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Abstract. We present compact distributed interactive proofs for the
recognition of two important graph classes, well-studied in the context of
centralized algorithms, namely complement reducible graphs and distance-
hereditary graphs. Complement reducible graphs (also called cographs)
are defined as the graphs not containing a four-node path P4 as an in-
duced subgraph. Distance-hereditary graphs are a super-class of cographs,
defined as the graphs where the distance (shortest paths) between any
pair of vertices is the same on every induced connected subgraph.

First, we show that there exists a distributed interactive proof for the
recognition of cographs with two rounds of interaction. More precisely,
we give a dAM protocol with a proof size of O(logn) bits that recognizes
cographs with high probability. Moreover, our protocol can be adapted
to verify any Turing-decidable predicate restricted to cographs in dAM
with certificates of size O(logn).

Second, we give a three-round, dMAM interactive protocol for the recog-
nition of distance-hereditary graphs, still with a proof size of O(logn)
bits.

Finally, we show that any one-round (denoted dM) or two-round, dMA
protocol for the recognition of cographs or distance-hereditary graphs
requires certificates of size Ω(logn) bits. Moreover, we show that any
constant-round dAM protocol using shared randomness requires certifi-
cates of size Ω(log logn).
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1 Introduction

The study of graph classes provides important insights to address basic graph
problems such as coloring, maximum independent set, dominating set, etc. In-
deed, as such problems are hard in general, restricting the input to a particular
graph-class is a natural approach in order to exploit structural properties for
designing efficient algorithms.

A well-known example is the class of perfect graphs [20], i.e., the class of
graphs satisfying that the chromatic number equals the size of the largest clique
of every induced subgraph. Many NP-complete problems on general graphs, such
as coloring, maximum clique, maximum independent set, etc., can be solved in
polynomial-time when the input is known to be a perfect graph [22].

The design of efficient algorithms for particular graph-classes has also in-
terest in the context of distributed algorithms. Besides the classes of sparse
and bounded degree graphs, there are many examples of efficient distributed
algorithms specially designed to run on planar graphs [19], interval graphs [23],
chordal graphs [32] and others. It is therefore very important to efficiently check
the membership of a graph to a given class. Through this checking procedure we
make sure that the execution is performed in the right type of input, in order to
avoid erroneous computations or even the lack of termination.

Distributed Interactive Proofs. Distributed decision refers to the task in
which the nodes of a connected graph G have to collectively decide (whether
G satisfies) some graph property [38]. For performing any such task, the nodes
exchange messages through the edges of G. The input of distributed decision
problems may also include labels given to the nodes and/or to the edges of G.
For instance, the nodes could decide whether G is properly colored, or decide
whether the graph belongs to a given graph-class.

Acceptance and rejection are defined as follows. If G satisfies the property,
then all nodes must accept; otherwise, at least one node must reject. This type
of algorithm could be used in distributed fault-tolerant computing, where the
nodes, with some regularity, must check whether the current network configura-
tion is in a legal state for some Boolean predicate [33]. Then, if the configuration
becomes illegal at some point, the rejecting node(s) raise the alarm or launch a
recovery procedure.

Deciding whether a given coloring is proper can be done locally, by exchang-
ing messages between neighbors. These types of properties are called locally
decidable. Nevertheless, some other properties, such as deciding whether G is a
simple path, are not. As a remedy, the notion of proof-labeling scheme (PLS)
was introduced [33]. Similar variants were also introduced: non-deterministic
local decisions [16], locally checkable proofs [21], and others.

Roughly speaking, in all these models, a powerful prover gives to every node
v a certificate c(v). This provides G with a global distributed proof. Then, every
node v performs a local verification using its local information together with c(v).
PLSs can be seen as a distributed counterpart to the class NP, where, thanks to
nondeterminism, the power of distributed algorithms increases.
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Just as it happened in the centralized framework a natural step forward is to
consider a model where the nodes are allowed to have more than one interaction
round with the prover. Interestingly, there is no gain when interactions are all
deterministic. When there is no randomness, the prover, from the very beginning,
has all the information required to simulate the interaction with the nodes. Then,
in just one round, the prover could simply send to each node the transcript of the
whole communication, and the nodes simply verify that the transcript is indeed
consistent. A completely different situation occurs when the nodes have access
to some kind of randomness [2, 18]. In that case, the exact interaction with the
nodes is unknown to the prover until the nodes communicate the realization
of their random variables. Adding a randomized phase to the non-deterministic
phase gives more power to the model [2, 18].

The notion of distributed interactive protocols was introduced by Kol, Osh-
man, and Saxena in [31] and further studied in [10, 17, 36, 37]. In such protocols, a
centralized, untrustable prover with unlimited computation power, named Mer-
lin, exchanges messages with a randomized distributed algorithm, named Arthur.
Specifically, Arthur and Merlin perform a sequence of exchanges during which
every node queries Merlin by sending a random bit-string, and Merlin replies to
each node by sending a bit-string called proof. Neither the random strings nor
the proofs need to be the same for each node. After a certain number of rounds,
every node exchanges information with its neighbors in the network, and decides
(i.e., it outputs accept or reject). For instance, a dMAM protocol involves three
interactions: Merlin provides a certificate to Arthur, then Arthur queries Merlin
by sending a random string. Finally, Merlin replies to the query by sending an-
other certificate. Recall that this series of interactions is followed by a phase of
distributed verification performed between every node and its neighbors.

When the number of interactions is k we refer to dAM[k] protocols (if the last
player is Merlin) and dMA[k] protocols (otherwise). For instance, dAM[2] = dAM,
dMA[3] = dAMA, etc. Also, the scenario of distributed verification, where there
is no randomness and only Merlin interacts, corresponds dM. In other words,
dM is the PLS model.

In distributed interactive proofs, Merlin tries to convince the nodes that G
satisfies some property in a small number of rounds and through short messages.
We say that an algorithm uses O(f(n)) bits if the messages exchanged between
the nodes (in the verification round) and also the messages exchanged between
the nodes and the prover are upper bounded by O(f(n)). We include this band-
width bound in the notation, which becomes dMA[k, f(n)] and dAM[k, f(n)] for
the corresponding protocols.

It is known that all Turing-decidable predicates on graphs admit a PLS with
certificates of size O(n2) bits [33]. Interestingly, some distributed problems are
hard, even when a powerful prover provides the nodes with certificates. It is
the case of symmetry, the language of graphs having a non-trivial automor-
phism (i.e., a non-trivial one-to-one mapping from the set of nodes to itself
preserving edges). Any PLS recognizing symmetry requires certificates of size
Ω(n2) [21]. However, many problems requiring Ω(n2)-bit certificates in any PLS,
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such as symmetry, admit distributed interactive protocols with small certifi-
cates, and very few interactions. In fact, symmetry is in both dMAM[log n] and
dAM[n log n] [31].

Local Certification of Graph Classes. Regarding local certification of graph
classes, there exist PLSs (with logarithmic-sized certificates) for the recognition
of many graph classes such as acyclic graphs [33], planar graphs [15], graphs with
bounded genus [14], etc. More recently, Busquet et al. [3] tackle the problem of
locally certifying graphs classes defined by a finite set of minors.

Recently, Naor, Parter and Yogev defined in [37] a compiler which (1) turns
any problem solved in NP in time τ(n) into a dMAM protocol using private ran-
domness and bandwidth τ(n) log n/n and; (2) turns any problem which can be
solved in NC into a dAM protocol with private randomness, poly log n rounds of
interaction and bandwidth poly log n. This result has implications in the recog-
nition of graph-classes. For example, it implies that any class of sparse graphs
that can be recognized in linear time, can also be recognized by a dMAM proto-
col with logarithmic-sized certificates. This raises automatically the question of
whether one can design, for the recognition of a given graph class, a distributed
interactive proof based on fewer interactions than the interactions given by di-
rectly applying the compiler (while keeping the certificates as small as possible).

A graph-class is hereditary if the class is closed under vertex and edge dele-
tion. Examples of hereditary graph classes include planar graphs, forests, bi-
partite graphs, perfect graphs, etc. Interestingly, all graph properties that are
known to require large certificates (e.g. small diameter [6], non-3- colorability
[21], having a non-trivial automorphism [21]), are non-hereditary.

Therefore, natural question is whether all hereditary graph-classes admit
a distributed interactive proof with a constant number of interactions, and
logarithmic-sized certificates. In this work we address the problem of the dis-
tributed recognition of two hereditary graph classes (which are in fact perfect
graphs), namely complement reducible graphs and distance-hereditary graphs.

Cographs and Distance-Hereditary Graphs. The class of complement re-
ducible graphs, or simply cographs, has several equivalent definitions, as it has
been re-discovered in many different contexts [8, 28, 39, 40]. A graph is a cograph
if it does not contain a four-node path P4 as an induced subgraph. Equivalently,
a graph is a cograph if it can be generated recursively from a single vertex by
complementation and disjoint-union. A graph is a distance-hereditary graph if
the distance between any two vertices is the same on every connected induced
subgraph [25]. An equivalent definition is that every path between two vertices
is a shortest path. It is known that every cograph is a distance-hereditary graph.

Many NP-complete problems are solvable in polynomial-time, or even linear
time, when restricted to cographs and distance-hereditary graphs. For instance,
maximum clique, maximum independent set, coloring (as distance-hereditary
graphs are perfect [25]), hamiltonicity [27], Steiner tree and connected domina-
tion [13], computing the tree-width and minimum fill-in [5], among others. By a
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result of Courcelle, Makowsky and Rotics [9], every decision problem expressible
in a type of monadic second order logic can be solved in linear time on distance-
hereditary graphs. Observe that all these results also apply to cographs. Other
problems, like graph isomorphism, can be solved in linear time on cographs [8].

In the centralized setting, both cographs and distance-hereditary graphs can
be recognized in linear time [12].

Respect to algorithms in the distributed setting, both recognition problems
have also been addressed in the One-Round Broadcast Congested Clique Model
(1BCC), also known as the Distributed Sketching Model [1]. In this model, the
nodes of a graph send a single message to a referee, which initially has no in-
formation about the graph and, only using the received messages, has to decide
a predicate of the input graph. 4 In [29] and [35], randomized protocols recog-
nizing both classes of graphs in the 1BCC model are given. Interestingly, these
protocols not only recognize the classes but reconstruct them, meaning that the
referee learns all the edges of the input graph.

In this work, we focus on the recognition of cographs and distance-hereditary
graphs in the model of distributed interactive proofs. We show that both classes
can be recognized with compact certificates and constant (two or three) rounds
of interaction.

Our Results. We show that the recognition of cographs is in dAM[log n]. Our
result consists of adapting an algorithm given in [29, 35], originally designed for
the 1BCC model. In this regard, we exploit the natural high connectivity of this
class, combined with the use of non-determinism in order to route all messages
in the network to a leader node, which is delegated to act as a referee. In fact,
our protocol allows this leader to learn all the edges of the input graph. We use
this fact to show that any Turing-decidable predicate restricted to cographs is
decidable in dAM[log n].

Interestingly, our results imply that any one-round deterministic protocol in
the 1BCC model recognizing cographs, would immediately imply a dM (i.e. a
PLS) protocol for the recognition of cographs. Unfortunately, up to our knowl-
edge, it is not known whether recognizing cographs can be done through a de-
terministic 1BCC protocol.

Then, we adapt the protocol for the recognition of cographs and we combine
it with a set of tools related to the structure of distance-hereditary graphs in
order to show that the recognition of this class is in dMAM[log n]. In this case, we
are not able to simulate the 1BCC protocol by gathering all the information in a
single node representing the referee. Instead, we find a way to verify each step of
the computation of the referee in a distributed manner, by choosing nodes that
can receive (with the help of the prover) all necessary messages for performing
the task.

We remark that our protocols beat the performance of the compiler of Naor,
Parter and Yogev. In fact, both graph classes can have Θ(n2) edges and, there-
fore, the use of the compiler shows that the recognition of these classes is
in dMAM[n log n] and in dAM[poly log n, poly log n] (note that cographs and
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distance-hereditary graphs can be recognized in NC [11] and in linear time in
the centralized setting [12], see the Related Work section).

Finally, we give some lower-bounds. More precisely, we show that any dM
or dMA protocol for the recognition of cographs or distance-hereditary graphs,
requires messages of size at least Ω(log n). Our results are obtained extending
a lower-bound technique described in [21], for the detection of a single leader in
the context of locally checkable proofs. We note that our protocols use shared
randomness. In that sense we prove that, any dAM protocol using shared ran-
domness for the previous problems, requires messages of size at least Ω(log log n).

Related Work. The recognition of cographs and distance-hereditary graphs has
been studied thoroughly in the parallel setting, where both problems have been
shown to be in NC [11, 24, 30]. The currently best algorithms for the recognition
of both classes run in time O(log2 n) and using a linear number of processors
in a CREW-PRAM [11]. There also exist fast-parallel algorithms for NP-hard
problems restricted to cographs and distance-hereditary graphs [26, 34].

Unfortunately, there are no much research regarding distributed algorithms
specially designed for cographs and distance-hereditary. Nevertheless, the struc-
tural properties of distance-hereditary graphs have been used in the design of
compact routing tables for interconnection networks [7].

Structure of the Article. Section 2 is the preliminary section, where we give
some graph-theoretic background, including the formal definitions of cographs
and distance-hereditary graphs. We also give the precise definition of distributed
interactive proofs. In Section 3 we give the results regarding cographs, and in
Section 4 we give the results regarding distance-hereditary graphs. Finally, in
Section 5, we provide some lower-bounds. Due the lack of space, the results are
only outlined in their corresponding sections, while the full proofs are detailed
in the appendix

2 Preliminaries

Background on Cographs and Distance-Hereditary Graphs. All the
graphs in this paper are simple and undirected. Let G = (V,E) be a graph. For
a set U ⊆ V , we define G[U ], the induced subgraph of G = (V,E) according to
U , as the graph H = (U,E(U)), where E(U) = E∩

(
U
2

)
. We denote H ⊆ G when

H is s an induced subgraph of G. If, instead, we have a graph with vertex set
U such that its edges are only contained in E(U), we simply call it a subgraph
of G. A spanning subgraph of G is a subgraph H with V (H) = V (G). Given
two nodes u, v of a connected graph H, the distance between them, denoted by
dH(u, v), is defined as the length of the shortest path between u and v in H. A
P4 is an induced path of length four.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we define the union
between both graphs, denoted by G1 ∪ G2 as the graph G̃ = (V̂ , Ẽ), with Ṽ =
V1∪V2 and Ẽ = E1∪E2. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we
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define the join between both graphs, denoted byG1∗G2 as the graph Ĝ = (V̂ , Ê),
with V̂ = V1 ∪ V2 and Ê = E1 ∪ E2 ∪ {v1v2 such that v1 ∈ V1, v2 ∈ V2}.

The set of neighbors of a node u is denoted N(u), and the closed neighbor-
hood N [u] is the set N(u)∪ {u}. A node v is said to be a pending node if it has
a unique neighbor in the graph. A pair of nodes u, v ∈ V are said to be twins
if their neighborhoods are equal. That is, N(u) = N(v) or N [u] = N [v]. In the
case that u and v are adjacent (N [u] = N [v]) we refer to them as true twins
and, otherwise, we refer to them as false twins.

As we mentioned in the introduction, a cograph is a graph that does not
contain a P4 as an induced subgraph (i.e. it is P4-free). Another equivalent
definition states that cographs are the graphs which can be obtained recursively
following three rules: (1) A single vertex is a cograph, (2) the disjoint union
between two cographs is a cograph and (3) the join of two cographs is a cograph.
An advantage of cographs is that they admit other characterizations that may
be useful for local verification. First, we define a twin ordering as an ordering
(vi)

n
i=1 of the nodes of V such that, for each j ≥ 2, vj has a twin in G[{v1, . . . vj}].

Proposition 1 ([29]). Given a graph G the following are equivalent:

1. G is a cograph.
2. Each non trivial induced subgraph of G has a pair of twins.
3. G is P4-free.
4. G admits a twin ordering.

a
d

e
xf

cb

(1, e)

(3, f)

(4, a)(7, f)

(6, f)

(2, x) (5, a)
(t, v5)

(̄t, v8)(t, v6)(t, v8)

(p, v8)

(p, v8)

(p, v9)

(∗)

(p, v4)

v9

v8

v7

v5

v4 v3

v1

v6v2

Fig. 1: Left: A cograph with labels according to a twin ordering. The first entry
represents the step at which they are removed, while the second entry indicates
the node’s twin at such step. Right: A distance-hereditary graph with labels
according to its ordering. The first entry indicates whether it is removed as a
true twin (̄t), as afalse twin (t) or as a pending node (p).

A graph G is said to be distance-hereditary if for any induced subgraph H ⊆
G and any pair u, v ∈ H satisfy that dH(u, v) = dG(u, v). That is, any induced
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path between a pair of nodes is a shortest path. A relevant characterization for
this class is the following.

Proposition 2 ([4]). An n-node graph G is distance hereditary iff there exists
an ordering (vi)

n
i=1 such that, for any i ∈ [n], either there exists j < i such that

vi and vj are twins in Gi = G[{v1, ..vi]} or vi is a pending node at Gi.

Model Definitions. Let G be a simple connected n-node graph, let I : V (G)→
{0, 1}∗ be an input function assigning labels to the nodes of G, where the size of
all inputs is polynomially bounded on n. Let id : V (G)→ {1, . . . ,poly(n)} be a
one-to-one function assigning identifiers to the nodes. A distributed language L is
a (Turing-decidable) collection of triples (G, id, I), called network configurations.

A distributed interactive protocol consists of a constant series of interactions
between a prover called Merlin, and a verifier called Arthur. The prover Merlin
is centralized, has unlimited computing power and knows the complete configu-
ration (G, id, I). However, he cannot be trusted. On the other hand, the verifier
Arthur is distributed, represented by the nodes in G, and has limited knowledge.
In fact, at each node v, Arthur is initially aware only of his identity id(v), and his
label I(v). He does not know the exact value of n, but he knows that there exists
a constant c such that id(v) ≤ nc. Therefore, for instance, if one node v wants
to communicate id(v) to its neighbors, then the message is of size O(log n).

Given any network configuration (G, id, I), the nodes of G must collectively
decide whether (G, id, I) belongs to some distributed language L. If this is in-
deed the case, then all nodes must accept; otherwise, at least one node must
reject (with certain probabilities, depending on the precise specifications we are
considering).

There are two types of interactive protocols: Arthur-Merlin and Merlin-
Arthur. Both types of protocols have two phases: an interactive phase and a ver-
ification phase. Let us define first Arthur-Merlin interactive protocols. If Arthur
is the party that starts the interactive phase, he picks a random string r1(v) at
each node v of G (this string could be either private or shared) and send them to
Merlin. Merlin receives r1, the collection of these n strings, and provides every
node v with a certificate c1(v) that is a function of v, r1 and (G, id, I). Then
again Arthur picks a random string r2(v) at each node v of G and sends r2 to
Merlin, who, in his turn, provides every node v with a certificate c2(v) that is
a function of v, r1, r2 and (G, id, I). This process continues for a fixed number
of rounds. If Merlin is the party that starts the interactive phase, then he pro-
vides at the beginning every node v with a certificate c0(v) that is a function
of v and (G, id, I), and the interactive process continues as explained before. In
Arthur-Merlin protocols, the process ends with Merlin. More precisely, in the
last, k-th round, Merlin provides every node v with a certificate cdk/2e(v). Then,
the verification phase begins. This phase is a one-round deterministic algorithm
executed at each node. More precisely, every node v broadcasts a message Mv

to its neighbors. This message may depend on id(v), I(v), all random strings
generated by Arthur at v, and all certificates received by v from Merlin. Finally,
based on all the knowledge accumulated by v (i.e., its identity, its input label, the



Distributed Interactive Proofs for Cographs and Distance-Hereditary Graphs 9

generated random strings, the certificates received from Merlin, and all the mes-
sages received from its neighbors), the protocol either accepts or rejects at node
v. Note that Merlin knows the messages each node broadcasts to its neighbors
because there is no randomness in this last verification round.

A Merlin-Arthur interactive protocols of k interactions is an Arthur-Merlin
protocol with k−1 interactions, but where the verification round is randomized.
More precisely, Arthur is in charge of the k-th interaction, which includes the
verification algorithm. The protocol ends when Arthur picks a random string
r(v) at every node v and uses it to perform a (randomized) verification algo-
rithm. In other words, each node v randomly chooses a message Mv from a
distribution specified by the protocol, and broadcast Mv to its neighbors. Fi-
nally, as explained before, the protocol either accepts or rejects at node v. Note
that, in this case, Merlin does not know the messages each node broadcasts to
its neighbors (because they are randomly generated). If k = 1, a distributed
Merlin-Arthur protocol is a (1-round) randomized decision algorithm; if k = 2,
it can be viewed as the non-deterministic version of randomized decision, etc.

Definition 1. Let V be a verifier and M a prover of a distributed interactive
proof protocol for languages over graphs of n nodes. If (V,M) corresponds to an
Arthur-Merlin (resp. Merlin Arthur) k-round, O(f(n)) bandwidth protocol, we
write (V,M) ∈ dAMprot[k, f(n)] (resp. (V,M) ∈ dMAprot[k, f(n)]).

Definition 2. Let ε ≤ 1/3. The class dAMε[k, f(n)] (resp. dMAε[k, f(n)]) is the
class of languages L over graphs of n nodes for which there exists a verifier V
such that, for every configuration (G, id, I) of size n, the two following conditions
are satisfied.
Completeness. If (G, id, I) ∈ L then, there exists a prover M such that

(V,M) ∈ dAMprot[k, f(n)] (resp. (V,M) ∈ dMAprot[k, f(n)]) and

Pr
[
V accepts (G, id, I) in every node given M

]
≥ 1− ε.

Soundness. If (G, id, I) /∈ L then, for every prover M such that
(V,M) ∈ dAMprot[k, f(n)] (resp. (V,M) ∈ dMAprot[k, f(n)]),

Pr
[
V rejects (G, id, I) in at least one nodes given M

]
≥ 1− ε.

We also denote dAM[k, f(n)] = dAM1/3[k, f(n)] and dMA = dMA1/3[k, f(n)],
and omit the subindex ε when its value is obvious from the context.

In this paper, we are interested mainly in two languages, that we call co-
graph and dist-hereditary which are the languages of graphs that are cographs
and distance-hereditary graphs, respectively. Formally,

– cograph = {〈G, id〉 s.t. G is a cograph}.
– dist-hereditary = {〈G, id〉 s.t. G is distance-hereditary}.

Also, for a distributed language L, the restriction of L to cographs, denoted
Lcograph is the subset of network configurations (G, id, I) ∈ L such that G is a
cograph.
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3 Cographs

We first show a way to distribute the proofs received by the network in such a
way that we can centralize the verification process.

Lemma 1. Given a cograph G, it is possible to construct a spanning tree T of
depth two, such that each node at depth one, has at most one child.

By the previous lemma, we know that for any two round protocol P over a
cograph G with cost Ω(log n) bits, we may assume, without loss of generality,
that there is a root ρ with access to all coins and messages received by the whole
network. We simply construct the spanning tree given by Lemma 1, by choosing
the root ρ as follows. First, a bipartite graph can be easily verified with two
colors, and ρ can be chosen to be the node in G2 with the smallest identifier.
Then, it suffices to assign to each node u of depth one in the spanning tree, both
its proof and the proof received by its child w, along with the random coin it
drew. Then, the nodes can locally verify the consistency of this message and the
root will have received all the messages in the network.

Lemma 2. Given any dM (resp. dAM) protocol with bandwidth L that runs
over a cograph, we can construct a dM (resp. dAM) protocol with bandwidth cost
L + O(log n) and where there exists a node ρ which has access to all messages
(resp. all messages and coins) in the network.

An advantage of this procedure is that we may simulate any protocol in
the (non-deterministic) One-Round Broadcast Congested Clique model (by using
the root ρ as referee) by either using one round of interaction (if the simulated
protocol is deterministic) or two rounds (when the simulated protocol is ran-
domized). From here it follows that we can use the protocol by [29] to recognize
cographs, therefore constructing a protocol for cograph detection in two rounds
of interaction and O(log n) bits. That is, cograph ∈ dAM[log n]. For the sake
of completeness, we now describe the protocol of [29].

Definition 3. Given a cograph G = (V,E), we can define its canonical order as
follows. We start by choosing the smallest pair of twins (those with the smallest
identifiers in lexicographic order) which we know to exist by Proposition 1. From
there we choose and remove the smallest node from this pairing. Then, we repeat
this process by finding another pair and removing one of its members until we
end up with a single node.

Let p be a prime and φ = (φw)w∈V be a family of linearly independent
polynomials in Zp[x]. Given w ∈ V we define, qw =

∑
w′∈N(w) φw′ and q̄w =

qw + φw. We also define the derived polynomials of φ as the collection

αu,v = φu − φv βu,v = qu − qv, γu,v = q̄u − q̄v, u.v ∈ V

Now, given a pair of twins u and v, we assign toG−v the polynomials {φ′w}w∈V−v
defined as

φ′w =

®
φw if w 6= u

φu + φv if w = u
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With this construction, from φu(x) = xid(u) it is possible to construct a sequence
of polynomials φiu for i ∈ [n] according to the canonical order {vi}ni=1 and u in
the graph G − {vj}nj=i+1. We call these functions the basic polynomials of G.
And so the canonical family of polynomials of G is defined as the union between
its basic and derived polynomials. It follows that this family of functions has at
most 3n3 elements.

Definition 4. Let G be a cograph. We say that a vector m = ((aw, bw))w∈V ∈
(Zp)2n is valid for G in t ∈ Zp if there exists a family of linearly independent
polynomials (φw)w∈V in Zp[X] such that aw = φw(t) and bw = qw(t) for each
w ∈ V .

Lemma 3. Let m = ((aw, bw))w∈V ∈ (Zp)2n be a valid vector for G in t.
Consider u, v to be a pair of twins in G such that au 6= av. Then, the vector
m′ = ((a′w, b

′
w))w∈V−v ∈ (Zp)2n−2 is valid for G − v in t, where its coordinates

are given by

(a′w, b
′
w) =

®
(aw, bw) if w ∈ V − {u, v}
(au + av, bu − avδuv) if w = u

with δuv equals one if and only if au + bu = av + bv

With this lemma now we can proceed to describe the protocol.

Theorem 1. There is a distributed interactive proof with two rounds for the
recognition of cographs, i.e., cograph ∈ dAM[log n]. Moreover, the protocol
uses shared randomness and gives the correct answer with high probability.

Proof. Let G = (V,E) be an n-node graph. Without loss of generality we may
assume the graph has identifiers in [n] as, following Lemma 1, it is possible to
implement a permutation protocol in a single round: Merlin sends to each node
v an identifier īd : V → [n] and the root, by receiving all proofs, can see that
they all received distinct identifiers which are consistent with their original ones.

Let p be a prime such that 3nc+4 ≤ p ≤ 6nc+4. The protocol is the following:
All nodes collectively generate a seed t ∈ Fp uniformly at random. Then Merlin
sends to each node w a message mw such that m = (mw)w∈V is a valid vector
for G at t. Each node then computes such message by defining φw(x) = xīd(w).

After the nodes exchange messages, following Lemma 1 we obtain that the
root ρ owns a vector m ∈ F2n

p . From here, the root repeats the following proce-
dure at most n− 1 times trying to construct a canonical ordering {vi}ni=1 for G.

At step i, it starts at graph Gi and a vector mi ∈ F2(n−i+1)
p (where G1 = G

and m1 = m) and looks for a pair of nodes u, v in Gi such that aiu 6= aiv and
either biu = biv or aiu + biu = aiv + bib. Then it chooses, among all pairs it has
found, the first in lexicographic order. If no such pair exists, then he rejects. On
the contrary, he defines Gi+1 = Gi − v, and setting vn−i+1 = v (without loss
of generality we assume that id(v) < id(u)). Then the root computes mi+1 from
the previous vector mi following Lemma 3. If the root reaches step n − 1 then
it accepts.
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Completeness and Soundness. It follows then that as the messages depend
on the original identifiers and the root ρ has access to all messages, then both
acceptance errors depend solely in the 1BCC construction. Now, by Lemma 3
it follows that the only point at which the protocol might fail is if the chosen t
turns out to be a root for any of the polynomials in the canonical family from
Definition 3. As there are at most 3n3 such polynomials, each of degree at most
n , we have that the acceptance error is at most 3n4/3nc+4 = 1/nc and the
theorem follows. ut

As we mentioned in the Introduction, the result obtained in [29] is much
stronger than just recognizing cographs. In fact, the referee not only can recog-
nize a cograph but actually can reconstruct it. In other words, when the input
graph is a cograph, after the communication round, the referee learns all the
edges. In our context, this implies that the root ρ not only recognizes cographs,
but also can recognize any distributed language restricted to them.

Theorem 2. For every distributed language L, there is a distributed interactive
proof with two rounds for its restriction to cographs, i.e. Lcograph ∈ dAM[log n].
Moreover, the protocol uses shared randomness and gives the correct answer with
high probability.

Proof. It is sufficient to notice that the tree-root ρ in the construction from
Lemma 1 has access to all proofs in the network. In particular, the id’s and
positions for each node in the twin-ordering π. As such, ρ has knowledge of the
entire topology of the network and its inputs (provided that these are of size
O(log n)) and can compute any property related to them, with the acceptance
error matching that of the verification procedure in Theorem 1. As for the rest
of the nodes, they simply accept and delegate this decision to the root. ut

4 Distance-Hereditary Graphs

Following the protocol described for cographs, it is possible to derive an interac-
tive protocol for distance-hereditary graphs, which admit a similar construction.
Indeed, as described before, any distance-hereditary graph can be constructed
by sequentially adding twins or pending nodes. Notice that for the protocol in
Theorem 1, the verification process is done by the root as it prunes the graph
in n− 1 steps. This leads to an order by which the nodes were selected, and we
call it canonical ordering. While we cannot delegate the verification routine to a
single node (as distance-hereditary graphs can have arbitrarily large diameter),
we can distribute the verification process by letting different nodes check differ-
ent steps of the computation. As the rule described in Lemma 3 for pruning the
graph involves only the pair of twins at each step, we only need to find nodes
that, for a fixed node v, can receive all the proofs sent by v, its twins and its
pending nodes.

In order to prune the graph in this new setting, we need a rule for pruning
pending nodes from a graph and updating the vectors of each node accordingly.
Here, we use the definition of a valid vectoras described in Section 3.
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Lemma 4. Let m = ((aw, bw))w∈V ∈ (Zp)2n be a valid vector for G at some
point t. If u ∈ G has v as a pending node adjacent to it, then, the vector m′ =
((a′w, b

′
w))w∈V−v ∈ (Zp)2n−2 is valid for G− v in t, where the coordinates of m′

are given by

(a′w, b
′
w) =

®
(aw, bw) if w ∈ V − {u, v}
(aw, bw − av) if w = u

In order to distribute the verification procedure, for any fixed v we wish to set a
node to compute the correctness of the vectors of all nodes assigned as twins of
v. Indeed, for a fixed ordering π for pruning the graph and a node v with πv < n,
consider the predecessor of v, denoted by ant(v), to be v’s neighbor whose value
for π(·) is immediately after that of v among its neighbors. As all previous nodes
in the order which are twins of v have the same neighborhood, it follows that
all these nodes must be adjacent to ant(v). In case that no such a node exists,
by assuming that G is connected, it follows that the last node according to π
which is assigned as a twin of v must be a true twin and, therefore, be adjacent
to him. And the same reasoning holds.

Thus, the main strategy of our protocol is that, given an initial vector (av, bv)
for a node v in the graph, each node ant(v) has the task of updating this vector
until it obtains the vector v that the referee should have at the time the node is
pruned from the graph, which we denote by (aπv , b

π
v ). Then, each node u which

is a twin of v provides its vector (aπu, b
π
u) (which is proved to be correct by

some other node) and so the predecessor of v compares and updates v’s vector
according to the rules from Lemmas 3 and 4.

Theorem 3. There is a distributed interactive proof with three rounds of inter-
action for the recognition of distance-hereditary graphs, i.e., dist-hereditary ∈
dMAM[log n]. Moreover, the protocol uses shared randomness and gives the cor-
rect answer with high probability.

5 Lower Bounds

In this section, we provide lower-bounds on the certificate size of distributed
interactive proofs for cograph or dist-hereditary. Due the lack of space, the
proof of the result on this section are detailed in the appendix. The following
result is based on a construction by [21].

Theorem 4. If cograph or dist-hereditary belongs to the class dM[f(n)],
then f(n) = Ω(log n). Moreover, for any fixed k, if cograph or dist-hereditary
belongs to dAMpub[k, g(n)], then g(n) = Ω(log log n).

Following an approach introduced by Fraigniaud et al. [17], we obtain that
the graph constructions used in the proof of Theorem 4 can be adapted in order
to obtain lower-bounds for the models dMA.

Corollary 1. If any of the problems cograph or dist-hereditary belongs to
dMA1/7[f(n)], then f(n) = Ω(log n).
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