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Abstract. We study strategies that minimize the instability of a fault-
tolerant consensus system. More precisely, we find the strategy than min-
imizes the number of output changes over a random walk sequence of
input vectors (where each component of the vector corresponds to a par-
ticular sensor reading). We analyze the case where each sensor can read
three possible inputs. The proof of this result appears to be much more
complex than the proof of the binary case (previous work). In the binary
case the problem can be reduced to a minimal cut in a graph. We succeed
in three dimensions by using the fact that an auxiliary graph (projected
graph) is planar. For four and higher dimensions this auxiliary graph is
not planar anymore and the problem remains open.

1 Introduction

There are situations where, for fault-tolerant purposes, a number of sensors
are placed in the same location. Ideally, in such cases, all sensor readings should
be equal. But this is not always the case; discrepancies may arise due to dif-
ferences in sensor readings or to malfunction of some sensors. Thus, the system
must implement some form of fault-tolerant averaging consensus function φ that
returns a representative output value of the sensor readings.

Let us consider n sensors which are sampled at synchronous rounds. In each
round an input vector x of sensor readings is produced, where xi is a value from
some finite set S produced by the i-th sensor. Assuming that at least t+1 entries
of the vector are correct, φ is required to return a value that appears in at least
t+ 1 entries of x.

The sampling interval is assumed to be short enough in order to guarantee
the sequence of input vectors to be smooth: exactly one entry of a vector changes
from one round to the next one.
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ICDB, Ecos C09E04 and IXXI (Complex System Institute, Lyon).



A natural function φ is the one that returns the most common value of
vector x. However, the instability of such function is high. More precisely, the
output value computed by such φ could change from one round to the next one
unnecessarily often.

For tackling this stability issue a worst case complexity measure was in-
troduced in two previous papers [6, 8]. The input sequence considered in those
papers was assumed to be, in addition to smooth, geodesic: the i-th entry of
the input vector was allowed to change at most once over the sequence. The
instability of a consensus function was given by the largest number of output
changes over any such sequence, called a geodesic path.

In [1] we introduced, as an alternative measure, a more natural (and sub-
tle) notion called average instability. We removed the geodesic requirement and
therefore the smooth sequences of input vectors we considered were random
walks over the hypercube. If P = x0, x1, . . . is such a walk, then the average
instability of a consensus function φ is given by the fraction of time φ changes
its output over P .

We studied in [1] the case when the input is binary (S = {0, 1}). In particular,
for the memoryless case, we proved that function φ0, that outputs 1 unless it is
forced by the fault-tolerance requirement to output 0 (on vectors with t or less
1’s), is optimal.

In the present paper we analyze the 3-value case (S = {0, 1, 2}). We extend
previous result proving that the natural extension of φ0 is in fact optimal among
all the anonymous strategies (a strategy is anonymous, or symmetric, when it
only depends on the number of entries of each type, and not in the respective
places of the entries).

More precisely, let #b(x) be the number of entries of x that are equal to
b ∈ {0, 1, 2}. Let ψ be the consensus function defined as follows:

– ψ(x) = 2 if #2(x) ≥ t+ 1,
– ψ(x) = 1 if #2(x) ≤ t and #1(x) ≥ t+ 1,
– ψ(x) = 0 if #2(x) ≤ t and #1(x) ≤ t.

In this paper we prove that the consensus function ψ has optimal stability ac-
cording to the average criterion (among all the consensus symmetric memoryless
functions).

The proof of this result is much more complex than the proof of the binary
case. In the binary case the problem can be reduced to a minimal cut in a
graph. For higher dimensions this approach can not be used. In fact, the problem
becomes a multiterminal cut problem, which is NP-hard [5].

We succeed in 3 dimensions by using the fact that an auxiliary graph (pro-
jected graph) is planar. Unfortunately, the auxiliary graph is not planar in 4
(and higher) dimensions. We are therefore facing a hard combinatorial prob-
lem. In fact, the multiterminal cut problem is polynomial for planar graphs and
NP-complete in the general case.

We would like to point out that Davidovitch et al [6] faced the same change
in the difficulty level when they extended their binary case result to a more gen-



eral, multi-valued result. In fact, for that extension, they had to use topological
techniques in high dimensional complexes.

As noted in [8], studying the instability of consensus functions may have
applications in various areas of distributed computing, such as self-stabilization
[7] (indeed, see [11]), Byzantine agreement [2], real-time systems [12], complexity
theory [10] (boolean functions), and VLSI energy saving [3, 14, 17] (minimizing
the number of transitions).

2 The model

Let n, t, k be non-negative integers such that n ≥ kt+1. The set of input vectors
is the set V = {0, 1, ...., k − 1}n. The input space is the graph (V,E) where
the edges E are all the (unordered) pairs of vectors which differ in exactly one
component. Notice that |E| = n(k − 1)kn/2. In this paper we focus in the case
k = 3.

The distance d(x1, x2) between two vectors x1, x2 is the distance in the input
space, i.e., the number of entries in which x1 and x2 differ. We denote by #b(x)
the number of entries of x that are equal to b ∈ {0, 1, 2}. The corners of the
input space are the vectors 0n, 1n and 2n.

Let x0, x1, x2, . . . be a walk in the input space, i.e., a sequence (xi)i∈N of
vectors in V such that for each i ∈ N, the pair {xi, xi+1} is an element of E.

A consensus decision function φ assigns, to each xi, an output value d ∈
{0, 1, 2}. In this paper we only consider such memoryless functions (for which
the decision depends only on the current input vector xi, and not on the past
history).

Formally, φ : V → {0, 1, 2} is the consensus decision function. The fault-
tolerance requirement that φ must satisfy is the following: φ(x) = d⇒ #d(x) ≥
t+ 1.

A consensus decision function φ is symmetric if φ(x) depends only on the
three values #0(x), #1(x),#2(x) (which correspond to the number of 0s, 1s and
2s of x).

An execution of the system is a sequence (x0, d0) → (x1, d1) → . . ., where
di = φ(xi).

In the sequel we will often refer to the “consensus function” instead of the
“consensus symmetric memoryless decision function”.

2.1 Stability: random walk criterion

In [1] we proposed a new criterion that uses random walks for determining the
instability of a consensus function. The idea is the following. The initial input
vector x0 is chosen according to some distribution λ. On the other hand, if xi is
the current input vector, then the next input vector xi+1 is chosen in a random
uniform way among the vectors at distance one from xi.

Formally, we have a Markov process (P, µ0) whose set of states is V and there
is a transition from x to x′ if {x, x′} ∈ E. The probability of such transition is



1/2n (this defines the transition matrix P ). The initial distribution is µ0 = λ.
Each state xi has an associated output value di = φ(xi). Therefore the random
walk x0, x1, x2, . . . defines an execution.

We use the classical Kronecker notation δ(i, j) where δ(i, j) = 1 when i =
j, and δ(i, j) = 0 otherwise. Let cλ,l(φ) be the random variable defined by:

cλ,l(φ) = 1

l

∑l−1

k=0
δ(dk, dk+1). The average instability of a consensus function φ

is defined by:

inst(φ) = E( lim
l→∞

cλ,l(φ)).

The average instability represents the frequency of decision changes along a
random execution (and, as an easy consequence of the classical Ergodic Theorem
[15], it is well defined).

Furthermore, the stationary distribution π of the random walk x0, x1, x2, . . .
is the uniform distribution, i.e., πx = 1/3n for every x ∈ V (for notation see
[15])).

Since the instability of φ counts the number of times the function φ changes
its decision along a random walk, by the Ergodic Theorem this value tends to
the number of bicolored edges (where changes in the decision take place) divided
by |E| = n3n. In other words,

inst(φ) =

∑
{x,y}∈E δφ({x, y})

n3n
=

|Eφ|

n3n
,

where δφ({x, y}) = 1 when φ(x) 6= φ(y) and δφ({x, y}) = 0 otherwise, and Eφ
denotes the set of edges e such that δφ(e) = 1 (i.e., Eφ is the set of bicolored
edges). A detailed proof of the equality above was given for the binary case in
[1]. The proof of the 3-value case is identical.

3 Basics for the symmetric case

We study here symmetric systems. For these systems it is convenient to use the
projected input space (V ′, E′, w), which is a weighted graph.

Each vertex v of the projected input space V ′ can be seen as a triple (i, j, k)
with i, j, k nonnegative, and i+ j + k = n. Each of these triplets represent the
set of n!

i!j!k! input vectors containing i 0-entries, j 1-entries and k 2-entries. We
say that i, j and k are, respectively the 0-component, the 1-component and the
2-component of v.

On the other hand, two distinct vertices (i, j, k) and (i′, j′, k′) are linked by
an edge of E′ when |i − i′| ≤ 1, |j − j′| ≤ 1 and |k − k′| ≤ 1 (remark that we
necessarily have i = i′ or j = j′ or k = k′).

The weight w({v, v′}) of the edge {v, v′} is the number of edges {x, x′} of E
such that v is the projection of x and v′ is the projection of x′. For i < n and
j > 0, the weight of the edge {(i, j, k), (i+ 1, j − 1, k)} is given by the equality:

w({(i, j, k), (i+ 1, j − 1, k)}) =
n!

i!(j − 1)!k!
(1)



For each symmetric function φ, we define φ(v) = φ(x) where x is any input
vector such that v is the projection of x. Therefore, in the symmetric case, the
last equality of the previous section becomes:

inst(φ) =

∑
{v,v′}∈E′ w({v, v′})δφ({v, v′})

n3n
=

∑
e′∈E′

φ
w(e′)

n3n
,

where δφ({v, v
′}) = 1 when φ(v) 6= φ(v′), δφ({v, v′}) = 0 otherwise, and E′

φ

denotes the set of edges e′ of E′ such that δφ(e
′) = 1 (in other words, E′

φ is the
set of bicolored edges in the projected input graph). It follows that, when we
want to minimize the instability, we have to minimize the quantity

∑
e′∈E′

φ
w(e′).

The structure of the projected input space is easily understandable. It can be
seen as a part of the triangular lattice delimited by an equilateral triangle of side
length n, whose extreme points are the corners (n, 0, 0), (0, n, 0) and (0, 0, n) In
particular, this graph is planar. More precisely, we will use the following drawing:
we take three points a, b, c, of the plane R

2, usually a = (0, 0), b = (n, 0) and

c = (n
2
, n

√
3

2
). Each vertex (i, j, k) is identified with the point pijk which is the

barycenter of (a, i), (b, j), and (c, k). Edges are classically represented by lines
segments linking neighbor vertices. This representation is called the canonical
representation of the projected input space.

We associate vectors to edges and faces: the vector corresponding to the
edge e = {v, v′} is the average between its endpoints vectors, i.e., the vector
corresponding to the center of the line segment [v, v′]. Hence, the vector of the
edge e = {v, v′} is formed by two semi-integer values and one integer value. The
vector of a (finite) triangular face φ is the average between its vertices, i.e., the
vector corresponding to the center of f . This vector is of the form (x, y, z), with
3x, 3y and 3z being all integers (moreover, one can check that 3x, 3y and 3z are
equal modulo 3).

We recall that the dual graph of the projected input space (V ′, E′) is the
(multi)graph (F,E′) such that F is the set of faces induced by (V ′, E′), and a
pair {f, f ′} is an edge if there exists {v, v′} ∈ E′ such that the line segment
[v, v′] is shared by both f and f ′. As it is usually done, we refer indistinctly to
the edge {f, f ′} of the dual graph and to the same edge {v, v′} of the projected
input space. Since the canonical representation of the projected input space is
part of the triangular lattice of the plane, the canonical representation of the
dual graph is part of the hexagonal lattice, with all pending edges linked to a
particular vertex of the dual graph, which is the infinite face f∞.

Let i be an integer. We define the edge set Ex= i
2

as the set of edges whose

0-component is i
2
. In other words, Ex= i

2

is the set of edges intersecting the

closed line segment [( i
2
, n − i

2
, 0), ( i

2
, 0, n − i

2
)]. Notice that an edge intersects

this closed line segment if and only if the corresponding edge of the dual graph
also intersects the same line segment (with the convention that the vertices of
the dual graph are placed in the center of the triangular faces). One can define,
in a similar way, for any integer j, Ey= j

2

and, for any integer k, Ez= k
2

(using

respectively the 1-component and the 2-component).



Lemma 1. Let e be an edge of Ex= i
2

with vector ( i
2
, j

2
, 2n−i−j

2
).

– Let sym(e) be the edge with vector ( i
2
, 2n−i−j

2
, j

2
). We have w(e) = w(sym(e)).

– For i odd, and j+1 ≤ 2n−i
2

, let e+ denote the edge with vector ( i
2
, j+1

2
, 2n−i−j−1

2
)

• If j is even, then w(e) = w(e+),
• If j is odd, then w(e) < w(e+).

– For i even (which enforces j being odd) and j + 2 ≤ 2n−i
2

, let e+ denote the

edge with vector ( i
2
, j+2

2
, 2n−i−j−2

2
). We have w(e) < w(e+).

Proof. This lemma is a direct consequence of equality 1.

The lemma above describes the evolution of weights of edges in Ex= i
2

. First,
it says that there is a weight symmetry with respect to the median axis, formed
by points (x, y, z) such that y = z. Secondly, the lemma also says that the weight
increases as you move towards the median axis.

Each consensus function φ divides the vertices of the projected input space
(and therefore the plane since the graph is planar) into three zones, one for each
output value. Each zone contains the corresponding corner. Notice that zones
are not necessarily connected.

Consider the set Eφ of bicolored edges induced by φ or, more precisely, con-
sider the corresponding edges in the dual graph. These edges form cycles, which
surround connected components of the zones.

We call network a subset of edges. Given a network N , the weight wN
x= i

2

is

defined by wN
x= i

2

= min{w(e) | e ∈ Ex= i
2

∩ N} (we say that wN
x= i

2

= ∞ when

Ex= i
2

∩ N is empty). This weight represents the minimal necessary weight for

passing from one side of the segment [( i
2
, n− i

2
, 0), ( i

2
, 0, n− i

2
) to the other part

still remaining in the network N .

Lemma 2. Consider a simple path p (of the dual graph) linking a finite face f0
to the infinite face f∞, remaining in a network N , whose last edge belongs to
Ex=0. Let (i0, j0, k0) be the vector corresponding to f0. The sum

∑
e∈p w(e) is

denoted by w(p). We have the inequality:

w(p) ≥
∑

0≤i<2i0

wNx= i
2

Proof. This is obvious since, for each integer i such that 0 ≤ i < 2i0, the path
must contain an edge of Ex= i

2

and the sets Ex= i
2

are pairwise disjoint.

4 Our result

The following theorem is the main result of the paper.

Theorem 1. Consider the consensus function ψ defined by:



Fig. 1. An application of Lemma 2, with the network N0 formed by edges whose 1-
components and 2-components are both at least 3/2. The weight of the path issued
from the star is larger than the weight of the marked edges in the horizontal path issued
from the cell of vector (n − 2t − 2

3
, t + 1

3
, t + 1

3
) (notice that this path is a boundary

path induced by the consensus function ψ).

– ψ(x) = 2 if #2(x) ≥ t+ 1,
– ψ(x) = 1 if #2(x) ≤ t and #1(x) ≥ t+ 1,
– ψ(x) = 0 if #2(x) ≤ t and #1(x) ≤ t.

The consensus function ψ has optimal stability according to the average cri-
terion, among all symmetric functions.

We decompose the proof into two lemmas from which the theorem is a direct
consequence. We first limit ourselves to the case when each of the three zones
formed from vertices with the same output value is connected in the merged
input gragraph.

Lemma 3. Let φ be a consensus function for which each of the three zones
induced by φ is connected. We have inst(φ) ≥ inst(ψ).

Proof. In this case, E′
φ is just formed (in the dual graph) by three edge disjoint

paths linking a face f0 = (i0, j0, k0), with i0 > t, j0 > t, and k0 > t to the infinite
face f∞. We call p0 the path linking f0 to f∞ and crossing the set Ex=0. This
path is the boundary between the 1-zone and the 2-zone.

We denote by N0 the network formed by edges whose vector (x, y, z) are such
that y > t and z > t. The path p0 remains in N0 thus, applying Lemma 1, we
get:

w(p0) ≥
∑

0≤i<2i0

wN0

x= i
2

.

In the same way we get w(p1) ≥
∑

0≤j<2j0
wN1

y= j

2

andw(p2) ≥
∑

0≤k<2k0
wN2

z= k
2

.



Adding these inequalities, we get a lower bound for w(E′
φ) = w(p0)+w(p1)+

w(p2). But this bound is not sufficient to get our result. We need a refinement
of Lemma 2 using other separating edge sets.

Up to symmetry, it can be assumed that i0 ≥ j0. We define the integer j1 as
the lowest integer such that j1 ≥ 2j0. For 2t < k < 2k0, we state ik = 2n−k− j1
in such a way that Lk = (ik/2, j1/2, k/2) and Rk = (j1/2, ik/2, k/2) have semi-
integer or integer coordinates.

The set Ef0z=k/2 is formed by edges listed below (see Figure 2):

– the edges of Ez=k/2 whose whose 1-component is at least j1 and whose 0-
component is at least j1 (i.e. the edges which meet the line segment [Lk, Rk]).

– the edges of Ex=ik/2 whose 2-component is at most k (i.e., the edges which
intersect the line segment [Lk, (ik/2, 0, n− ik/2)]).

– the edges of Ej=ik/2 whose 2-component is at most k (i.e., the edges which
intersect the line segment [Rk, (0, ik/2, n− ik/2)]).

Given a networkN , the weight uN f0
z=k/2 is defined by: uN f0

z=k/2 = min{w(e′), |e′ ∈

Ef0z=k/2 ∩ N}. This weight represents the minimal necessary weight for passing

from one side of the cut Ef0z=k/2 to the other part still remaining in the network
N .

Fig. 2. The improvement of the argument of Lemma 2. We use some “broken lines”.
For each marked edge of E′

ψ, one can find an edge of larger weight on the path issued
from the star.

Consider the path p2 (of the dual of the projected input graph) linking the
face f0 to the infinite face f∞ and remaining in the network N2. We have:

w(p2) ≥
∑

0≤k≤2t

wN2

z= k
2

+
∑

2t<k≤k0
uN2 f0
z= k

2

,



because the considered cut sets of edges are pairwise disjoints and p2 contains
at least an edge of each of these sets.

From Lemma 1, we have: uN2 f0
z= k

2

= wN0

x=
ik
2

, since an edge of minimal weight

for the two corresponding edge sets (Ef0
z= k

2

∩ N2 and E
x=

ik
2

∩ N0) is the edge

of vector ( ik
2
, 2t+1

2
, 2n−ik−2t−1

2
). Moreover, 2t < k < 2k0 if and only if 2n −

2k0 − j1 ≤ ik ≤ 2n − 2t − j1. From the definition of j1 this exactly means
2n − 2k0 − 2j0 ≤ ik ≤ 2n − 2t − 2j0, i.e. 2i0 ≤ ik ≤ 2n − 2t − 2j0. Therefore,∑

2t<k≤k0 u
N2 f0
z= k

2

=
∑

2i0≤i≤2n−2t−2j0
wN0

x= i
2

, which gives:

w(p2) ≥
∑

0≤k≤2t

wN2

z= k
2

+
∑

2i0≤i≤2n−2t−2j0

wN0

x= i
2

On the other hand, for 2t < j < 2j0, we have, from Lemma 1, wN1

y= j

2

=

wN0

x= 2n−2t−j

2

: an edge of minimal weight in the edge set Ey= j

2

∩ N1 is the edge

e of vector (2n−j−2t−1

2
, j

2
, 2t+1

2
), an edge of minimal weight in the edge set

Ex= 2n−2t−j

2

∩N0 is the edge e′ of vector (2n−j−2t
2

, j+1

2
, 2t+1

2
), and w(e) = w(e′).

Thus,
∑

2t<j<2j0
wN1

y= j
2

=
∑

2t<j<2j0
wN0

x= 2n−2t−j
2

=
∑

2n−2t−2j0<i<2n−4t w
N0

x= i
2

,

which gives:

w(p1) ≥
∑

0≤j≤2t

wN1

y= j

2

+
∑

2n−2t−2j0<i<2n−4t

wN0

x= i
2

.

We recall that
w(p0) ≥

∑

0≤i<2i0

wN0

x= i
2

.

We have w(E′
φ) = w(p0) + w(p1) + w(p2), thus, adding the three previous

main inequalities, we get:

w(E′
φ) ≥

∑

0≤i<2n−4t

wN0

x= i
2

+
∑

0≤j≤2t

wN1

y= j
2

+
∑

0≤k≤2t

wN2

z= k
2

.

But
∑

0≤i<2n−4t w
N0

x= i
2

is exactly the weight of the path separating the 2-zone

and the 1-zone for the function ψ,
∑

0≤j≤2t w
N1

y= j

2

is exactly the weight of the

path separating the 2-zone and the 0-zone for the function ψ, and
∑

0≤k≤2t w
N2

z= k
2

is exactly the weight of the path separating the 1-zone and the 0-zone for the
function ψ. Thus the second member of the equality is exactly w(E′

ψ). We have:
w(E′

φ) ≥ w(E′
ψ).

Lemma 4. Let φ be a consensus function. There exists a consensus function
φ′ for which each the induced zones induced by φ′ are connected, such that
inst(φ′) ≤ inst(φ).

Proof. Actually, we prove a (little bit) stronger fact: if a zone induced by φ is not
connected, then there exists a consensus function φ′ such that inst(φ′) < inst(φ).



If we apply this fact a sufficient number of times, then we will end up with
consensus function with connected zones (obtaining the lemma), since the set of
consensus functions is finite.

We call, for short, 0-domain any connected component of the 0-zone (we
define in a same way 1-domains and 2-domains). Assume that the 0-zone of φ
is not connected and let D be a 0-domain which does not contain the vertex
(n, 0, 0). Let (i1, j1, k1) be a vertex of D with j1 minimal and (i2, j2, k2) be a
vertex of D with k2 minimal.

First assume that j1 ≥ t+1. If there exists an edge e = {v, v′}, bicolor for φ,
with v ∈ D and φ(v′) = 2, then the function φ2, defined by φ2(v) = 2 for v ∈ D,
and φ2(v) = φ(v) otherwise, is a consensus function such that inst(φ2) < inst(φ):
we are done. Otherwise, each edge e = {v, v′}, bicolor for φ, with v ∈ D is such
that φ(v′) = 1. This enforces that, for any such edge, the 2-component of v
is at least t + 1. Thus the function φ1, defined by φ1(v) = 1 for v ∈ D, and
φ2(v) = φ(v) otherwise, is a consensus function, such that inst(φ1) < inst(φ):
we are done.

Fig. 3. the function φ′ used in the tricky case of Lemma 4. The marked edges are some
potential edges of Eφ′ \ Eφ. Arrows indicate the way for fetching i(e).

A similar argument can be used if it is assumed that k2 ≥ t + 1. It remains
to treat the tricky case when j1 ≤ t and k2 ≤ t. We state Vj1,k2 = {(i, j, k) ∈
N

3 | i+ j + k = n, j1 ≤ j, k2 ≤ k}. In this case, since D is connected, one can fix
a simple path p in D from (i1, j1, k1) to (i2, j2, k2). Let support(p) denote the
set of vertices appearing in p. From the Jordan curve theorem [9, ?], the path p
divides Vj1,k2 \ support(p) into two parts, both connected in the projected input
graph. Let Dp be the part which contains the vertex (n − 2t, t, t) (this vertex
is not element of support(p) since it is not element of D). Notice that the 0-
component of any vertex of Dp is at least t + 1. Thus, the function φ′, defined
by φ′(v) = 0 for v ∈ Dp, and φ′(v) = φ(v) otherwise, is a consensus function
(see Figure 3).



The set E′
φ′ \E′

φ can be partitioned into two sets Ej and Ek, where e = {v, v′}
is element of Vk if v is a vertex of Dp whose 2-component is k2 and v′ is a vertex
whose 2-component is k2 − 1 such that φ(v′) = 1, and, on the symmetric way,
e = {v, v′} is element of Vj if v is a vertex of Dp whose 1-component is j1 and
v′ is a vertex whose 1-component is j1 − 1 such that φ(v′) = 2.

Take an edge e = {v, v′} of Vk, and let (2n−j−2k2+1

2
, j

2
, 2k2−1

2
) be its vector.

Let k′ be the lowest integer such that k′ ≥ 2k2 − 1 and the edge of vector

(2n−j−k′
2

, j
2
, k

′

2
) is bicolor for φ. This last edge is denoted by i(e) (informally,

i(e) is the edge of Ey= j

2

which allows to go out of the connected component

containing e for φ). We have j ≥ 2t + 1, since i(e) is bicolor, thus we have
k′ ≤ 2n− 2t− 1. Thus 2k2 − 1 < k′ < 2n− 2t− 1, which gives, from Lemma 1,
w(e) < w(i(e)). Moreover, i(e) is not element of Eφ′ since, by definition, both
vertices of i(e) are elements of Dp ∪ support(p).

In a similar way, for each edge e = {v, v′} of Vj , let (2n−2j1−k+1

2
, 2j1−1

2
, k

2
) be

its vector. Let j′ be the lowest integer such that j′ ≥ 2j1−1 and the edge of vector

(2n−j′−k
2

, j
′

2
, k

2
) is bicolor for φ. This last edge is denoted by i(e) (informally,

i(e) is the edge of Ez= k
2

which allows to go out of the connected component

containing e for φ). We have: w(e) < w(i(e)) and moreover, i(e) is not element
of Eφ′ .

Fig. 4. Injectivity of the mapping i in Lemma 4, in the tricky case when i and j both are
odd. If i(e) = i(e′), the i(e) is the common edge. Each vertex v from e to the common
edge is such that φ(v) = 1 and, by symmetry, each vertex v′ from e′ to the common
edge is such that φ(v′) = 2. Contradiction (at the vertex with question marks).

The other edges of Eφ′ are contained in Eφ. For these edges, we state: i(e) = e.
We claim that the mapping i is injective. To see it, we only have to check that
if e is an edge of Vk and e′ is an edge of Vj , then i(e) 6= i(e′). This can be easily
done by a case by case analysis according to the parity of integers j and k such
that e′ ∈ Ey= j

2

and e′ ∈ Ez= k
2

(see the argument in Figure 4).



In any case, we have: w(e) ≤ w(i(e)). Moreover, we have: Vk 6= ∅ since,
otherwise, we have φ(v) = 0 for any v of the type (i, j, k2), which contradicts
the fact that the connected domain D does not contains (n, 0, 0). Thus there is
at least an edge e of E′

φ′ for which w(e) < w(i(e)). Thus, by addition, we get
w(E′

φ′ ) < w(E′
φ), which is the result.
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