
The Role of Randomness in the

Broadcast Congested Clique Model I

Florent Beckera, Pedro Montealegreb, Ivan Rapaportc,∗, Ioan Todincaa

aUniversité d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans , France
bFacultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile

cDIM and CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

Abstract

We study the role of randomness in the broadcast congested clique model.
This is message-passing model of distributed computation where the nodes of
a network know their local neighborhoods and they broadcast, in synchronous
rounds, messages that are visible to every other node.

This works aims to separate three different settings: deterministic pro-
tocols, randomized protocols with private coins, and randomized protocols
with public coins. We obtain the following results:

• If more than one round is allowed, public randomness is as powerful as
private randomness.

• One-round public-coin algorithms can be exponentially more powerful
than deterministic algorithms running in several rounds.

• One-round public-coin algorithms can be exponentially more powerful
than one-round private-coin algorithms.

• One-round private-coin algorithms can be exponentially more powerful
than one-round deterministic algorithms.

IA preliminary version of (part of) this work appeared in the proceedings of the
21st International Colloquium on Structural Information and Communication Complexity
SIROCCO 2014, held in Hida Takayama, Japan.

∗Corresponding author. Addresss: Beauchef 851, Edificio Norte, Santiago, Chile.
Email addresses: florent.becker@univ-orleans.fr (Florent Becker),

p.montealegre@uai.cl (Pedro Montealegre), rapaport@dim.uchile.cl (Ivan
Rapaport), ioan.todinca@univ-orleans.fr (Ioan Todinca)

Preprint submitted to Information and Computation November 15, 2020

Keywords: Distributed computing, broadcast congested clique, message
size complexity, private and public coins, simultaneous multi-party
communication

1. Introduction

The congested clique model is a message-passing model of distributed
computation introduced by Lotker, Patt-Shamir, Pavlov, and Peleg [1]. This
model allows us to separate and understand the impact of congestion in
distributed computing. The point is the following: if the communication
network is a complete graph and the cost of local computation is ignored,
then the only obstacle to perform any task is due to congestion alone. In
other words, we intend to understand the effect of the bandwidth by isolating
it.

Despite the theoretical motivation of the congested clique model, exam-
ples of distributed and parallel systems where the efficiency depends heavily
on the bandwidth, are increasingly less exceptional (Mapreduce [2], Pregel [3],
Spark [4], Hadoop [5], Dryad [6], etc.).

The congested clique model is defined as follows. There are n nodes
which are given distinct identities (IDs), that we assume for simplicity to be
numbers between 1 and n. In this paper we consider the situation where the
joint input to the nodes is a graph G. More precisely, each node v receives as
input an n-bit boolean vector xv ∈ {0, 1}n, which is the indicator function of
its neighborhood in G. Note that the input graph G is an arbitrary n-node
graph, a subgraph of the communication network Kn, which is the complete
graph (communication is all-to-all).

Nodes execute an algorithm, communicating with each other in syn-
chronous rounds with the objective of collectively computing some function
f that depends on G. In this paper we study a variant of the congested clique
model, namely, the broadcast congested clique model, where at each round
each vertex broadcasts only one (the same) b-bit message through all of its
n − 1 incident communication links [7, 8]. In each round of the algorithm,
each of the n nodes has to decide whether to stop or continue. An algorithm
halts when every vertex stops. At that moment, every node must know f(G).
Hence, f(G) is called the output of the distributed algorithm. The parameter
b (the maximum size of a message sent by a node) is known as the bandwidth
of the algorithm. We denote by R the number of rounds. The product R · b

2

corresponds to the total number of bits received by a node through one link,
and we call it the cost of the algorithm.

Function f defines the problem to be solved. In this paper we are in-
terested in decision problems. A decision problem is a function where the
output is either 0 or 1, or reject-accept, respectively. In such a case, we say
that G is accepted if every node outputs accept (or 1) and G is rejected if
every vertex outputs reject (or 0). For example, in this paper we study prob-
lem Twins, which consists in accepting input graphs containing at least two
vertices having the same neighborhood.

In the literature it is common to define the rejection of a distributed deci-
sion problem in a slightly different way. Indeed, when G is rejected, instead
of asking that every vertex rejects, the most common convention is to ask
that at least one vertex rejects. We remark that in the broadcast congested
clique model, both definitions are equivalent, since communication is all-to-
all, and therefore every vertex can learn in one round (and communicating
one bit) whether every vertex accepts or not.

An algorithm may be deterministic or randomized. We distinguish two
sub-cases of randomized algorithms: the private coin setting, where each
node flips its own coin; and the public coin setting, where the coin is shared
among all nodes. An ε-error algorithm A that computes a function f is a
randomized algorithm such that, for every input graph G,

Pr(A outputs f(G)) ≥ 1− ε.

In the case where ε = 1/nO(1), we say that A computes f with high
probability (whp).

In this paper we are particularly interested in the one-round broad-
cast congested clique model. One can view this particular case as follows:
nodes need to send, simultaneously, a b-bit message to some referee allowing
him/her to answer, typically, questions of the form “Does the input graph G
belong to the graph class C?”

The goal of this work is to explore the role of randomness. Specifically,
the difference between deterministic algorithms, public coin algorithms and
private coin algorithms.

1.1. Our results

In Section 2 we study multi-round randomized algorithms. We start prov-
ing that there is essentially no difference between the public and the private

3

coin settings. More precisely, we extend a classic result of Newmann [9] and
show that any public coin algorithm in the broadcast congested clique model
can be simulated by a private coin algorithm (slightly increasing the number
of rounds, the bandwidth and the error probability). In order to separate
multi-round deterministic and randomized algorithms, we introduce function
GraphEq(G) defined over labeled graphs of size 2n. This function equals 1
if and only if the adjacency matrix of G[{1, . . . , n}] is equal to the adjacency
matrix of G[{n+ 1, . . . , 2n}]. In other words , if for every i, j ∈ [n], vertex j
belongs to N(i) implies that vertex j+n belongs to N(i+n) and vice versa.
We prove that, in the public coin setting, the cost R · b of this function is
O(log n), even for one-round algorithms, while the cost in the deterministic
setting is Ω(n). (The proof of the upper bound O(log n) corresponding to
the public coin algorithm appears in Section 3).

The previous results indicate that relevant differences between public and
private randomness can only be found in one-round algorithms. In Section 3
we separate the deterministic, the private coin and the public coin settings of
the one-round broadcast congested clique model. For achieving this we use
problem Twins and some variants. The boolean function Twins(G) returns
accept if and only if graph G has at least two twins (that is, two nodes having
the same neighborhood). We also consider function Twinx(G), where x is
the identifier of a node, and the result is 1 if and only if there is some other
node having the same neighborhood of node identified with x. We prove that
the deterministic message size complexity of Twins and Twinsx(G) is Θ(n).
Also, both functions can be computed with one-round public coin and one-
round private coin algorithms of message size O(log n). These algorithms,
based on the classical fingerprint technique, have one-sided error O(1/nc) for
any constant c > 0. In order to separate the private and public coin settings
we use a boolean function called Translated-Twins (see Section 1.3 for
details). We prove that the message size complexity of this function is Ω(

√
n)

in the private coin setting, while it is O(log n) in the public coin setting. The
main results of this paper are summarized in Table 1. Observe in Table 1 the
exponential gap between private coins and determinism in the message size
complexity of Twinx. This situation is very different from what happens
in the simultaneous 2-player case, where the gap between private coins and
determinism is at most the square root of n [10] (see Section 1.3 for details).

There are several natural problems that cannot be solved with random-
ized algorithms using o(n) bits, even with public coins. This is the case of
deciding whether the input graph contains a clique of size 4, or deciding

4

Twins Twinsx Translated-Twins
Det Θ(n) [Thm 3] Θ(n) [Thm 3] Θ(n) [Thm 3]

Priv O(
√
n log n) [Thm 6] O(log n) [Thm 4] Ω(

√
n) [Thm 5]

O(
√
n log n) [Thm 6]

Pub O(log n) [Thm 4] O(log n) [Thm 4] O(log n) [Thm 4]

Table 1: Results regarding one-round algorithms in the broadcast congested clique model.

whether the input graph has a cycle of length 5. In both cases the cost
R · b = Ω(n) [7]. In Section 4 we complement those results, proving that the
one-round randomized public coin message size complexity of the boolean
functions Triangle(G) (that outputs 1 if and only if G has a triangle) and
Diam3(G) (that outputs 1 if and only if G has diameter at most 3) is Ω(n).
We obtain those results extending the arguments of [11], from the determin-
istic setting to the randomized one.

Finally, in Section 5, we revisit problem Twins, but in the framework of
the unicast congested clique model. In the unicast congested clique model,
nodes are allowed to send different messages in each round (i.e., sending up
to n− 1 different messages each round). The unicast congested clique model
is much more powerful than the broadcast one. In particular, we make use
of the algebraic methods given in [12] in order to solve Twins with cost
O(n0.158 log n).

1.2. Related work

1.2.1. The simultaneous multi-party model

The simultaneous two-player model was already present in Yao’s seminal
communication complexity paper of 1979 [13]. He proved that the message
size complexity of Eq, which simply tests whether two n-bit inputs are equal,
is Θ(n) in the deterministic case (in fact he proved that this is also true even if
players can communicate back-and-forth). Later, clear separations have been
proved between deterministic, private coin and public coin algorithms. In the
public coin setting with constant one-sided error, the message size complexity
of Eq is O(1) [14]. On the other hand, for private coin algorithms of constant
one-sided error, the message size complexity is much higher, Θ(

√
n) [14, 15]

(see Section 1.3 for details). More generally, Babai and Kimmel [14] proved

5

that, for any function f , the gap between the deterministic and private coin
message size complexities is at most the square root of n.

There are (at least) two natural ways to extend problem Eq to more
than two players. This issue is addressed by Fischer, Oshman and Zwick [16]
in the context of the number-in-hand model (where each player only knows
its own input; players broadcast messages but they are not nodes of some
input graph G). First, they define problem AllEq. In this simultaneous
multi-party problem, each player receives a boolean vector {0, 1}n and they
have to decide whether all the k vectors are equal. In problem ExistsEq,
the k players have to decide whether there exist at least two players with the
same input. It is not difficult to see that in both the deterministic case and
the public coin case the results for 2 players can be extended to k players
(for ExistsEQ this holds for k ≤ 2n, otherwise the problem is trivial). The
private coin case is more involved. With respect to private coin algorithms
of constant error, the authors of [16] prove, for problem AllEq, an upper
bound of O(

√
n/k + log(min(n, k))) and a lower bound of Ω(log n). In the

case of ExistsEq the upper bound they show is O(log k
√
n) while the lower

bound is Ω(
√
n).

1.2.2. The broadcast congested clique model

An interesting example of a problem defined in the broadcast congested
clique model where randomness helps is Connectivity, which is the de-
cision problem of determining whether the input graph is connected. This
problem can be easily solved in O(log n) rounds and bandwidth O(log n) by
a deterministic algorithm simulating the classical algorithm of Boruvka [17].
A more careful analysis shows that the same argument can be used to solve
the problem deterministically in two rounds and bandwidth O(2

√
n log n) [18].

In [19] Jurdziński and Nowicki gave a deterministic algorithm for Connec-

tivity that runs in O
(

logn
log logn

)
rounds and bandwidth O(log n). Not much

is known with respect to lower bounds. In fact, in [20] Pai and Pemmaraju
show that any algorithm solving Connectivity in the broadcast congested

clique has cost Ω(log n), far from the cost O
(

log2 n
log logn

)
of the algorithm of

Jurdziński and Nowicki.
In [21, 22] Ahn et. al presented an extremely elegant one-round pub-

lic coin algorithm that solves connectivity with high probability and band-
width O(log4 n). The algorithm uses a technique called linear sketches, which
roughly consists in compressing vectors through a linear function. This tech-

6

nique allows to sample (with high probability) a random edge from the cut
induced by any set of vertices. The authors use this capability to simulate in
only one round of communication the whole Boruvka’s algorithm. It is not
known whether private randomness helps to solve Connectivity.

Another example where randomness helps is Reconstruction, the prob-
lem consisting in computing the function f(G) = E, i.e., every vertex ends
up knowing the adjacency matrix of G. Roughly speaking, this problem is
the hardest problem that one might attempt to solve. Indeed, since in this
model nodes have unbounded computational power, any vertex knowing the
adjacency matrix of G can compute any property of G without any further
communication. Of course any algorithm (randomized or deterministic) solv-
ing Reconstruction has cost Θ(n). For that reason a restricted version
of Reconstruction is considered, where a set of graphs G is fixed. G-
Reconstruction is the function that outputs the adjacency matrix of G
when G belongs to G, and outputs reject when G does not belong to G.

In [23] it is shown that G-Reconstruction can be solved with a deter-
ministic one-round algorithm with bandwidth O(log n), when G is the class
of trees, planar graphs, or any class defined by a finite set of excluded minors.
In fact, the algorithm of [23] solves the problem with bandwidth O(d2 log n)
for every set of graphs of degeneracy at most d (trees have degeneracy 1,
planar graphs have degeneracy 5). The upper bound on the bandwidth was
improved to O(d log n) in [18].

In [24] it is shown that any algorithm (deterministic or randomized) solv-

ing G-Reconstruction has cost Ω(log |Gn|
n

), where Gn is the set of n-node
graphs in G. A common property of d-degenerate sets of graphs is that
Gn = O(2dn logn), so the lower bound can be reached by a deterministic one-
round algorithm. This is not the case for any set of graphs. There are sets
of graphs G such that Gn = 2O(n), but any one-round deterministic algorithm
solving G-Reconstruction has cost Ω(n) [24].

The use of randomness improves the upper bounds on the bandwidth with
respect to deterministic algorithms. Indeed, for any set of graphs G, there is a
two-round public coin algorithm that solves G-Reconstruction with band-
width O(

√
log |Gn| log n). Moreover, if G is an hereditary class of graphs,

G-Reconstruction can be solved with a one-round private coin algorithm
with bandwidth O(log |Gn|

n
), matching the lower-bound given above [24].

7

1.3. Preliminaries

All our graphs are undirected. So, for any pair i, j of nodes, the bit
number i of node (with identifier) j equals the bit number j of node i. In full
words, each edge of the graph is known by the two players corresponding to
its end-nodes. All our algorithms use Ω(log n) bits. We assume, w.l.o.g., that
in each round each node sends its own number in the message transmitted
to the referee (or broadcasted to the other nodes, or written in a whiteboard
visible to every node; all these definitions are equivalent).

In this paper we study, among others, the following three boolean func-
tions on graphs.

• Twins(G) outputs 1 if and only if G has two vertices u and v with the
same neighborhood, i.e., such that N(u) = N(v).

• Twinsx(G) is a “pointed” version of previous function. Its output is 1
if and only if there is a vertex y 6= x such that N(y) = N(x).

• Translated-Twins is defined on input graphs G of size 2n, labeled
from 1 to 2n. Its output is 1 if and only if G has a vertex i ∈ [n]
such that, for any vertex j ∈ [n], j ∈ N(i) ⇐⇒ j + n ∈ N(i + n).
In other words, the output is 1 if and only if there exists i such that
N(i) + n = N(i+ n).

For reductions we also use function Reconstruction(G), whose output
is G itself, i.e., the adjacency matrix of G. Note that if a deterministic
algorithm computes Reconstruction on some family of n-vertex graphs
Gn, then the cost R · b of such algorithm must be Ω(log(|Gn|)/n) [11].

The message cost of a one-round algorithm P , denoted by C(P), is
the length of the longest message sent to the referee. The deterministic
message size complexity, denoted Cdet(f), is the minimum message of any
one-round deterministic algorithm computing f . Analogously, we denote
Cpriv
ε (f), Cpub

ε (f), the message size complexity for ε-error public coin and
ε-error private coin algorithms, respectively.

The simultaneous k-player model can be seen as a generalization of the
one-round broadcast congested clique (despite having been introduced much
earlier). It is defined as follows. Let f be a function having as input k
boolean vectors of length n. There are k players {p1, . . . , pk} who wish to
compute the value of f on input (x1, . . . , xk) ∈ ({0, 1}n)k. Player pi only sees

8

the input xi, and also knows his/her own index i. All the k players simulta-
neously send a message to a referee. After that, the referee (another player
who sees none of the inputs) announces the value f(x1, . . . , xk) using only
the information contained in the k messages. The mesage size complexities
Cdet(f), Cpriv

ε (f), Cpub
ε (f), are defined as above. (Note that, in the one-round

broadcast congested clique model, there is some shared information between
the nodes or players: in fact, each edge of the input graph is known by two
nodes).

Let us recall some classical results on the simultaneous 2-player model.
Babai and Kimmel [14] have shown that the order of magnitude of the private
coin randomized message size complexity of any function f is at least the
square root of the deterministic message size complexity of f . They also
characterize completely the function Eq : {0, 1}n × {0, 1}n → {0, 1}, where
Eq(x, y) = 1 iff x = y.

Proposition 1 ([14]). Consider the simultaneous 2-player model and a con-
stant ε > 0. The function Eq on two n-bit boolean vectors has the fol-
lowing message size complexities: Cdet(Eq) = n, Cpriv

ε (EQ) = Θ(
√
n) and

Cpub
ε (Eq) = O(1). For any boolean function f , Cpriv

ε (f) = Ω(
√
Cdet(f)).

We also use the following result of Chakrabarti et al. [10] for private-coin
algorithms (the deterministic part is a matter of exercise).

Proposition 2 ([10]). Consider the boolean function OrEq that takes as
input two boolean n× n matrices, and the output is 1 if and only if there is
some 1 ≤ i ≤ n such that the i-th rows of the two matrices are equal. Then,
for any ε < 1/2, Cpriv

ε (OrEq) = Ω(n
√
n). Also, Cdet(OrEq) = Θ(n2).

2. Public versus private randomness for multi-round algorithms

We start this section by showing that, in the broadcast congested clique
model, private and public coin multi-round algorithms are equivalent (up to
a logarithmic factor).

Theorem 1. Let ε, δ > 0 be such that ε < 1/3, and let f be a function
f : Gn → {0, 1}, where Gn is the set of all graphs of size n. For every R-
round ε-error public coin algorithm computing f in the broadcast congested
clique model with bandwidth b, there exists an (R + 1)-round (ε + δ)-error
private coin algorithm computing f in the broadcast congested clique model
with bandwidth b+ log(n) + log(δ−1).

9

To show this theorem we follow the same arguments of Newman for the
two-player case [9]. Intuitively, to construct a private coin algorithm from a
public coin algorithm, we may ask to an arbitrary node to privately generate
the number of random bits required to run the public coin algorithm, and
communicate those bits to the other nodes in a first round. However, in our
definition of randomized algorithms, we did not bound the number of random
bits that an algorithm is able to use, so this first round may require a very
big bandwidth (or too many rounds). In the next lemma, we show that by
slightly increasing the error, we can transform any public coin algorithm that
uses an arbitrary number of random bits, into another public coin algorithm
that uses a number of random bits that is logarithmic in the size of the input.

Lemma 1. Let ε, δ > 0 be such that ε < 1/3, and let f be a function f : Gn →
{0, 1}, where Gn is the set of all graphs of size n. Suppose that there exists
an R-round ε-error public coin algorithm P computing f in the broadcast
congested clique model with bandwidth b. Then, there exists an R-round
(ε+δ)-error public coins algorithm P ′ computing f in the broadcast congested
clique model with bandwidth b that uses O(log n+log δ−1) public random bits.

Proof Roughly, the proof shows that it is possible to fix a small sample of
the set of all possible random bis produced by P . When the algorithm picks
vectors uniformly at random from the sample, there is only a small increase
on the error of the algorithm. This sample is represented by a vector ~q,
which we are assuming to be public (it is a part of algorithm P ′). In P ′
the nodes collectively choose a vector from ~q uniformly at random using the
public coins, and then simulate P .

Let G be the input graph and denote by xi the input of node i. Let q
be the random variable corresponding to the public random bits produced
by P on input G. We call P(G,q) the random variable corresponding to
the output of the algorithm P on input G and public coins q. Now denote
by Z(G,q) the random variable indicating whether P(G,q) equals f(G).
Formally:

Z(G,q) =

{
1 if P(G,q) 6= f(G),
0 otherwise.

Since P has error probability ε, then for every fixed graph G, the expected
value of Z(G,q) is ε. Indeed, Eq(Z(G,q)) = Pr(Z(G,q) = 1) = Pr(P(G,q) 6=
f(G)) = ε.

10

For t = (2n2)/(3δ2), let ~q = q1, . . . qt be t realizations of the public coins
of P . Define the following public coin algorithm P~q as follows. On input
G, each node picks (using the public coin) uniformly at random an integer
i ∈ {1, . . . , t}, and then runs P on input G with random string qi. In other
words, they pick i ∈ {1, . . . t} and, compute P(G, qi).

Suppose we pick ~q = q1, . . . , qt independently and uniformly at random,
and fix a graph G. For each i ∈ [t], let ηi(G) be a random variable de-
fined as ηi(G) = Z(G, qi)− ε. Note that {η1(G), . . . , ηt(G)} are independent,
E~q(ηi(G)) = E~q(Z(G, qi))−ε = 0, and |ηi(G)| ≤ 1 (since ε < 1/2). Therefore,
we can use a Chernoff bound to obtain:

Pr~q


∑

i∈[t]

ηi(G) > δ · t


 ≤ e−δ

2·t/2 = 2−δ
2·t/2·log(e) = 2−n

2·log(e)/3 < 2−n
2

.

Then,

Pr~q

(
∃G ∈ Gn,

∑
i∈[t] ηi(G) > δ · t

)
≤
∑

G∈Gn Pr~q

(∑
i∈[t] ηi(G) > δ · t

)

<
∑

G∈Gn 2−n
2

= 2(n
2) · 2−n2

< 1

Thus

Pr~q


∀G ∈ Gn,

∑

i∈[t]

ηi(G) ≤ δ · t


 > 0.

We deduce that there exists a choice q = (q1, . . . , qt) such that

1

t

∑

i∈[t]

Z(G, qi) ≤ ε+ δ ∀G ∈ Gn

We define P ′ = Pq, and we obtain that, ∀G ∈ Gn:

Pri(P ′(G, i) 6= f(G)) =
∑

i∈[t]

Pr([the algorithm chooses i] ∧ [P(G, qi) 6= f(G)])

≤ 1

t

∑

i∈[t]

Z(G, qi) ≤ ε+ δ

Therefore P ′ is an R-round (ε + δ)-error public coin algorithm for f in
the broadcast congested clique model, that uses dlog te = O(log n+ log δ−1)
random bits. �

11

We are now ready to show Theorem 1.

Proof of Theorem 1. Let P be an algorithm as in the statement of the
theorem, and for δ > 0 let P ′ be the algorithm obtained from P using Lemma
1, i.e., P ′ is an R-round (ε+ δ)-error public coin algorithm in the broadcast
congested clique model, that uses dlog te = O(log n + log δ−1) random bits.
We simply construct an (ε+δ)-error private coin algorithm P ′′ on the broad-
cast congested clique model as follows. First, node 1 produces (using its
private coins) a Boolean random vector q of size dlog te, and communicates
it in the first round. Then, all the nodes simulate P ′ on their inputs consid-
ering q as a public random vector. Clearly, P ′′ runs in R+ 1 rounds and has
bandwidth b+ dlog te = O(b+ log n+ log δ−1). �

We end this section giving a deterministic lower bound for multi-round
protocols solving GraphEq. This problem separates deterministic from ran-
domized multi-round algorithms, because, as we will show in Theorem 4,
there is a one-round public coin algorithm solving GraphEq with high prob-
ability and bandwidth O(log n). (Recall that GraphEq(G) is defined over
labeled graphs of size 2n: it equals 1 if and only if the adjacency matrix of
G[{1, . . . , n}] is equal to the adjacency matrix of G[{n+ 1, . . . , 2n}]).

Theorem 2. Any deterministic algorithm that computes GraphEq in the
broadcast congested clique model has cost R · b = Ω(n).

Proof Let P be a deterministic algorithm that computes GraphEq in the
broadcast congested clique model, with cost g(n) on input graphs of size 2n.
Call m =

(
n
2

)
, and let x, y ∈ {0, 1}m be an input of problem Eqm. Let Gx

and Gy be graphs of size n, where the vertex set is [n] and the edge sets are
given by x and y, interpreted as their adjacency matrices. Consider now the
graph of size 2n called Gx,y, which is the union of Gx and Gy, after relabeling
each vertex i of Gy by i+ n (see Figure 1).

Note that GraphEq(Gx,y) equals 1 if and only Gx = Gy, i.e., if x = y.
We define a two-player algorithm P ′ for Eqm as follows. At each round,
Alice (resp. Bob) simulates algorithm P on each vertex of Gx (resp. Gy),
and communicates the obtained messages. Since the cost of P in Gx,y is g(n),
the cost of algorithm P ′ is n ·g(n). Recall that the deterministic cost of Eqm
is Ω(m). We obtain that n · g(n) = Ω(

(
n
2

)
), so g(n) = Ω(n). �

12

2

3

4

1

8

5

6

7

Figure 1: Reduction of Eqm to GraphEq where n = 4, and the inputs of Eqm are
x = (1, 1, 1, 0, 0, 1) and y = (1, 1, 1, 0, 1, 0) (the coordinates 1 (resp. 0) in x represent the
presence (absence) of edges ({1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}) in Gx,y, while the
coordinates of y represent edges ({5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}, {7, 8}).

3. One-round algorithms

3.1. Deterministic algorithms

Theorem 3. The one-round deterministic message size complexity of func-
tions Twins, Twinx and Translated-Twins is Θ(n).

The upper bounds of O(n) are trivial so we only need to prove the lower
bounds. For the first two problems, we use the following reduction.

Lemma 2. Assume that there is a one-round deterministic algorithm solving
Twins (resp. Twins2n+1) on (2n + 1)-node graphs using messages of size
g(n). Then one can solve Reconstruction in one round on n-node graphs
using messages of size 2g(n).

Proof Let G be an arbitrary n-node graph, i an integer between 1 and n
and S a subset of {1, . . . , n} not containing i. Denote by H(i, S) the graph
on 2n+ 1 nodes obtained as follows (see Figure 2):

1. H[{1, . . . , n}] = G.

2. For each n+ 1 ≤ j ≤ 2n, its unique neighbor with identifier at most n
is j − n.

3. Node 2n+ 1 is adjacent to the nodes of S and to i+n (and to no other
node).

Claim. We claim that Twins(H(i, S)) (resp. Twins2n+1(H(i, S)) is true if
and only if NG(i) = S.

Clearly, if NG(i) = S then node i is a twin of 2n + 1 in graph H. Con-
versely, we prove that if H(i, S) has two twins u and v then one of them

13

is 2n + 1. This comes from the fact that the edges between {1, . . . , n}
and {n + 1, . . . , 2n} in H(i, S) form a matching. So, no two nodes of
{1, . . . , 2n} may be twins. Now, assume that 2n + 1 has a twin u. Since
NH(i,S)(2n+ 1)∩{n+ 1, . . . , 2n} = {i+n}, the only possibility is that u = i.
Eventually, i and 2n+ 1 are twins if and only if NG(i) = S, which proves our
claim.

Now, assume that we have a distributed algorithm for Twins (or for
Twins2n+1) on graphs with 2n + 1 nodes. We construct an algorithm for
Reconstruction on an arbitrary n-node graph G.

The players construct their messages as follows. Each node i sends the
message mi that it would send in the Twins algorithm if it had neighborhood
NG(i)∪{i+n} and the message m+

i that it would send in the same algorithm
with neighborhood NG(i)∪{i+n, 2n+1}. That makes messages of size 2g(n).

The referee needs to retrieve the neighborhood NG(i) for each i, from the
set of messages. For each i and each subset S of {1, . . . , n} not containing i,
she simulates the behavior of the referee for Twins on graph H(i, S). For
this purpose, for each j ≤ n, she uses message mj if j /∈ S and message
m+
j if j ∈ S. The messages for nodes k > n can be constructed directly

by the referee. Note that Twins(H(i, S)) is true iff NG(i) = S. Thus, she
can reconstruct NG(i). Eventually, this allows to solve Reconstruction
on graph G. The same argument works if we replace the Twins algorithm
by Twins2n+1. �

Remark 1. Since problem Reconstruction on n-node graphs requires
messages of size Ω(n), we conclude that any deterministic algorithm for ei-
ther Twins or Twins2n+1 also requires messages of size Ω(n).

For problem Translated-Twins, we provide a reduction from OrEq
(see Proposition 2 in Section 1.3). This reduction will be used in both the
deterministic and private coin settings. (Recall that OrEq takes as input
two boolean matrices, and the output is 1 if and only if some row i of the
two matrices are equal).

Lemma 3. Assume that there is a one-round algorithm solving Translated-
Twins for 6n-node graphs using messages of size g(n), in any of our three
settings. Then, there is a one-round algorithm for function OrEq, in the
same setting, using messages of size 3ng(n).

14

1

2

3

4

5

6

7

8

9

10

11

12

G

13

Figure 2: H(4, S), when S = {1, 3, 5}.

Proof Let x and y be two n × n boolean matrices. We construct a graph
Gx,y with 6n nodes such that Translated-Twins(Gx,y) = OrEq(x, y).
The graph G is formed by two connected components G1

x and G2
y of 3n nodes

each, encoding the two matrices as follows (see Figure 3 for an example).
G1
x has 3n nodes numbered from 1 to 2n and from 5n + 1 to 6n. For

any i, j ∈ {1, . . . , n} we put an edge between node i and node j + n if and
only if xi,j = 1. Also, for any i ∈ {1, . . . , n} we put an edge between node
i + n and node i + 4n. In other words, the node subsets {1, . . . , n} and
{n+1, . . . , 2n} induce a bipartite graph representing matrix x, and the node
subsets {n+ 1, . . . , 2n} and {5n+ 1, . . . , 6n} induce a perfect matching.

The construction of G2
y, with nodes numbered from 2n+1 to 5n is similar.

For any i, j ∈ {1, . . . , n} we put an edge between node i+3n and node j+4n
if and only if yi,j = 1. Also, for any i ∈ {1, . . . , n}, we put an edge between
node 4n + i and node 2n + i. Thus the node subsets {3n + 1, . . . , 4n} and
{4n + 1, . . . , 5n} form a bipartite graph corresponding to matrix y. The
subsets {4n+ 1, . . . , 5n} and {2n+ 1, . . . , 3n} induce a matching.

We claim that Translated-Twins(Gx,y) = OrEq(x, y). Assume that
OrEq(x, y) = 1. Then, there is an index i such that the i-th row of x equals
the i-th row of y. Then, by construction, the neighborhood of node i+ 3n in

15

1

2

3

4

5

6

7

8

x =

2
664

0 1 0 1
1 1 1 0
0 1 0 1
0 1 1 1

3
775

y =

2
664

1 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0

3
775

21

22

23

24

13

14

15

16

17

18

19

20

9

10

11

12

Figure 3: Examples of graphs G1
x (top) and G2

y (bottom), for a given input (x, y). This is
a yes instance since x3 = y3.

Gx,y is the neighborhood of node i, translated by an additive term 3n.
Conversely, assume that there is some node u ∈ {1, . . . , 3n} such that the

neighborhood of u is the translated neighborhood of u+3n. By construction,
the only possibility is that u ≤ n (because of the numberings of the matchings
the other nodes cannot have translated twins). Thus, the u-th rows are the
same in both matrices.

To complete the proof of our lemma, assume that we have a algorithm
for Translated-Twins for graphs with 3n nodes, with g(n) bits per mes-
sage. We design the following algorithm for OrEq. (Recall that, in OrEq,
each player has a matrix, say x for the first one and y for the second one).
The first player constructs graph Gx,0 = (G1

x, G
2
0), the second constructs

G0,y = (G1
0, G

2
y) (here 0 denotes the n × n boolean matrix whose elements

are all 0). The first player sends the 3n messages corresponding to the
nodes of G1

x in the Translated-Twins algorithm for graph Gx,0. The
second player sends the 3n messages corresponding to the nodes of G2

y in
algorithm Translated-Twins for G0,y. The referee collects these 6n mes-

16

sages; observe that they are exactly those sent by algorithm Translated-
Twins for the graph Gx,y. She applies the same algorithm as the referee of
Translated-Twins would apply on these messages. By the claim above,
its output is Translated-Twins(Gx,y). Thus, OrEq(x, y). Note that the
messages used here are of size O(3ng(n)) and that our arguments hold for
any type of algorithm. �

Remark 2. Since, in the deterministic framework, problem OrEq requires
messages of size Ω(n2), we conclude that any one-round deterministic algo-
rithm for problem Translated-Twins requires messages of size Ω(n). This
completes the proof of Theorem 3.

Remark 3. The lower-bound construction given in the proof of Lemma 3
also holds for connected graphs. Indeed, it is enough to add an edge between
vertices numbered 5n + 1 and 2n + 1 to obtain a connected graph without
creating unwanted translated-twins.

3.2. Randomized algorithms

Theorem 4. For any constant c > 0, Twins, Twinx, Translated-Twins
and GraphEq can be solved with one-round public coin algorithms using
messages of size O(log n) and 1/nc one-sided error. Problem Twinx can
also be solved with a one-round private coin algorithm using messages of size
O(log n) and 1/nc one-sided error.

Proof Let nc+3 < p ≤ 2nc+3 be a prime number. A random t ∈ Zp is
chosen uniformly at random using O(log(n)) public random bits (the prime
field of order p is represented by Zp, the set of integers modulo p). Given
an n-bit vector a = (a1, . . . , an), consider the polynomial Pa = a1 + a2X +
a3X

2 + . . . anX
n−1 in Zp[X] and let FP (a, t) = Pa(t). FP (a, t) is sometimes

called the “fingerprint” of vector a. Clearly, two equal vectors have equal
fingerprints, and, more important, for any two different vectors a and b,
the probability that FP (a, t) = FP (b, t) is at most 1/nc+2 (because the
polynomial Pa−Pb has at most n roots and t was chosen uniformly at random,
thus the probability that t is a root of Pa−Pb is at most 1/nc+2, see e.g., [25]).

Let xi be the input vector of player (node) i, i.e., the characteristic func-
tion of its neighborhood N(i). A one-round algorithm for Twins consists
in each node sending the message mi = FP (xi, t). The referee outputs 1 if

17

and only if mi = mj for some pair i 6= j. A one-round algorithm for Twinsx
sends the same messages, but this time the referee checks whether mx = mi

for some i 6= x.
The algorithm for Translated-Twins on n-node graphs is slightly dif-

ferent. If a node i ≤ n/2 has a neighbor j > n/2, it sends a special “no”
message specifying that it cannot be a candidate for having a translated
twin. Otherwise, let y1i be the n/2-bit vector formed by the n/2 first bits of
xi. Thus, y1i is the characteristic vector of N(i)∩{1, . . . , n/2}. Player i sends
the message mi = FP (y1i , t). Symmetrically, for nodes labelled i > n/2, if i
has some neighbor j ≤ n/2, it sends the “no” message. Otherwise, let y2i be
the n/2-bit vector formed by the last n/2 bits of xi. Hence, y2i corresponds
to N(i) ∩ {n/2, . . . , n}, “translated” by −n/2. Player i sends the message
mi = FP (y2i , t). Then, the referee returns 1 if mi = mi+n/2 for some i ≤ n/2.

Clearly, for Twins (resp. Twinx, Translated-Twins), if the input
graph is a yes-instance, then the algorithm outputs 1. The probability
that Twins answers 1 on a no-instance is the probability that FP (mi, t) =
FP (mj, t) for two nodes i and j with different neighborhoods. For each fixed
pair of nodes this probability is at most 1/nc+2, so altogether the probability
of a wrong answer is at most 1/nc. With similar arguments for Twinsx and
Translated-Twins the probability of a wrong answer is at most 1/nc+1,
since the referee makes n tests and each may be a false positive with proba-
bility at most 1/nc+2.

For GraphEq on graphs of size 2n, each node i ∈ [n] calls yi the first n
coordinates of xi, and each node i ∈ [2n] \ [n], calls yi the last n coordinates
of xi. Then, each node i communicates mi = FP (yi, t), the fingerprint of
yi produced using t. The referee then checks whether mi = mi+n, for all
i ∈ [n]. Again, the probability of a wrong answer is at most 1/nc+1, since
the referee makes n tests and each may be a false positive with probability
at most 1/nc+2.

For Twinsx with private coins, each node i sends a bit stating if it sees
x, a number ti chosen uniformly at random in the interval nc+2 < p ≤ 2nc+2

and also FP (xi, ti). The referee retrieves the neighborhood of node x (which
was sent bit by bit by all the others) and then, for each i 6= x, it constructs
FP (xx, ti) and compares it to FP (xi, ti). If the values are equal for some i,
the referee outputs 1, otherwise it outputs 0. Again, any yes-instance will
answer 1, and the probability that a no-instance (wrongly) answers 1 is at
most 1/nc. �

18

The fact that Translated-Twins requires Ω(
√
n) bits per node for any

one-round private coin, ε-error algorithm follows directly from Lemma 3 and
Proposition 2.

Theorem 5. For any ε < 1/2, Cpriv
ε (Translated-Twins) = Ω(

√
n).

Remark 4. Theorems 4 and 5 show that problem Translated-Twins sep-
arates private-coin from public-coin algorithms.

In order to complete the Table 1, it only remains to prove that problems
Twinsx and Translated-Twins can be solved with one-round private coin
algorithms using O(

√
n log n) bits.

Theorem 6. For any c > 0, there is a one-round private coin algorithm for
Twins and Translated-Twins using messages of size O(

√
n log n) and

having 1/nc one-sided error.

Proof Babai and Kimmel in [14] propose, for solving problem Eq in the
simultaneous 2-player model, a private coin algorithm with 1/3 one sided
error and O(

√
n) message size complexity (see Proposition 1). Let us call

this algorithm P0. As the authors point out, this algorithm is symmetrical,
in the sense that both players compute the same function on their own input.
We can refer to any of these two indistiguishable player as Alice. We define
the algorithm P as one obtained by simulating (c+2) log3 n calls to algorithm
P0. More formally, in P each player creates (c+ 2) log3 n times the message
that it would create in P0, using at each time independent tosses of private
coins. The referee answers 1 if and only if the referee of P0 would have
answered 1 on each of the (c+ 2) log3 n pairs of messages. Therefore, P is a
private coin algorithm for EQ with one sided error smaller than 1/nc+2, and
message size O(

√
n log n).

The one sided private-coin algorithm P ′ for Twins is the one where each
node plays the role of Alice in P taking as input the characteristic function
of its neighborhood, and then the referee simulates the role of the referee in
P for each pair of messages. Similarily, an algorithm P ′′ for Translated-
Twins works as follows: each node i sends “no” in the same cases described
in the proof of Theorem 4, and otherwise it simulates the role of Alice on
input y1i formed by the first n/2 bits of xi, if i ≤ n/2 or on input y2i formed
by the n/2 last bits of xi if i > n/2, where xi is the characteristic function

19

of N(i). The referee then simulates the behavior of the referee of P on the
messages sent by i and i+ n (as long as none of them is “no”).

Since P has just one sided error, if Twins (resp. Translated-Twins)
is true, P ′ (resp. P ′′) will always accept. On the other hand, if Twins
(resp. Translated-Twins) is false, then the probability that P ′ (resp.
P ′′) accepts is the probability that P accepts in at least one pair of vertices,
and then the error of P ′ (resp. P ′′) is at most n2 times (resp. n times) the
error of P . We obtain that P ′ and P ′′ have at most 1/nc one sided error,
and message size complexity O(

√
n log n). �

4. Hard problems for public coin algorithms

Consider the boolean function Triangle(G) that outputs 1 if and only
if G has a triangle, and the function Diam3(G), that outputs 1 if and only if
G has diameter at most 3. In [11] it is shown that the one-round determin-
istic message size complexity of these problems are lower-bounded by Ω(n),
using a reduction from Reconstruction. However, as seen in Theorem
3, a reduction from Reconstruction does not imply lower bounds on the
message size of randomized algorithms.

In the following theorem, we extend the techniques of [11], by constructing
a reduction from Index to Triangle(G) and Diam3(G), showing that the
message size complexity of these problems are also Ω(n), even in the public
coin setting. We will show that we can push further the lower bounds for
Triangle(G) and Diam3(G), showing that almost the same reduction in
[11] can be used to decide Index, and therefore the message sizes of one-
round randomized algorithms for these problems are also lower bounded by
Ω(n). This explains why, in order to separate the models, we were forced to
find new problems (such as Twins).

Theorem 7. For any ε < 1/2, any one-round public coin algorithm comput-
ing Triangle(G) (resp. Diam3(G)) with ε two-sided error uses messages
of size Ω(n).

Proof Consider the Index function in the simultaneous 2-player model: the
first player, say Alice, has as input an m-bit boolean vector x and the second
player, Bob, has an integer q, 1 ≤ i ≤ m. Index(x, q) is defined as xq, the
qth coordinate of Alice’s vector. We use the fact that for any ε < 1/2, any

20

1

2

3

4

5
x = (1, 1, 0, 1, 0, 1, 0, 0, 1)

q = 9

6

7

Figure 4: An illustration of Hx(3, 6) when x = (1, 1, 0, 1, 0, 1, 0, 0, 1) and q = 9.

public-coin algorithm for Index requires Ω(m) bits (see, e.g., [26, 27] for a
proof). We may assume, w.l.o.g., that m = n2.

In [11], Becker et al. show that the deterministic message size complexity
of Triangle and Diam3 is Θ(n). The idea of the proof is the following: if
there is an algorithm P of message size c(n) for Triangle or Diam3, then
there is an algorithm for Reconstruction in bipartite graphs of cost 2c(n).
We slightly modify that proof in order to obtain a reduction from Index.

Let ε < 1/2, and P be an ε-error public coin algorithm for Triangle
on n-nodes graphs, using c(n) bits. We give an algorithm for Index using
2n · c(2n+ 1) bits.

Let x be an m = n2-bit vector. Let Hx be the bipartite graph with vertex
set {1, . . . , 2n}, such that for any 1 ≤ k, l ≤ n, if x(k−1)n+l = 1 then Hx has
an edge between nodes k and l + n (see Figure 4). Consider the family of
graphs Hx(i, j) obtained from Hx by adding a node 2n+ 1 whose neighbors
are nodes i and j + n (for any 1 ≤ i, j ≤ n). Observe that Hx(i, j) has a
triangle if and only if x(i−1)n+j = 1, in which case the triangle is formed by
the nodes {i, j+n, 2n+1}. To simplify the notation we also define the graph
Hx(0, 0) obtained from Hx by adding an isolated node 2n+ 1.

The algorithm for Index is as follows. Bob sends its input q, which only
has O(log n) bits. Alice constructs the family of graphs Hx(i, j), for all pairs
1 ≤ i, j ≤ n and for (i, j) = (0, 0). Any node k ≤ 2n has exactly two
possible neighborhoods, depending on whether it is adjacent to 2n + 1 or
not. For each k ≤ 2n, Alice creates the message m+(k) that the algorithm

21

for Triangle would send for node k in the graph Hx(k, 1) (if k ≤ n) or in
the graph H(1, k − n) (if k > n). It also creates the message m−(k) that
Triangle would construct for node k in the graph Hx(0, 0). In full words,
m−(k) corresponds to the case when the neighborhood of k is the same as in
Hx, and m+(k) to the case when this neighborhood is the neighborhood in
Hx, plus node 2n+ 1. Then Alice sends, for each k, 1 ≤ k ≤ 2n, the pair of
messages (m−(k),m+(k)). Therefore, Alice uses 2n · c(2n+ 1) bits.

It remains to explain how the referee retrieves the bit xq. Let i, j be such
that q = (i− 1)n + j. Observe that xq = 1 if and only if graph Hx(i, j) has
a triangle, therefore the referee must simulate the behavior of the referee for
Triangle on Hx(i, j). For this purpose, the referee computes the message
that node 2n+ 1 would have sent on this graph (it only depends on i and j)
and observes that algorithm P on Hx(i, j) would have sent message m+(i),
m+(j + n) and m−(k) for any k ≤ 2n different from i and j. Therefore, the
referee can give the same output as P on Hx(i, j). That is, it outputs xq.
The algorithm for Index will have ε error and will use 2n · c(2n + 1) bits.
Thus, P requires Ω(n) bits.

The proof for Diam3 is based on a similar reduction. Let Dx(i, j) be the
graph obtained from Hx by adding three nodes: node 2n+1 connected to all
nodes k ≤ 2n, node 2n + 2 connected to node i and node 2n + 3 connected
to j+n. Graph Dx(0, 0) is similar with the difference that nodes 2n+ 2 and
2n+3 are isolated. Observe (see also [11]) that Dx(i, j) has diameter 3 if and
only if x(i−1)n+j = 1. The rest of the proof follows as before, swiching the
roles of Hx(0, 0) for Dx(0, 0), and Hx(i, j) for Dx(i, j), for all 1 ≤ i, j ≤ n. �

5. Solving Twins deterministically in the unicast congested clique
model

In this section we show that, when we remove the restriction of one-round
algorithms,we can solve Twins in o(n) rounds with bandwidth O(log n) in
the unicast congested clique model. Let G be a graph, and let A be the
adjacency matrix of G. Call A2 the matrix multiplication of A with itself,
over the ring of integer square matrices of dimension n.

Lemma 4. Let u and v be two vertices of G such that deg(u) = deg(v) = d.
Then u and v are twins if and only if A2

uv = d.

22

Proof Observe that deg(u) =
∑

w∈[n] auw =
∑

w∈[n] awu. Suppose that u

and v are twins, then auw = awv for every w ∈ [n]. Therefore,

A2
uv =

∑

w∈[n]

auwawv =
∑

w∈[n]

auw = d.

Conversely, suppose that

A2
uv =

∑

w∈[n]

auwawv = d =
∑

w∈[n]

auw

it means that awv = auw each time that auw = 1. Since deg(u) = deg(v),
necessarily u and v are twins. �

Consider the following problem, that we call Matrix-Multiplication,
which is studied in [12]. The input are two square matrices S and T of
dimension n, distributed over n players, labeled from 1 to n. Player labeled
i receives as input the i-th row of S and the i-th row of T , and wants to
compute the i-th row of matrix P = ST .

Proposition 3. [12] There is a deterministic algorithm in the unicast con-
gested clique model that solves Matrix-Multiplication in O(n1−2/ω log n)
rounds, where ω is the matrix multiplication exponent.

Combining Lemma 4 and Proposition 3 we obtain the following algorithm
for Twins. First, each vertex broadcasts its degree. Then, each vertex
simulates the Matrix-Multiplication algorithm of Proposition 3 taking
S and T equal to the adjacency matrix of G. Finally, each vertex verifies if it
has some twin (by just looking for a vertex satisfying the condition of Lemma
4). Each vertex broadcasts the answer (one bit). Finally, every vertex accepts
if at least one pair of twins was detected. We deduce the following result.

Theorem 8. There is a deterministic algorithm in the unicast congested
clique model that solves Twins with O(n1−2/ω log) rounds and bandwidth
O(log n), where ω is the matrix multiplication exponent.

The upperbound on the round complexity of previous algorithm depends
on a constant ω known as the matrix multiplication exponent. This constant
corresponds roughly to the exponent of n in the running time of the best

23

sequential algorithm performing matrix multiplication of square matrices of
dimension n over a ring. Current best upper bound is ω < 2.3728639 due
to Le Gall [28]. This implies that the number of rounds of the algorithm
of Proposition 3 is O(n0.158 log n). For the same reason the algorithm of
Theorem 8 solves Twins in O(n0.158 log n) rounds.

6. Open problems

The future challenge is to determine the one-round message size com-
plexity of Twins for private coin algorithms. Techniques for proving lower
bounds in the similar problem ExistsEq, defined in the simultaneous n-
player model, can not be used directly: in the broadcast congested clique
model nodes share information. This subtle difference makes the problem of
finding lower bounds elusive. This seems to be the case of Twins. More
generally, as stated by Fischer, Oshman an Zwick [16], “the power of private
randomness in this model remains a fascinating open question”.

Another interesting problem is Connectivity. Its one-round message
size complexity is also open. Recall that, in the randomized, public coins
setting, there exists an algorithm that uses O(log3 n) bits, due to Ahn, Guha
and McGregor [21]. Can this upper bound be improved to O(log n)? Is it
possible to find, in the private coin case and/or in the deterministic case,
better lower bounds?

Aknowledgements

This research was partially supported by CONICYT PIA / Apoyo a Cen-
tros Cient́ıicos y Tecnológicos de Excelencia AFB 170001 (I.R.), Fondecyt
1170021 (I.R.), FONDECYT 11190482 (P.M.) and CONICYT via PAI +
Convocatoria Nacional Subvención a la Incorporación en la Academia Año
2017 + PAI77170068 (P.M.)

References

[1] Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg, Minimum-weight span-
ning tree construction in O(log log n) communication rounds, SIAM
Journal on Computing 35 (1) (2005) 120–131.

[2] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

24

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
G. Czajkowski, Pregel: a system for large-scale graph processing, in:
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, ACM, 2010, pp. 135–146.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:
Cluster computing with working sets., HotCloud 10 (10-10) (2010) 95.

[5] T. White, Hadoop: The definitive guide, ” O’Reilly Media, Inc.”, 2012.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: dis-
tributed data-parallel programs from sequential building blocks, in:
ACM SIGOPS operating systems review, Vol. 41, ACM, 2007, pp. 59–72.

[7] A. Drucker, F. Kuhn, R. Oshman, The communication complexity of
distributed task allocation, in: Proc. of the 2012 ACM Symposium on
Principles of Distributed Computing, PODC ’12, 2012, pp. 67–76.

[8] A. Drucker, F. Kuhn, R. Oshman, On the power of the congested clique
model, in: Proc. of the 2014 ACM Symposium on Principles of Dis-
tributed Computing, PODC ’14, 2014, pp. 367–376.

[9] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge Uni-
versity Press, New York, NY, USA, 1997.

[10] A. Chakrabarti, S. Yaoyun, A. Wirth, A. Yao, Informational complex-
ity and the direct sum problem for simultaneous message complexity,
in: Proc. of the 42nd IEEE Symposium on Foundations of Computer
Science, FOCS ’01, 2001, pp. 270–278.

[11] F. Becker, M. Matamala, N. Nisse, I. Rapaport, K. Suchan, I. Todinca,
Adding a referee to an interconnection network: What can(not) be com-
puted in one round, in: Proc. of the 25th IEEE International Parallel
and Distributed Processing Symposium, IPDPS ’11, 2011, pp. 508–514.

[12] K. Censor-Hillel, P. Kaski, J. H. Korhonen, C. Lenzen, A. Paz,
J. Suomela, Algebraic methods in the congested clique, in: Proc. of
the 2015 ACM Symposium on Principles of Distributed Computing,
PODC ’15, 2015, pp. 143–152.

25

[13] A. C.-C. Yao, Some complexity questions related to distributive com-
puting (preliminary report), in: Proc. of the 11th ACM Symposium on
Theory of Computing, STOC ’79, 1979, pp. 209–213.

[14] L. Babai, P. G. Kimmel, Randomized simultaneous messages: Solution
of a problem of Yao in communication complexity, in: Proc. of the 12th
IEEE Conference on Computational Complexity, 1997, pp. 239–246.

[15] I. Newman, M. Szegedy, Public vs. private coin flips in one round com-
munication games, in: Proc. of the 28th ACM Symposium on Theory
of Computing, STOC ’09, 1996, pp. 561–570.

[16] O. Fischer, R. Oshman, U. Zwick, Public vs. private randomness in si-
multaneous multi-party communication complexity, in: Proc. of the In-
ternational Colloquium on Structural Information and Communication
Complexity, SIROCCO ’16, Vol. 9988 of Lecture Notes in Computer
Science, 2016, pp. 60–74.

[17] J. Nešetřil, E. Milková, H. Nešetřilová, Otakar Boruvka on minimum
spanning tree problem: Translation of both the 1926 papers, comments,
history, Discrete Mathematics 233 (1-3) (2001) 3–36.

[18] P. Montealegre, I. Todinca, Brief announcement: Deterministic graph
connectivity in the broadcast congested clique, in: Proc. of the 2016
ACM Symposium on Principles of Distributed Computing, PODC ’16,
2016, pp. 245–247.

[19] T. Jurdźınski, K. Nowicki, Brief announcement: On connectivity in the
broadcast congested clique, in: Proc. of the 31st International Sympo-
sium on Distributed Computing, DISC ’17, Vol. 91 of LIPIcs, 2017, pp.
1868–1869.

[20] S. Pai, S. V. Pemmaraju, Connectivity lower bounds in broadcast con-
gested clique, arXiv:1905.09016, 2019.

[21] K. J. Ahn, S. Guha, A. McGregor, Analyzing graph structure via linear
measurements, in: Proc. of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’12, 2012, pp. 459–467.

26

[22] K. J. Ahn, S. Guha, A. McGregor, Graph sketches: Sparsification, span-
ners, and subgraphs, in: Proc. of the 31st Symposium on Principles of
Database Systems, PODS ’12, 2012, pp. 5–14.

[23] F. Becker, A. Kosowski, M. Matamala, N. Nisse, I. Rapaport, K. Suchan,
I. Todinca, Allowing each node to communicate only once in a dis-
tributed system: shared whiteboard models (2015).

[24] P. Montealegre, S. Perez-Salazar, I. Rapaport, I. Todinca, Two rounds
are enough for reconstructing any graph (class) in the congested clique
model, in: Proc. pf the International Colloquium on Structural Infor-
mation and Communication Complexity, SIROCCO ’18, Vol. 11085 of
Lecture Notes in Computer Science, 2018, pp. 134–148.

[25] E. Kushilevitz, Communication complexity, Advances in Computers 44
(1997) 331–360.

[26] I. Kremer, N. Nisan, D. Ron, On randomized one-round communication
complexity, Computational Complexity 8 (1) (1999) 21–49.

[27] I. Kremer, N. Nisan, D. Ron, Errata for: “On randomized one-round
communication complexity”, Computational Complexity 10 (4) (2001)
314–315.

[28] F. Le Gall, Powers of tensors and fast matrix multiplication, in: Proc.
of the 39th International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’14, 2014, pp. 296–303.

27

