where we consider u with cyclic
boundary (for instance, if u = 0110, then #00(0110) = #11(0110) = 1). Next,
consider the set of balanced patterns B = {u ∈ A+ : #00(u) = #11(u)}. It can
be verified by induction that, for t large enough (more precisely, for t > |u|),
any periodic configuration pu satisfies:

-#00(u) = #11(u)⇒ Φt
184(pu) = p01.

-#00(u) > #11(u)⇒ Φt
184(pu) = pv, for some v ∈ A+ s.t. #00(v) > #11(v) = 0.

-#00(u) < #11(u)⇒ Φt
184(pu) = pv, for some v ∈ A+ s.t. #11(v) > #00(v) = 0.

Considering this, we have the following proposition.

Proposition 22. ∀u ∈ A+,CC
(
SInvu

Φ184

)
,CC

(
TInvu

Φ184

)
∈ O(log n).

Proof. We prove the case SInvu
Φ184

(the proof for TInvu
Φ184

is almost the
same). The protocol is the following (recall that u is known to both parties):

Figure 3: Case #00(u) > #11(u) (time goes up).
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Case u /∈ B. SInvu
Φ184

(x, y) = 0. W.l.g. suppose that #00(u) > #11(u).
Since there are infinite antiparticles in pu any perturbation will be stopped by
the antiparticles (and restricted to a width proportional to the size of the input,
see Figure 3).

Case u ∈ B. Note that if we iterate pu alone then we end up, after |u|
steps, with the alternating background · · · 01010 · · ·. Therefore, after |u| steps,
the initial configuration pu(xy) will be transformed into a new one which can
be seen as · · · 010101x′by′010101 · · · with b being the central bit and where Alice
knows · · · 010101x′b and Bob knows by′010101 · · · (by sharing the central bit
they are sure to count a possible central particle or antiparticle which could be
formed by the rightmost cell of Alice with the leftmost cell of Bob in the initial
configuration). For having this, Alice and Bob only needs to exchange a number
of bits proportional to |u| that do not depend on the size of x and y (see Figure
4).

Figure 4: Case u ∈ B and both (1) and (2) occur.

Consider the following two possible situations: (1) from the“side” of Alice
(of the form · · · 010101x′b) there exists a particle that propagates infinitely far
to the left; (2) from the “side” of Bob (of the form by′010101 · · ·) there exists
an antiparticle that propagates infinitely far to the right.

If (1) and (2) occur, then SInvu
Φ184

(x, y) = 1, since the gap between the
rightmost difference and the leftmost difference grows to infinity (see Figure 4,
time t = |u| is marked with an horizontal line).

If neither (1) nor (2) occurs, then SInvu
Φ184

(x, y) = 0 (see Figure 5).
Let suppose, w.l.g, that only (1) occurs. In that case, it is sufficient for

Alice to send the number of antiparticles that will cross the border between
x′b and by′ (more precisely, the number of antiparticles that cross the origin
assuming that y′ does not differ with the background). With that information,
Bob is able to decide whether the distance between the differences will grow
to infinity. This last step has a logarithmic cost of information. Therefore,
CC(SInvu

Φ184
) ∈ O(log n). 2

Proposition 23. ∃u ∈ A+, s.t. CC
(
SInvu

Φ184

)
,CC

(
TInvu

Φ184

)
∈ Θ(log n).
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Figure 5: Case u ∈ B and neither (1) nor (2) ocurrs.

Proof. We prove the case TInvu
Φ184

(the proof for SInvu
Φ184

is similar). Con-
sider u = 10 and the set Fn =

{(
(00)n−i(10)i, (10)i(11)n−i

)
: 0 ≤ i < n

}
. Every

(x, y) ∈ Fn satisfy that TInvu
Φ184

(x, y) = 0. Let (x1, y1), (x2, y2) ∈ Fn be such
that (x1, y1) ̸= (x2, y2). It is clear that in this case TInvu

Φ184
(x1, y2) = 1 and,

hence, Fn is a fooling set. Note that |Fn| = n. Therefore, CC(TInvu
Φ184

) ∈
Ω(log n). 2

Proposition 24. ∀u ∈ A+,CC
(
SInvu

Φ184
⊎TInvu

Φ184

)
∈ O(1).

Proof. Case u /∈ B. SInvu
Φ184

(x, y) = 0. This case corresponds exactly to the
first one of Proposition 22. Obviously, no information must be exchanged.

Case u ∈ B. Consider now situations (1) and (2) of the second case of Propo-
sition 22. If (1) and (2) occur, then SInvu

Φ184
(x, y) = 1. If neither (1) nor

(2) occurs, then SInvu
Φ184

(x, y) = 0. If only one of them occurs, then, instead
of answering SInvu

Φ184
, Alice and Bob answer the other problem, TInvu

Φ184
. In

fact, they already know that TInvu
Φ184

(x, y) = 1 since the particle (or antipar-
ticle) which starts propagating from one side persists in time. Therefore, the
amount of communication needed in order to know the case in which they are
is constant. 2

Remark 3. All these protocols also work for CA Rule 56. The only difference
between Rule 56 and Rule 184 is the evaluation of the pattern 111, but this pat-
tern does not have any antecedent, so it disappears after one step. Then, after
iterating just one step the initial configuration (this is possible with only two
bits of communication), the previous protocols work for CA Rule 56 (however,
the fooling set should be modified to obtain a lower bound.)

5. Intrinsic universality in CAs: a new tool for proving negative re-
sults

We denote Φ1 4 Φ2 when the CA Φ2 simulates the CA Φ1. We say that
a CA Ψ is intrinsically universal if Φ 4 Ψ for every CA Φ. Formal definitions

12



appear in [23]. Finding strong necessary conditions for universality is one of the
most challenging problems in theoretical computer science. For tackling that
issue we proved in previous works the following result:

Proposition 25. [13, 4]. Let Ψ be an intrinsically universal CA. Then, there
exist l, k, u1, u2 and u3 such that:

n ≺ CC(Predl
Ψ),CC(Cyclk

Ψ),CC(SInvu1
Ψ ),CC(CInvu2

Ψ ),CC(TInvu3
Ψ ),

where f1 ≺ f2 if there exist non-constant affine functions α, β, γ, δ : N→ N such
that α ◦ f1 ◦ β ≤ γ ◦ f2 ◦ δ.1

Definition 26. Let Φ be a CA. Given parameters k ∈ N and u ∈ A+, we define
the problem:

Ovrll,k,u
Φ := Predl

Φ ⊎Cyclk
Φ ⊎ SInvu

Φ ⊎TInvu
Φ ⊎CInvu

Φ.

The main goal of this section is to obtain the same result of Proposition 25
but for Ovrl. This is a much stronger result because the complexity of Ovrl is
always smaller that the canonical problems that we are overlapping. Moreover,
as it can be seen in next proposition, the decrease in the complexity could be
dramatic.

Proposition 27. There exist a CA Φ and l, k ∈ N, u1, u2, u3 ∈ A+ such that:

CC(Predl
Φ),CC(Cyclk

Φ),CC(SInvu1
Φ ),CC(CInvu2

Φ ),CC(TInvu3
Φ ) ∈ Θ(n),

and, for all l, k ∈ N, u ∈ A+:

CC(Ovrll,k,u
Φ ) ∈ O(1).

Proof. Given two CAs Φ1 (with set of states A1 and local rule ϕ1) and Φ2

(with set of states A2 and local rule ϕ2), we define the sum between them as a
new CA Φ1 ⊕ Φ2 such that its set of states is the disjoint union of A1 and A2

plus an extra symbol #, and its local rule ϕ1 ⊕ ϕ2 is defined by:

ϕ1 ⊕ ϕ2(u−r · · ·ur) =

 ϕ1 (u−r · · ·ur) if u−r · · ·ur ∈ A2r+1
1 ,

ϕ2 (u−r · · ·ur) if u−r · · ·ur ∈ A2r+1
2 ,

# otherwise,

where the radius r is the maximum between the radii of Φ1 and Φ2. Roughly
speaking, this CA behaves like Φ1 or Φ2 if all the states belong to one of the two
sets or it erases everything if they are mixed. A basic but important observation
is that Φi is a sub-automaton of Φ1 ⊕ Φ2, for i = 1, 2.

On the other hand, we know from [13, 4] that there exist CAs Φ1, Φ2, Φ3,
Φ4 and Φ5 such that:

1Note that CC(P) ∈ Ω(n) implies n ≺ CC(P).
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• ∃l ∈ N,CC(Predl
Φ1

) ∈ Θ(n) and ∀u ∈ A+
1 ,CC(TInvu

Φ1
) ∈ O(1).

• ∃u5 ∈ A+
5 ,CC(TInvu5

Φ5
) ∈ Θ(n) and ∀u ∈ A+

5 ,CC(CInvu
Φ5

) ∈ O(1).

• ∃u4 ∈ A+
4 ,CC(CInvu4

Φ4
) ∈ Θ(n) and ∀u ∈ A+

4 ,CC(SInvu
Φ4

) ∈ O(1).

• ∃u3 ∈ A+
3 ,CC(SInvu3

Φ3
) ∈ Θ(n) and ∀k ∈ N,CC(Cyclk

Φ3
) ∈ O(1).

• ∃k ∈ N,CC(Cyclk
Φ2

) ∈ Θ(n) and ∀l ∈ N,CC(Predl
Φ2

) ∈ O(1).

We assert that Φ := Φ1 ⊕ Φ2 ⊕ Φ3 ⊕ Φ4 ⊕ Φ5 satisfies the conditions of
the proposition. In fact, we have that Φi ⊑ Φ1 ⊕ Φ2 ⊕ Φ3 ⊕ Φ4 ⊕ Φ5 for all i.
Since Φi is hard for the ith problem, it follows by transitivity of communication
complexity under ⊑, that Φ is hard for all the problems. Now, we only have
to vertify that ∀l, k ∈ N,∀u ∈ A+,CC(Ovrll,k,u

Φ ) ∈ O(1). If the input and the
background only have states from a single CA, then we only have to consider
the CA with such states and use the protocol of the problem for which it is easy.
If not (if there are states from more than one CA), the dynamic becomes trivial
because everything is invaded and, in particular, the complexity of SInvu

Φ is
constant. 2

The usefulness of Ovrl as a filter for ruling out CAs from being intrinsically
universal (Corollary 30) is the result of:

1. The compatibility of Ovrl with our simulation notion (by compatibil-
ity we mean the following: if Φ2 simulates Φ1 then the communication
complexity of OvrlΦ2 is greater than or equal to the one of OvrlΦ1 , see
Proposition 28).

2. The existence of a specific CA Φ such that OvrlΦ has high communication
complexity (see Proposition 29).

These results are a little bit technical due to the incompatibility of Cycl
with the shift (a CA could have different communication complexity for Cycl
with respect to a shifted version of itself). In other words, it cannot be proved
that the communication complexity is preserved by simulations that use the
shift if we want to include the Cycl problem in the overlapping (all the other
problems satisfy that). However, as for the Cycl problem itself, we can prove
a strongest statement that leads to the same conclusion (Proposition 29).

Proposition 28. If Φ1 and Φ2 have set of states of A1 and A2, respectively,
and

Φ⟨m1,t1,0⟩
1 ⊑ Φ⟨m2,t2,0⟩

2 ,

for some m1,m2, t1, t2 ∈ N, then, for all l ∈ N, k0 ∈ N and u ∈ A+
1 , there exist

l′ ∈ N, k, k′ ≥ k0 and v ∈ A+
2 such that:

CC(Ovrll,k,u
Φ1

) ≺ CC(Ovrll′,k′,v
Φ2

).
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Proof. The proof of this proposition comes from the fact that each problem
preserves communication complexity under the sub-automaton, packing and
iteration transformations modulo change of parameters l, k, and u. However,
since the ≺ relation means ≤ under subsequences, we have to take a common
subsubsequence to the subsequence given by each problem, which in this case
is possible (see [13, 4]). 2

Proposition 29. There exists a specific CA Φ and parameters l, k0 and u such
that:

CC
(
Ovrll,k0,u

σz◦Φ

)
∈ Θ(n),

for every z ∈ Z.

Proof. We focus our proof on the case z = 0. The difficulty comes from the
fact that the three invasion problems (SInv, TInv, and CInv) are related in
a logical way such that, generally, when a CA is hard for two of them, the
third one becomes easy. To solve this, we consider a CA Φ with set of states
A =

{−→0 ,
−→1 ,
←−0 ,
←−1 ,⊤, ∗, ◃▹, s

}
. The idea is that, given x, y ∈ {0, 1}n, the CA

Φ represent in its dynamic a test for EQ(x, y) but also tests for GT(x, y) and
GT(y, x). The greater than function [19] GT(x, y), is defined to be 1 if x > y and
0 in another case, when x and y are considered as n-bit integers 0 ≤ x, y < 2n.
To do this, we consider signals carrying 0s and 1s in both directions and a special
state ⊤ that do the tests.

In Figure 6, we define local rules in order to represent the results of the test
in the dynamics of Φ, where ◃▹ is a wall and s is a spreading state. This rule
guarantees that the CA behaves differently according to the value that x and y
represent when interpreted in binary notation.

⊤ s ⊲⊳ ⊤
−→
0 ⊤

←−
0

−→
0 ⊤

←−
1

−→
1 ⊤

←−
0

−→
1 ⊤

←−
1

∗ ∗ ∗ ∗ ⊲⊳ ∗ s s s

∗ ∗ ⊤ ∗ ∗ ∗ ∗ ⊲⊳ ∗ ∗ ∗ ∗ s ∗ ∗

Figure 6: Some essential values from the local rule of Φ.

Then, in an instance with a test like in Fig. 7, there are three cases and
their respective consequences: x = y, x < y and x > y. If l = 1, k = 1, and
u = ∗.

Considering an input like −→xn · · · −→x1 ⊤ ←−y1 · · · ←−yn , we have the fol-
lowing results:

x = y x > y x < y

Pred1
Φ ∗ ◃▹ s

SInv∗
Φ 0 0 1

TInv∗
Φ 0 1 1

CInv∗
Φ 0 1 0
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∗ ∗∗ ∗−→
xn

←−
yn

−→
xi

←−
yi

−→
1

←−
1

−→
0
−→
0 ⊤

←−
0
←−
0

−→
0 ⊤

←−
0

−→
1

←−
1⊤

⊤
−→
xi

←−
yi

−→
xn

←−
yn

?

Figure 7: Hard instances for Φ.

Finally, to include a hard instance for the cycle length problem, we only have
to add new symbols ← and → which play the role of a signal that is sent in the
x > y case and rebounds when it encounters the ◃▹ symbol. Then, the cases are
the following:

x = y x > y x < y

Cycl1
Φ 1 0 1

This represents that in the case x > y the signal rebounds having a cycle of
length proportional to Θ(n). On the other hand, in the cases x = y and x < y,
the cycle have length equal to 1 (in the first case, all is annihilated and only the
⊤ symbol prevails; in the second case, all is erased by the spreading state).

Considering the set F = {(−→xn · · · −→x1⊤,←−x1 · · ·←−xn) : x1 · · ·xn ∈ {0, 1}n}, we ha-
ve that any monochromatic rectangle cannot have two elements of it. In other
words, given two elements x ̸= y in {0, 1}n, the rectangle given by (−→x⊤,←−x ),
(−→x⊤,←−y ), (−→y ⊤,←−x ) and (−→y ⊤,←−y ) is not monochromatic for every problem.
Then, F is a fooling set for Ovrl1,1,∗

Φ , and |F| = 2n. Therefore, by Proposition
10, the complexity is in Θ(n).

Finally, note that for every z ∈ Z, σz ◦Φ has high communication complexity
for Ovrl. This comes from the fact that: (1) the result of each invasion problem
is shift-invariant; (2) the complexity of PredΦ and Predσz◦Φ is modified by
a constant that depend on |z|, due to the definition of CC that consider the
maximum along every possible partition; (3) the length of cycles is 1 in the case
where the spreading state is triggered or Ω(n) in other case (due to cycle of the
signal, or the wall in the shifted case). 2

Corollary 30. Let Ψ be an intrinsically universal CA. Then, there exist l, k
and u such that:

n ≺ CC(Ovrll,k,u
Ψ ).

Proof. We conclude by using the last two propositions and the fact that every
intrinsically universal CA can simulate any other CA without using the shift,
but shifting the simulated one (see [9]). 2
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Open question 1. Is there any list of problems, each of which is hard for some
CA, but such that the overlapping of them becomes easy for any CA?
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