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1. Introduction

In this paper we are concerned with some multiparameter integral functionals of the

form
/Q W, (E,Vu(x)) dx, (1)

where @ is a bounded domain in RY, u:Q — R™, ¢>0 and W;,:RY x R"™ —
[0, 4+o00[ is supposed to be [0, 1[Y-periodic with respect to the first variable x € RY.
The distinguishing feature of (1) here is that the integrand is permitted to depend
on a vector of parameters A=(A,...,4) € R¥ with k > 1. We are interested in the
asymptotic behavior of (1) as ¢ — 0 and A — 0.

Integral functionals of this type appear in the mathematical modeling of cellular
composite materials. When N =m =3, (1) can be interpreted as the stored strain energy
of an elastic and heterogeneous material, u being a deformation or displacement field.
When m=1, u may be a difference of potential in a condenser. In any case, the
medium under consideration is composed of several materials, which are periodically
distributed at the microscopic scale given by ¢. In the applications, we often deal with
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two materials, one periodically included into the other one. In this case, the vector of
parameters A is used to describe certain properties of the inclusions like size, thickness,
stiffness or conductivity; we refer the reader to Sections 3 and 4 for some examples.

When ¢ is very small, then the microscopic structure of such a composite material
becomes complicated. Moreover, in some situations the parameter A is also very small.
The question is how to describe approximately the macroscopic behavior of the mate-
rial. Passing from the microscopic level to the macroscopic one corresponds to letting
& — 0 and 4 — 0 in (1). Assume that for each fixed microscopic scale ¢ > 0 we have
a model of the limit case “A=0". An alternative to derive a limit model for “A=0
and ¢ =0” would be to perform an iterate limit process: first let A — 0, then let ¢ — 0.
However, without further justifications, this may appear to be arbitrary and ambiguous.
Furthermore, in many situations there are intrinsic relations between ¢ and 4, which
prevent us from letting 4 — 0 without letting ¢ — 0 at the same time.

The present work is an attempt to develop general techniques for the asymptotic
analysis of functionals like (1) when all the parameters tend to zero (possibly following
a particular path in the set of parameters). We restrict our attention to certain parametric
integrands for which one may expect that homogenization occurs. In physical terms,
this means that the heterogeneous medium behaves at the macroscopic scale as an ideal
homogeneous one, so that the limit energy is of the form

/ whom (Vy(x)) dx.
Q

In absence of 4, i.e. when W), =W, this kind of results have been obtained by applying
suitable variational methods. For scalar u and convex W see [20], the books [3,9]
and references therein; for vector-valued u and nonconvex W see [5-7,22] and the
book [8]. The notion of I'-convergence for sequences of functions is used in all these
works. This convergence is variational in the sense that under some conditions, it
ensures the convergence of minimizers and minimum values, and, moreover, it is stable
under continuous perturbations. The accomplishment of this asymptotic analysis for
actual parametric integrands W, requires to overcome additional technical difficulties.
On the other hand, an important advantage of this approach is that many “degenerate”
homogenization problems can be interpreted as limits of this kind of multiparameter
integral functionals.

This paper is organized as follows. Section 2 is devoted to a general nonlinear
homogenization result for a class of multiparameter variational functionals. More pre-
cisely, in Section 2.1 we give some natural conditions on the integrands (cf. (C;)—
(C3)), which define the type of multiparameter functionals that we study in this paper.
After a brief exposition of I'-convergence theory in Section 2.2, we state and prove a
general homogenization theorem in Section 2.3. In fact, we introduce an unconstrained
family of functionals {F, ,} for which we establish I'-convergence towards a homoge-
neous functional F'™, We precise the meaning of “having a limit model for A =0" in
(H;) and we introduce a condition (H;), which allows us to identify the limit density
of the homogenized functional. Then, we prove in Section 2.4 that the I'-limit is not
affected by Dirichlet boundary conditions and we give a sufficient condition for the
relative compactness of minimizing sequences. This condition relates the behavior of ¢
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and / as they tend to zero. In Sections 3 and 4 some applications are indicated, with
a particular attention to convex integrands. A variety of techniques that may be useful
in the applications are described there. We recall in Appendix A an extension theo-
rem of [2], which is useful to overcome some technical difficulties due to an eventual
lack of coerciveness. In Appendix B we prove an asymptotic formula for parametric
subadditive set functions, which is used to verify (H;) in the applications. Finally, in
Appendix C we prove a technical result used in Section 4.

In the multiparameter setting of this work, some situations have been considered in
the literature. Usually, a homogenized I'-limit functional is obtained for a path of the
form (e, A(e)) with A(¢) — 0 as ¢ — 0 (see, for instance, the iterated homogenization
theorem in [8, Chapter 22]). In some simpler cases, this is done by comparison with
other functionals (see [3, Remark 1.24]). Note that in our case, the representation
formula for "™ may depend on a relative behavior between the parameters.

2. Multiparameter homogenization
2.1. A class of multiparameter variational problems

Let m, N and k be positive integers. Here and subsequently, ¥ denotes the unit
cell [0,1[" and 4 C R* is a nonempty set of parameters such that 4, — 0 for at
least one sequence {1,} C A. Let us suppose that to every 1€ A, there corresponds a
Carathéodory function

W, RY x R™ — [0, +o0[

satisfying for each &€ R"™
(Cy) W;(-, &) is Y-periodic: for every (x,z) € RN x ZVN, W(x +z, &)= W;(x, &).
Consider a family of closed subsets {7;},c4 C Y and a function r: A — [0,7] with
> 0.
Let us define £;:=Y \ T; + Z" and

( ).7 7 if xeE),
TN G it xeRV\E, =T, + 2V,

Assume that there exist p € ]1,4+o00[ and ¢y > 0 such that
(C,) for every 1€ A and for every x € RV, & ¢ R™

[P < Wix, &) < cora(x)(1 + [E]7).

Note that (1) may not be bounded away from 0; in this case, there are some technical
difficulties due to a lack of equi-coerciveness. In order to apply the extension techniques
recalled in Appendix A, it is required that
(C3) there exists 7 C Y such that for all A€ A, T; C T and the set E:=Y \ T + 7V
is connected, open and has Lipschitz boundary.
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Let Q be a bounded open set in RY. Let us consider the following variational
problem:

(Porigsd) inf{/ W, (f,w) dx+/gudx: ued+ Wir(Q; [Re'")},
Q & Q

where (¢,4) €10,£0] x A4, g € L? (2; R™) and ¢ € WP(Q; R™) is a boundary condition
on the displacement. The first integral corresponds to the stored strain energy of a
cellular elastic material, which is subject to external body forces given by g. Roughly
speaking, each cell contains an inclusion, which is characterized by the value of the
energy density in the set ¢7). Observe that, since we only assume that £ is con-
nected, the inclusions may be connected throughout the whole microstructure. Solving
(2..,;9,¢) amounts to finding the stable equilibria (i.e. minimal energy configura-
tions) of the structure. We are interested in the asymptotic behavior of (2, ;;¢,¢)
as (e,4) — (0,0). The strategy will be to compute a suitable variational limit of
a parametrized sequence of integral functionals. This variational convergence will be
De Giorgi’s I'-convergence.

2.2. TI'-convergence

Motivated by certain lower semi-continuity and perturbation problems in the calculus
of variations, De Giorgi introduced in [12] (see also [13]) the notion of I'-convergence
for sequences of functions. For the convenience of the reader, we are going to recall
the definition and some properties of I'-convergence.

Let (X,d) be a metric space and consider a family {F;} of functionals from X into
R=RU {—00, 400}, where s is taken in a subset of R? (s plays the role of a vector
of parameters). Given a sequence {s,} with s, — 0€ R? as n — oo, define for every
ueX

(F(d)-linrg inf an) (1):=inf {linni inf £, () u,,im}

and

(F(d)-lim sustn> (u):=inf {lim sup F, (u,): u,,iu} .
Clearly

I'(d)-liminf F;, < I'(d)-lim sup Fj,.

The sequence {Fy,} is said to be I'(d)-convergent to F(u) in u as n — oo whenever

Flu)= (F(d)—lim inf F) ()= (F(d)-lim sup F) ().
If the latter holds for every u € X then we write F=To (d)-lim,_, o F,.
Let 19 C (R7)N be a set consisting of sequences {s,} C RY such that s, — 0. If for
each sequence {sx} € 19 we have F =TI'(d)-lim,_  Fj;,, then we say that the functional
F is the I'(d)-limit of {F;} as s — 0 in 7y and we write F=TI(d)-lim x F,. Note
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that this definition is equivalent to:
(i) for all u€ X and for all sequences s, — 0 with {s,} €1 and ungu

F(u) < liminf Fy (u,),

(i) for all u€ X and for all 5, — 0 with {s,} €19 there exists a recovery sequence,

. d
that is, a sequence {u,} €X such that u,—u and

F(u)= lim Fy,(u,).

Observe that the constant sequence F, = F, I'(d)-converges to the lower closure, also
called lower semi-continuous envelope, of F, which we denoted by cl(F'). In fact, we
have

(F(d)- lim F)(u) = cl(F)(u) = inf {1inr£ inf F(u,): uniu} .

More generally, if F=1TI(d)-lim,_ ., F, for some sequence {F,} then F is lower
semi-continuous in (X, d). Another simple situation where I'-convergence holds is the
case of nonincreasing sequences: if for all ne N, F, = F,;; then I'(d)-lim, . F, =
cl(inf,en{F,}). Nevertheless, in general the pointwise convergence and the I'-conver-
gence are not comparable.

The following theorem is a well-known result (see [13]) that makes precise the
variational nature of I'-convergence:

Theorem 2.1. Let G:X — R be a continuous function and assume that
F=TI(d)-limF;.

550

Then

lim sup(inf{F, + G}) < inf{F + G}.

550

Moreover, if for each {s,} € 19 there exists a relative d-compact sequence {ii,} C X
such that

F, (41,) + G(ii,) < inf{F,, + G} + ¢, (2)
with ¢, — 0 as n — oo, then
lim(inf{F; + G}) = inf{F + G}
PALY))
and every d-cluster point i€ X of {i,} satisfies

F(@) + G(@) =inf {F + G}.

Remark 2.1. A sequence {7, } that satisfies (2) is usually referred to as an &,-minimizing
sequence for {F;, + G}.

For a proof of this result and deeper discussions of the I'-convergence theory we
refer the reader to the books [3,8,9].
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Let us return to the setting of Section 2.1. Define G:L?(Q2; R") — R by
G(u)::/ gudx
Q
and let F?, 1 LP(Q;R™) — [0, +00] be defined by
/Q Wi(5,Vu)dx if ue ¢+ W, (QR™),

Ffl(u)::
400 otherwise.

The variational problem (2, ;; g, ¢) may be written
inf{F?,(u) + G(u): u € LP(Q;R™)}.

According to Theorem 2.1, to describe the “limit” of (£ ;;9,¢) as (e,4) — (0,0),
it suffices to compute the I'-limit of {F ¢ .} for an appropriate topology. Because of

the highly oscillating nature of the density involved in the definition of F, ¢ , the best
we can expect to obtain is a weak convergence of the gradient of the mlmmlzers
On the other hand, under some conditions it is possible to establish a compactness
property of minimizing sequences for the strong topology of LP(€2; R™). Therefore, the
I'-convergence will be taken with respect to the strong topology of L?(2; R™). Taking
into account previous works in absence of parameter A, we may conjecture that there
exists a suitable density W™ : R™¥ — [0, +oo[ such that {F:j’/ } I'-converges to a
homogenized functional of the form

/ whm(Vuydx if ue ¢+ Wy P (Q;R™),
Q

FPomd (u) = (3)

400 otherwise.

In general, this is not true due to eventual irregular behaviors with respect to /.
In fact, we may have two or more subsequences I'-converging to different limits.
Nevertheless, we claim that under some additional hypotheses it is possible to obtain
a homogenization theorem of this type, giving a representation formula for W"°™. This
is the aim of Section 2.3.

2.3. General homogenization theorem

IOC([RN R™), we denote by
I(LP)-lim,_. F, the I'-limit of {F,} with respect to the topology of L! (RY;R™)
induced by the extended distance d(u,v)=([gv [u — v|” dx)"?. Let %,(R") denote
the class of all bounded open subsets of RY. For each (£,1)€ R™ x A, we define
P (RN R™) x Uy(RY) — [0, +00] by

/ W(x, &+ Vo)dx if v|,€ WOI”’(A; R™),
y

Given a sequence {F,} of functionals defined on L/

loc

Gi(v;4):= (4)

400 otherwise.

Let 7o C (A)N be a set consisting of sequences {1,} C R such that 4, — 0. For
simplicity of notation, we denote by -0 an arbitrary sequence {1,} € 1o. We first
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require:
(H,) for every é € RV, there exists Gfo (LY (RN R™) x Uy(RY) — [0,+00] such
that for all k€ N* and ve L (RY; R™),

loc
G: (0:10.k[") = (L?)-lim G5 (0: 10,k [).
150

This hypothesis may be interpreted by saying that one has to know the behavior
of the periodic structure over an ensemble of k£ cells and at the unit scale. When
(H;) holds we say that we have a “limit model for the case A=0 at the unit
scale”.

In order to characterize the limit homogenized density, we consider the optimal value
function ,VE D Up(RY) — [0, 400[ defined by

S5(4) = inf{G;(v; A): vE LP(4;R™)}

= inf{/ Wix, &+ Vo)dx: ve Wol’p(A;R'”)}
4

for every (&,4) € R™ x A. Similarly, we define
F° A0,k ):=inf {G (1310, k1Y): v e LP(J0, kY3 R™)}.

Let us denote by (& 4) — (0,0) with A € 7y an arbitrary sequence {(&,, 4,)} C 10,&]x 1
such that (&, 4,) — (0,0) and {4,} € 7o. We suppose:
(H,) for every é € R™,

. (1 ¢
N N :
(s;&f}oms & (3]0’1[ ):y(&”m),

AET)

where
2€ N I ¢ N
y(y“’)':klenr\lf* {kNVTO(]O,k[ )r-
For a discussion of (H,), we refer the reader to Sections 3 and 4.

Theorem 2.2. Suppose that (C;)—~(Cs), (Hy) and (Hy) hold. Given ¢ >0 and ). € A,
let us consider the variational functional F,,:L[ (RY;R™) x Uy(RY) — [0,+0c]
defined by

Wi(X,Vu)dx i e WhP(4; R™),
S R A AR AUETAELS

+o00 otherwise

and the homogeneous variational functional Fgfm :L{;C(RN; R™) x Up(RY) — [0, 4+00]
defined by

/ Wm(Vu)dx if ulyg€ WhP(4; R™),
A

+00 otherwise,

Fr™(u; 4):=
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where W™ : R™ — [0, +oc[ is given by

whom (&) .= 5(5°,)

= inf inf {klNGfo(u; 10,&[M): v e LP(10, k[V; [R’”)} )

keN* v
Then
FPmMu: Ay=T(LP)— lim F, (u;A
70 (ua ) ( ) (a,).)E»T(IO,O) s,i(ua )
AET)

Sor every A€ Un(RY) and ue L{ (RY;R™).

Proof. For simplicity of notation, throughout the proof we write (¢, A) — (0,0) with
/€1y for an arbitrary sequence (&,,4,) — (0,0) with {4,} € 79. Similarly, 2250 with
/€ A stands for A, — 0 with {4,} € 7o. Finally, the expression u,; — u stands for a
sequence {u,} converging to u for a L”-norm.

We begin by noticing that (C;) and (C;) ensure the application of
the theory of variational functionals developed by Dal Maso and Modica in [10]
(see also [8,9]) to obtain that, upon extracting a subsequence, there exists ¢ :R™ —
[0, +oo[ such that the sequence {F,;} I'(L?)-converges on each 4 € #y(R") and for
every u€ LP (RV;R™) to a variational functional Fo(u; 4) with Fo(u; A) = fA o(Vu)dx
whenever u|, € W7(4; R™). This follows by using some well-known direct methods of
I'-convergence theory. Indeed, it is possible to apply the same arguments as in the proof
of Proposition 3.1 in [7] to this situation, with g(x, ¢) replaced by g,(x, &) =r;(x)|E|?
therein (see also Remark 12.4 and Example 11.4 in [8] and Theorems 4.8 and 6.1
in [10]); we omit the details. Moreover, using (C3) and arguing as in [2, Propo-
sition 3.6], we can deduce that Fo(u;4)= + oo if ue Ll (RV;R™)\ Whr(4;R™).
Hence

o(Vu)dx if ue whP(4;R™),
Fo(u; A)= /A

400 otherwise.
It remains to prove that (&)= ng’m(é) for every &€ R™ . The inequality ¢(&) <

wiem(&) under (H,) follows immediately from

Lemma 2.1. If (Hy) holds then for every linear function u(x)=x, there exists a
sequence u, ; — Ex in LP(]0, I[N; R™) with u, ; € tx + Wol’p(]O, l[N; R™) and such that

li F. . 1 N :FhOm . 1 Ny _ prhom ¢ .
({:,).)ET(IO,O) b,}.(ul,,).a ]09 [ ) 70 (éxy ]07 [ ) W‘EO (C)
AET)

Proof. The proof is adapted from [22, Lemma 2.1(a)]. Let {€ R"™. By definition of
whom | for every 6 > 0 there exist k€ N* and y° € L”(]0,k["; R") such that

1 _¢ X
W) < 7y Gr, (WP 10.ALY) < W™(&) + .
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Fix 0 > 0. According to (Hj), there exists a sequence {W}iea C Wol’p(]O,k[N;R’")
such that lim « |}y — ¥l jo.4y =0 and

1lrnGg(l//‘S,]O K[¥) = Gr (03 10.61). (5)

150
We extend tﬁf from 10,k[" to RV by kY-periodicity, and for given (e, 1) we define

uf)(x):: fx—FSWf(%) ifxe(](),l[N)sk’ |
A éx if xe ]O’ l[N \ (]O, l[N)Lk’

where (]0, 1[ ) is the union of all the cubes of side ek which are contained in 10, 1[".
Of course, ué ,—éxe W1 "2(10, 1[Y; R™). Moreover, since

5 (X Zyv0, 1Y
o\~ L<g——m—F——
* (S)HP,(]O,][N)"’( kN ||lp/1 Hp 10,k

we have that lim  7)—0,0) [0, — &x|| ,.10.1v =0. By definition of F,; and u,
AETY ’ o~

Fm(ug,l;]o,l[N):/ W, (564 v (2)) ax
(ATAPERA ¢
+ / Wi (%.¢) dx
10,1V \0,1Y )% &

By kY -periodicity, we obtain

f e Gt () o

_ 2n(0,11)%)
N kN N
0,41

= Exll oy = |

Wi(y.&+ Vi (3))dy.
From (5), we deduce that there exists po > 0 such that for all 2 € B(0,p0) N A

1
whom(E) — 8 < Vi Wiy, &+ Vi) dy < Wi™(E) + 9.
10,4

We thus have the following estimates:
Foa(u 310, 11Y) = 2n (0, 1[Y Y)W () — o]
and
Foi(u 3310, 11Y) < 2y (0, 1M Y)W (€) + 6]

+eof(1+ €7 LN (10, 117\ (10, 1[Y)%)
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for every (e, 4) with 1€ B(0, pg) N A. Consequently, for every 6 > 0

whom(E) — 8 < (hr)n inf FL,(u{ 510,11
Ero

< limsup F,;(ul;;10,1[") < WO™(&) + 6.
(&,4)—(0,0)
AET)

By a standard diagonalization argument (see for instance [3, Corollary 1.16]), we obtain
a mapping (& 1) — 06(e, A) with (e, 1) — 0 as (g, 1) — (0,0) such that

. 0(e,2) =
(3,2%51(10,0) e = &xllpjo.ape =0
;LETO

and

lim  F, ;(u’%";70,1[Y) = whom(¢),
im0, 1Y) = Wm(E)
AET)

Finally, setting u,, A::uf(f’;')

we obtain the required sequence. [

To prove the converse inequality, i.e. @(&) = Wg"m(f), note that by the usual cut-off
and slicing De Giorgi trick, recovery sequences can be chosen with the same bound-
ary values as their limit (see [14] and Remark 3.2 in [7]). Hence, when u,; € {x +
Wol’p(]O, 1IM;R™) is a recovery sequence for Fy(¢éx;]0, 1™, by (H,) we have that

@(&) = Fo(¢x;10,1[)

= lim Fu 31017
AET)

> limsup inf{F, ;(v;10,1["): ve & + Wy P10, 1["; R™)}
(&,4)—(0,0)
AET)

lim sup inf {/ W, (f, et W) dx: ve wP0, 11" R’”)}
(64)—(0,0) Jo,1(¥ &
AET

. At
= limsup "% (\]0,1[N)
(&,4)—(0,0) &
AET)

= (7

and the proof is complete. [
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Remark 2.2. Arguing as in [2, Proposition 3.6] and [7, Proposition 3.3], it is possible
to prove that there exist some constants R,7 > 0 such that

rlEP S WEM(E) < R(1+[E[7)

for every ¢ € RV, so that the limit homogenized functional is coercive.
2.4. Dirichlet boundary value problems and compactness

Theorem 2.2 may be useful for the asymptotic analysis of constrained variational
problems involving the functionals F, ;. In this section we consider the particular case
of Dirichlet boundary conditions.

Theorem 2.3. Under the hypotheses of Theorem 2.2, let Q@ C RN be a Lipschitz
bounded open set and consider the variational problem

mM:inf{/ w, (’f,vu) dx:ue ¢+ Whr(Q; R'")},
Q &

where ¢ >0, A€A and ¢ € WHP(Q;R™) is given. If we assume in addition that
eP/r(2) — 0 as (1) — (0,0) with 2 €1y then
lim m,;=m,

(&,2)—(0,0)
AET)

where
m =min {/ W™ (Vu)dx: u€ ¢+ W, P(Q; R’”)} .
Q

Moreover, minimizing sequences for the problems m, ; converge as (e, A) — (0,0)
with A € 19, upon extracting a subsequence, to minimizers for the problem m.

Proof. Let uc¢ + Wol’p (©2; R™). Theorem 2.2 ensures the existence of a sequence
{u,;} € WhP(Q; R™) such that u, ; — u in LP(Q;R™) and
Fl™u)y= lim F,(u,;).

(&,4)—(0,0)
AET)

Moreover {u,,} can be chosen such that u, ; € ¢ + WO1 P(Q; R™) (see [14]). Therefore
Fs,l(us,).) = meg, ) and
F?O"m(u) > limsup m, .

(&,4)—(0,0)
AET)

Since u € ¢ + WO1 P(Q; R™) is arbitrary, we deduce that
m = limsup my .

(&,4)—(0,0)
AET)



850 F. Alvarez, J.-P. Mandallena | Nonlinear Analysis 50 (2002) 839-870

On the other hand, let u, ; € ¢+ Wol’p(Q; R™) be such that F, ;(u, ;) < m, ;+e¢. Suppose
that there exists u € L”(£;R™) such that u,; — u in L”(€;R™). Then, by Theorem
2.2 we have

Frmy < liminf F, (u, ;).
To ( )\ (6)—(0.0) e,)v( s,)v)

AET)
Arguing as in [2] we obtain that indeed u € ¢ + W, ”(Q; R™), which yields

m:F?O"m(u) < liminf F, ;(u. ;) < limsup m,,; < m.
(&,4)—(0,0) (£,4)—(0,0)
~+E€70 AET)
Thus, we are reduced to proving u,, — u in LP(Q2; R™) for some u € L?(Q2;R"). Let
Q' be a bounded open subset of RV such that Q CC @', and let us consider the
functions

U=ty — § €Wy P(Q;R™) C Wy P(Q;R™)

extended to 0 in '\ Q. If we set v, ,:=ii, ;|o'n:£, then from the growth property (C,)
it follows easily that

||Us,iHl,p,Q’ﬁi:E = ||Us,/l||1,p,QﬁsE <ec,

where ¢ is a nonnegative constant which only depends on p and Q. Let us take § > 0
such that Q CC Q'(5). There exists ¢ > 0 such that for each 0 <& < ¢, Q'(9) C
Q'(eko) (with ko given by Theorem A.1 in Appendix A) and there exists {z;: i€} C
7N with

Q\eE C | JaT +2z) C Q) \ ¢E,

iel,
where [, is a finite index set. By Theorem A.l in Appendix A, we have P, ; =0,
on Q' Ne¢E and ||Pw, ;|1 p.0/5) < ¢, where ¢’ is a non-negative constant which only
depends on E,N and p. We can suppose, upon passing to a subsequence, that there
exists i € WLP(Q'(5); R™) such that P.v, ; — i in LP(Q'(5); R™). We claim that under
the assumption &”/r(1) — 0,
li P, —1u, =0
(1;,).)2?0,0)” Vet — Ue i p.o

AET)

and consequently u,; — @+ ¢ in LP(Q'(0); R™). Indeed, we have that

/ ‘Psvt:,i - Eé:,).lpdx = / |PEUE,;. - a;:,l‘de
Q Q\¢E

< g / |P1:Us,i - ﬁs,ﬂpdx
i€l oT+zi)

=y & / [P 2(ey + 21) — s (e + ;)| dy.
T

i€l,
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But P.v;(ey + z;)=1ii,,(¢y + z;) for a.e. y in a subset of 0T of strictly positive

measure (in fact, this is true for every connected component of 7'). Then, by Poincaré’s
inequality we obtain

/\P vd—u;;|de<c”sPZ /|VP vy +zi) — Vi, (ey +z)|P dy
i€l

< C”Ep/ |VP81J£),1 — Vﬁ&;&‘pdx,
Q' (S)\E

where ¢” is the Poincaré constant which only depends on p and T. But

/ |VPu,, — Vu, | dx
Q(O)\eE

<2r / |VPSUSJ|”dx+/ Vi, |7 dx
Q' (O)\eE Q\¢E

because i, , =0 on Q'(d) \ Q. Moreover

/ Vi, ;P dx <27 / |V|? dx +/ |Vug, ;|7 dx
Q\¢E Q\eE Q\eE

(/ |V¢\de+m o w; (Z,Vum) dx)

<217 (/ ‘V(Mpdx“r () é/(”?/))

Therefore

/ |Pov,; — U, ,|Pdx < ¢ (ap + sp/ [Vo|?dx + (m,g/ + 8))
Q

()

hence

. _ . &P
lim sup / |Peve,;, — U )|Pdx<m lim —=
(82)—(0,0) (2)—(00) F(A)
S LETo

which finishes the proof. [

Remark 2.3. In the case T=0 or (1) = « > 0, the condition &”/#(1) — 0 is auto-
matically satisfied. When T, = T #( and r(A) = 0, we can argue as in the proof of
[7, Proposition 4.1] to establish the convergence of m, ; to m and the relative compactness
of P,-extensions of the restrictions to 2 N ¢E of e-minimizing sequences for m, ;.
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3. Applications I: nonconvex integrands
3.1. Preliminaries

We are going to discuss some aspects and techniques related to the verification of
(H;) and (H) in the applications. Let us begin by considering the nonparametric case
W, = W, where W : RV x R™ — [0,+4o0[ is a nonconvex Carathéodory function.
Under suitable periodicity and growth requirements on W, conditions (C;)—(Cs) are
satisfied with 7; = T, where either (i) T =0 and rj(x) =7 > 0 or (ii) Zn(T) > 0 and
r(A) = 0. It is well-known that in this case homogenization occurs with homogenized
density given by

hom o L 14 N
weER(E) = inf {kNS” (10, &[™)
with
7410, k[N ):=inf { / W(x,é+ Vw)dx: we Wy P10,k [R{'”)} ,
w 10,k[NNE

where E=Y \ T + Z" (of course, E=R" when T={). We refer the reader to
[22, Theorem 1.3] for the coercive case, that is, when E = RV, For the case ZLy(T) > 0,
see [2,7]. Note that in this nonparametric setting, (H;) trivially holds with limit func-
tional G° equals to the lower semi-continuous envelope cl(G*) of Gf = G* with respect
to the strong topology of L?. Since the infimum values of a function and its Ls.c. en-
velope are equal, it is possible to show that (H,) holds as a consequence of a classical
result for subadditive and Z"-invariant set functions (see Appendix B). Consequently,
Theorem 2.2 recovers the nonparametric case.

On the other hand, general properties of I'-convergence (cf. Theorem 2.1) ensure
that in the parametric setting of Theorem 2.2 and under (H;), we have that

lim sup &5(10, k[V) < F°00,k[Y).
1350
This allows us to apply Lemma B.1 in Appendix B to the parametric family {yﬁ} 2eA

of subadditive and Z"-invariant set functions and with ak::9c(]0,k[N ). We deduce
that for every open cube O € Cub(R")

s : L I5(1/e)0)
9y < VAT
i) < (}5r>n£(%fo> Zn((1/6)0)
, F5((1/£)0)

< limsu VAN 2

ot Ln((1/2)0)

AET

)

Let us consider the following stronger condition:

(H2) For every &€ R™, liminf « p(5) > 9(F°).

Therefore, under (H;), it suffices to verify (H,) to ensure that (H,) holds. In the
next section it is given a simple situation where it is easy to accomplish this.
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3.2. Elastic material with soft inclusions: monotone family of integrands

Let T C Y be a closed subset of the unit cell and suppose that E:=Y \ T+ 7" is a
connected open subset of RV with Lipschitz boundary. Let p € ]1,+oc[ and consider
two Carathéodory functions f1, f» : RV x R™ — [0, 400 satisfying the following con-
ditions: f;(-, &) is Y-periodic and there exist R,r > 0 such that r|&|? < fi(x, &) < R(1+
|E|P) for each i=1,2. Given & €[0,d], define Ws: RY x R™ — [0,+oo[ by

f1(x, &) if x€E,

Ws(x, &)= { 0f2(x,&) otherwise.

Proposition 3.1. Let Q€ U(RN). The functional F, s : LP(Q;R™) — [0, +o00] defined
by

/W(s (f,w) dx if ue WhPQ;R™),
Q &

+o00 otherwise,

Fs,é(u) =

I'(LP)-converges as (&,0) — (0,0) towards the homogenized functional
hom . Lp . om
Fhom(u): /QW (Vu)dx J uew (Q,R ),
400 otherwise

with density given by
1
whm(¢)= inf inf —/ f1(x, &+ Vw)dx: we Wol’p(]O,k[N; R™) .
keN* w kN ]O,k[NﬁE

Proof. In order to apply Theorem 2.2 to this situation, set A:=[0, dy], s:=(¢,0) and
identify 4 with d. Conditions (C;)~(Cs) are trivially satisfied with 75 = T, r(6) =ro
and co=R/r. As for every A€ Uy(R"), the corresponding sequence {G;(-;4)}se(0,00]
is nonincreasing, we have (cf. Section 2.2):

F(L?)-lim Gi(;4)=cl <§nfoG§(-;A)> =cl(G5(+;4))
— >
so that (H;) holds. Furthermore
1 1. .
s (PEY — i ; L NyL s ol Ny ¢
lim (5) = inf inf { v (10,41 )} Jnf, { o o0,k )} 2S5)
with
S5(4) = inf {/ F10x, &+ Vw)dx
w ANE

+90 S, E+ Vw)dx: we Wol’p(A;R’”)}.
A\E

Since the infimum values of a function and its Ls.c. envelope are equal, we have
Vg(A) = 1nf{c1(G§(’A))(W) w GLP(A; Rm)}.

Consequently, hypothesis (H,) follows, which finishes the proof. [J
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3.3. Some remarks and open problems

In the general multiparameter setting under (C;)—(Cs), homogenization always oc-
curs in the sense of I'(L?)-convergence to an x-independent integral functional of the
displacements gradient, upon passing to a subsequence and with limit energy density
eventually depending on the corresponding subsequence. However, it is necessary to
assume additional hypotheses in order to characterize the limit functional as in the
conclusion of Theorem 2.2. It seems that (H;) alone does not suffice to do this. On
the other hand, since it is apparent that (H,) is very difficult to verify for general
nonconvex integrands, one may ask whether this hypothesis is actually essential for
the I'(L?)-convergence analysis. This question has an affirmative answer under some
natural conditions and in a sense that we are going to make precise.

From now on, assume that the family {F, ;} is equicoercive under (linear) Dirichlet
boundary value conditions, that is, there exists a L?-relatively compact ¢-minimizing
sequence associated with the following multiparameter family of problems:

(1
N (g]o, 1[N> =inf {/ W; (5,Vu) dx: ue &+ wy P10, 10", R’”)}.
10,1[¥

For instance, by Theorem 2.3, this compactness property holds whenever &?/r(1) —
0 as (& 4)~>(0,0). Then, by the property of convergence of minimum problems for
I'-convergence, it follows that there exists Wg"m: R”™N — [0, 4-o0o[ such that for every
A€ U(RY) and uc L? (RV; R™)

loc

F(LP)—  lim F(ud)= /Wg"m(vu(x))dx if uly € WhP(4;R™),
R &4 s - A
(S’A;);(OO’O) +00 otherwise

if and only if for every ¢ € R™ the following limit exists:

e
lim V.95 (]o, 1[N)
(82)—(0,0) “\e
AET)

and is equal to W};"m(é) (we leave the details to the reader). Let us now suppose:
(H,) For every &€ R™V, there exists Gfoz L? (RY; R™) x Uy, (RN) — [0, +00] such that

loc

for all A€ U,(RY) and ve L’ (RY; R™),

loc

G (v;4) = r(Lp)-y%Gf(u;A) and )li%yf(A):Qio(A).

Of course (H;) is stronger than (H;): we need to have I'(L?)-convergence for every
AEU,(RY) together with relative compactness of minimizing sequences. However
(H)) holds in many applications (for instance, the examples given in this paper). Under
this hypothesis, by a well-known asymptotic formula for subadditive and Z"-invariant
set functions (cf. Lemma B.1 in Appendix B), we have that

N (1 N =<
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hence

1 _
lim lim &% <]0, 1[”) =9I )-
¢=0, 50, &

Therefore, a standard diagonalization argument yields

s 1 =&
limsup &".75 (]0, 1[N) ZV(yfo)-
(6,2)—(0,0) “\¢

AET)

Thus, under the above conditions, there is homogenization with a unique limit func-
tional if and only if (Hy) holds and the limit energy density Wg:)"m(é) is equal to

=<
WS %) ) .
Observe that under (H,), by the classical subadditive theorem, the hypothesis (H;)
becomes

lim lim = lim lim .
koo KN k=005 KN

An easy property ensuring this hypothesis is the continuity and uniform convergence as
k — oo of fk(/l)::(l/kN)Vj(]O,k[N) on a compact set for 4. This will hold under a
sort of equicontinuity requirement on W, with respect to 4, a very restrictive condition
(we leave the details to the reader). To our best knowledge, it is still unanswered
whether additional compactness conditions allow us to identify the limit energy density
in the general nonlinear setting. One may conjecture that the equicoerciveness of {F, ;}
together with (H,) are sufficient to this end, but we do not have general results in this
direction for the nonconvex case. Nevertheless, we shall see in Section 4 that in the
case of convex integrands it is possible to exploit (H;) together with some estimates
for minimizing sequences in order to prove that (H,) holds, obtaining thus the desired
characterization of the limit.

4. Applications II: convex integrands
4.1. General procedure

The aim of this section is to show that in the case of convex integrands it is possible
to exploit the existence of a relatively compact minimizing sequence associated with
{Gf(g 10,k[¥)} e 4 in order to prove that (H,) holds. From now on, we suppose that
(C4) for every Z€ A and x € RY, the function & — W;(x, &) is convex.

It is well-known (see [8,9,22]) that (C4) yields the so-called “cell-problem formula”

¢ N
inf {yz(]O,k[ )} s 6)

keEN* kN

where

w

5% =inf { Wi(p, &+ Vw)dy: we w710, 1["; Rm)} .
AT
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Here, W; 210, 1["; R™) is the space consisting of all the [0, 1["-periodic functions that
belong to Wlé’cp (RY; R™). The interest of yfj# is that it takes into account only one
minimization problem. Thus, (H,) is equivalent to

liminf. 5% > p(F°), (7)
. 70 -

A—0

In the sequel, we say that {w,;} C W; 210, 1[Y; R™) is an «;-minimizing sequence for
{yﬁ’#} if for every /€4

g5F </ Wiy, &+ Vw)dy < 5% + 4,
101y

with o; — 0 as 130 so that

lim inf %5 * = lim inf { Wi (y, &+ Vw;) dy} .
250 V 120 J0,1[Y

The next result is useful to verify (7) in the applications.

Lemma 4.1. Suppose that (C1)—(Cs) hold and let égR"’N. If there exists an -
minimizing sequence {w;} C th’p(]O, 11N R™) for {yf#} such that

spepyr=supd [ Iy} < +oc

reA
then
i} 1 )
— &E S LT : v
imin 75> it { gm0 ®

Proof. Fix k € N*. Let us consider a cut-off function ¢ between 10, k[ and R;:=]0, k —
2[V 4+ ¢é with é=(1,...,1), that is, p € Z(]0,k["), 0< @ <1 and ¢ = 1 on R,. We
can suppose that | V|l < 2. Setting u,:=¢w;, we have u; € WOI”’(]O,k[N; R™) and
Vu,=¢oVw; +w; ® V. Hence

yimww)</1 Wi, & + V) d
]0’ k [N

- mu£+vax+/ Wi, & + Vi) dx
Ry 10,V \ Ry

< W,(x, &+ Vw,)dx
10,V

—|—c/ ri(x)(l+|W;|p+|€+VW/1‘p)dx
10,k \Ry
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for a suitable constant ¢ > 0. Using the Y-periodicity of w; and r;, we deduce that

S0 < & / W0+ Vwy)dy
10,1[¥
ek — (k- 2)N>/ FA )L+ [wal? 4 € + Vs |P)dy
10,1[¥

<KV Wiy, &+ Vw;)dy
10,11V

+e(kY — (k—2)Y) <F+M({W;,}) + / ri(IE+ Vwy|P dy)
jo.1N

< [KY + (kY — (k= 2)")] Wiy, ¢+ Vw;)dy
10.1¢Y

+ (k" = (k = 2)")(F + M({w:})).
We thus obtain

750,k™)

kN

. ¢ .
klerlr\lj* {kN hmlnfyi(]o k[ )} lll:lnﬂglf

<(1+c¢—clk— 2)N/kN)11m inf. 5

250
+e(1 = (k= 2)Y V) + M({w;})).

Letting k¥ — 400, we obtain (8). [

We can now describe a general procedure in the convex case. First, one establishes
(H;), that is, the I'(L?)-convergence of G§(~; 10,4[) to some functional Gfo(-; 10, kM)
when 1-%0. Then, we study the relative compactness in LP(10,k[Y; R™) of minimizing
sequences for {yf(]o,k[N )}. When such compactness property holds, we conclude that
S50,k — Qfo(]o,k[N) as 1-%0. Next, we prove the existence of a minimizing
sequence {w,} for {?i#} such that M({W,}) < + oo so that, as a consequence of
Lemma 4.1, we obtain

llml(I)lfyC > 1nf {kN hmyg(]O k(Y )}—y(yfo)
A—

Finally, we apply Theorem 2.2 to obtain a homogenization result with Wg"m(é) =& fo ).
Furthermore, we shall see how a convexity argument permits to show that it is possible
to consider only one minimization problem over a set of periodic functions, obtaining,

hom _ .4
at least formally, a formula of the type W °™({)=9"; .
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Remark 4.1. This procedure is also valid for the scalar case m =1 without any con-
vexity condition because

yE(A):inf {/ Wi (x, &+ Vv)dx: ve WOI”'(A; [Rm)} ,
y

where W;*(x,-) denotes the lower convex envelope of W (x,-), so that the cell-problem
formula (6) holds (see [22]).

4.2. Iterated homogenization: equicoercive family of integrands

Let H CC Y:=[0,1[" be a nonempty closed subset of the unit cell with Lipschitz
boundary, and let us consider two Carathéodory convex functions f71, f5: RY x R™Y —
[0, +oo[ such that 7|&|? < fi(x, &) < R(1 4 |&]P) for i=1,2 and for some constants
R,y > 0.

We suppose that each f;(-, &) is Y-periodic. For all ¢ €]0, 0] and & € R™Y we define

f1(»,©) if yeY\ H,
We(y,&)i=4 - . 9
co={ 708 Hien )

and we extend it from Y to RY by Y-periodicity, obtaining W, : RY x R™ — [0, 4-o0[.
Observe that the integrand W, is not simply obtained by considering

f1(0.6) if yeY\H + 2",

[0 if yeH + 27
because this function is not periodic. In this example, the unit cell ¥ contains a het-
erogeneous inclusion / of periodic structure. Thus, in the density W,(;,{) we con-
sider two periodicity scales: ¢ and eg. By identifying A with o, it is easy to see that
{Ws}ser0,00 satisfies (C1)—(Cy) with T=0, r,(x) = r and ¢y =R/r (there is no lack
of coercivity).

Proposition 4.1. Let Q C RY be a bounded open set. The functional F, ,: LP(Q; R™) —
[0, +00] defined by
Wo(X,Vu)dx if ue whP(Q;R"),

BT RS TR CED
400 otherwise,
I'(L?)-converges as (¢,0) — (0,0) towards the homogenized functional

hom . 1,p . om

E— /Q WRm(Tuydx if we WIP(Q;R),

+00 otherwise

with convex integrand given by

whom (&) = inf {/ f1(x, &+ Vw)dx
W 10,1[M\H

+ /f2°m(f+vw)dx:we W;’P(]O,l[N;[R’")},
H
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where

15 y=inf { /]0 IRCCERA AL W qo, 1Y, R'")} .

Proof. In order to apply Theorem 2.2, we begin by noticing that it is possible to adapt
to this situation standard homogenization and lower semi-continuity methods to prove
that for every k € N*, the functional given by

P - f l’P N-Rm
GEw 10,k = . Jppgqe Voo TV A 0 € 0T R,

400 otherwise

I'(L?)-converges as ¢ — 01 towards
G (5310, k[ )= { I(&x+v) i v e Wy 0K R™),

+00 otherwise,
where
Ii(g) = f1(x,Vg)dx + / fhom(Vg)dx.
10,k \(H+ZN) 10, k[N N(HA+ZV)

This means that (H, ) holds. Moreover, if {v; }5>0 C WO1 210, k[V; R™) is a o-minimizing
sequence for {75(10,k[")} 40, that is

Wo(y, &+ Vu,)dy = G5(05310,k[V) < ZE0,k[Y) + &
10,k[Y

then, by coerciveness, {v,},~0 is relatively compact in LP(]O,k[N ; R™), and conse-
quently

lim 55(10,k() = 7°(10.k").

On the other hand, let {w,}s=0 C Wi;l "2(10,1[Y; R™) be a ¢-minimizing sequence for
{75},
From the growth condition (C;) with r,(x) =7 > 0 and ¢y =R/r, we obtain

/ Vwe()Pdy < co(1 + [E]7) + o
10,17
Setting

Wei=Wg — / wsdy
o1y

we have that {1, },~0 is also a g-minimizing sequence for {%5*} and, moreover,
from the Poincaré—Wirtinger inequality we deduce that, for a suitable constant ¢ > 0,

/ (P dy < / wa()|7 dy.
10,1[Y 10,1[¥
Hence

M= sup { / rWa(y)”dy}<cR(1+él”)+cmo.
10.1[Y

€]0,00]
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Therefore, by Lemma 4.1 we obtain

lim inf 3¢ > inf {kN lim y<(]o,k[N)}:y(§5).

Thus, (H,) holds. Applying Theorem 2.2 yields as homogenized density
whom (&) — () = kiean* inf {ljvlk(é + Vw): we Wy P(10,k[Y; R’”)} )
Since f1(x,-) and f1°™ are convex, we deduce [22] that indeed
whom(&) = inf {Il(é +Vw): we W, P10, 1["; Rm)} ,
which finishes the proof. [

For similar iterated homogenization formulae see [4] and [8, Ch. 22].

4.3. Thin and soft inclusions: nonequicoercive family of integrands

For simplicity of exposition, we are going to consider a particular configuration.
However, the following analysis remains valid for more general situations. In the sequel,
we denote by ¥ the (N — 1)-dimensional unit cell [0, 1[Y ™" so that any element y € ¥
may be written ($, yy) where €Y and yy €[0,1[. Let £ CC Y be given by Z:=w x
{1/2} with @ cC ¥ being a smooth closed subset. Thus X is a closed subset of the
hyperplane {y € RY: yy =1/2}, whose constant normal vector ey is (0,...,0,1) € R,
the Nth vector of the canonical basis of R". Setting

Ty={(D,yw)€Y: Yew, |yv — 1/2] <n/2}
for every 1#€]0,1/2], and
TZ:T1/2 =w X [1/4,3/4]

we have that ¥ C 7, C T and, moreover, dist(7;,2) =#/2. Hence, T, shrinks to X as
n — 0. Note also that Ly(T,;)=n#n_1(2), where #'y_; is the (N — 1)-Hausdorff
measure. Let us consider two convex functions 11 : RY x RN — [0, +oo[ and f,: R™ —
[0, +00[ such that r|é]? < fi(x, &) <R(1 + [¢|?) for i=1,2 and for some constants
R,r > 0. For each (8,17) €]0,+o0[ x ]0, 1] we define W, : RY x R™¥ — [0,4o00[ by

X [ i ifxeY \ T, + 7",
Wo,n(x,é)._{ AR

Intuitively, ¢ is a small parameter taking into account the relatively low stiffness of
the inclusion in 7, with respect to the material in ¥ \ 7,,. From now on, we write
(9, n) %(0,0) for an arbitrary sequence (J,,#,) — (0,0) such that lim,_ . J,/(21,)? "' =
Uo €[0,+00]. If uy=0 then we assume in addition that lim,_ . 5%/, =0, which
clearly holds when o > 0. When pp = + oo, we use the convention +oo x 0=0.
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Proposition 4.2. Let Q C R" be a bounded open set. The sequence of functionals
Fisy: LP(Q2; R™) — [0, +00] defined by

/Wa,n(E,Vu)dx if ue whP(Q;R™),
Q

Fy 6,11(“)::
+o00 otherwise

I(LP)-converges as (&,0,) — (0,0,0) with (5,7)23(0,0) towards the homogenized
functional

Ho

-~ / WRM(Vuydy if ue PO RY),
+00 otherwise

with convex density given by

we W P10,V \ Z;Rm)

Whom (&) = inf {/ S1(y, ¢+ Vw)dy
10,1[M\Z

oo [ 70005,
where f577 is the recession function of order p of f», which is defined by
1
o0, p N 135 _ /
= lim 2
and [w] is the jump of w on X, that is, [wl:=w"|s — w™|s, where w*|s denotes the

trace of w* on X with W+:W‘{yN>1/2} and w= =wly, <1/2}-

Proof. In this example we take A=(d,7n)<]0,1] x ]0, %]. If we set

g if xeY \T,+ 2",
SIS r if xe T, + 2V

then it is direct to verify that {W;,} satisfies (C;)—(C4). By direct application of
[17, Propositions 4.1-4.3], we obtain that the functional

Ws,(x, &+ Vo)dx if ve Wy P10, 1[Y; R™),
G5, @:1010%):= ¢ Joapr " ’

+00 otherwise

I'(L?)-converges as (0, n)ﬂ(O 0) towards

Ly(&x +v) if ve P01V \ Z; R™),
400 otherwise

Guo(v 10, 1["):= {
with

L(g)= / 1Y) dy + o / 137191 @ ex) dy.
10,1[¥\2 >
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Moreover, if {vs,} C WOl "2(10, 1[V; R™) is a d-minimizing sequence associated with the
minimization of Gg, 11( 10, 1Y), then {vs,4} is relatively compact in L7(]0, 1[V; R™). The

I'(L?)-convergence of Gg o (Vs 10,k[") for an arbitrary k€ N* can be handled in much
the same way. Indeed, it is possible to prove that for every k € N*, the corresponding

functional Gf;’n(v;]O,k[N ), I'(L?)-converges as (5,11)ﬂ(0,0) towards

G 10,k yim { Bos(Ex +0) € WGP Q0K (24 27 R™),
8 +00 otherwise,

where
I,to,k(g)::/ S1(x,Vg)dx + ,Uo/ 1379l @ ey ) di
10,k[V\(Z+2V) 10,4V N(Z+ZN)

and if {vs,} C Wol’p(]O,k[N; R™) is a -minimizing sequence for {yg’"(]o,k[N)}, then
{vs.y} is relatively compact in L?(]0,k[Y; R™). This follows by the same method as
in [18]; we omit the details. Consequently, (H;) holds and, moreover, the relative
compactness of minimizing sequences ensures

lim(8,17) (0,005, 10.k[¥) = 7, (10,k["),
where

5.0,k ):=inf {Iﬂo,k(gx + o) ve PO AN\ (2 + 2V, R’”)}

for every k € N*, In order to apply Lemma 4.1, the only point remaining concerns the
existence of a ¢-minimizing sequence {w;,} C Wi;1 20, 1[N; R™) for {& gz} such that
M({ws,}) < + oo. Let {w;,} C W;’p(]O, 1[Y;R™) be a J-minimizing sequence for

{5”;:;}, and set

Wo,n'=Ws,y — / Wy dy,
10,1["\T

which is also a d-minimizing sequence for {ygi} We can apply Lemma C.1 of
Appendix C to deduce that

/ |vf/5’,7|”dy<c’/ |Vws P dy
10,1[¥\ T, 10,1[V\ T,

and

|W5,;1|pdy < C// ) |Vw(;,,7\pdy,
¥

T, 10.1

where the constant ¢’ > 0 does not depend on 7. Hence

/ o) Bsn()|? dy = / sa ()| dy + 6 / 5.0 ()|7 dy
10,1[Y 10,1[¥\ T, T,

<< / Fan VW (217 dy
10,1[¥
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which together with (C,) yield M({Ws,}) < + oo. Therefore we can apply Theorem
2.2 to this situation, and we obtain a homogenization result with limit density given

by

¢ o 1 ”
W) :klean* inf {Hvlﬂo,k(éx +o):ve Wy A0,k \ (2 +ZV); R )} .

But f(x,-) and /5”7 are convex, which allows us to consider only periodic functions
in a single minimization problem. This completes the proof. [J

Remark 4.2. We may distinguish three different qualitative behaviors at the micro-
scopic level depending on the value of py. If gy =0 then the stiffness of the inclusion
is too low to maintain adherence and at the limit the material is free to separate and
present fissures along ~. When g € ]0,4o00[, there is an elastic restoring potential on X,
which does not forbid fissures to appear but penalizes them. If py =+ oo then the stiff-
ness of the inclusion is strong enough to prevent fissures; in fact, since +00x0=0 and
f577(8) = r|¢|P, the minimization problem defining Wf(j"“(é) has [v] =0 as an implicit
constraint.

Remark 4.3. Taking into account [17, Proposition 5.2], it is possible to consider the
case

138 i yeY\ T,

W no(¥, )= .
" 3f2(3.6) if yeT,

under the additional conditions ¢ ~ 5 or 5/ — +o0o and pg €[0,4oco[, obtaining a

limit density W}™(¢) of the form

inf {/ f1(y,é+VW)dy+uo/(flz’°m)°o’p([W]®eN)dﬁ}-
101\ z

wE,P(Q0.[V\Z:R™)

On the other hand, under suitable connectness conditions, these homogenization results
are valid when XN@dY # (), that is, when in some directions the inclusions are connected
throughout the whole periodic structure.
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Appendix A
A.1. The Acerbi et al. extension theorem from periodic connected sets

In this paper we consider families of functionals {F, ;} with ¢ > 0 and A€ R¥. For
abbreviation, we write s instead of (¢,4) when no confusion can arise. Let 5, — 0 and
u € LP(Q; R™) be such that

(F—lim ianSn) (1) < + oo.
By definition, there exists a sequence u, — u in LP(Q; R™) such that lim inf,,_,, Fj, (1)
< 400, hence, up to a subsequence sup, cy {Fs,(us)} <-+00. Suppose that p € ]1, +-o0[
and that the family {F, ,} satisfies the following growth condition: there exist constants
r,R >0 and a connected open set £ C R such that for every ve Wr(Q; R™)

PIVoll? ones < Faz(v) <R+ (V[P ). (A.1)

Since we deal with periodic structures, we assume moreover that E is periodic, i.e. for
all zeZV, E=z + E. We deduce that

sup {/ |Vu,,|1’dx} < + o0.
neN QNe,E

If E=0, then a standard argument shows that, up to a subsequence, u, — u weakly
in WP, so that u belongs to W'"?(Q;R"). When E #(), the idea is to extend u,
from Q Ne,E to the whole of Q, keeping the above uniform boundedness property.
This extension is not difficult to construct when the complement of E is discon-
nected (see [15]), and it is no longer possible in the general case. In fact, Q N ¢F
may be disconnected so that we cannot expect to control the W'? norm of the ex-
tended function on the whole of €. In Acerbi et al. [2] have considered this ex-
tension problem, and they showed that all the difficulty lies in the behavior near
0Q. For the reader’s convenience, we state without proof their precise
result.

Theorem A.1 (Acerbi et al. [2]). Let E be a periodic, connected, open subset of RN,
with Lipschitz boundary. There exist constants ko, ki,ky > 0 such that for every
bounded open set Q@ C RN and ¢ > 0, there exists a linear and continuous exten-
sion operator P, : WhP(Q N eE;R™) — WIL’CP(Q; R™) with:

(i) Pou=u a.e. in QN eE,

(ii) fQ(Sko) \Pou|? dx < ki [y, |u]? dx,

(iii) fQ(ako) |V(Pau)|? dx < ks [, |Vul? dx,

for every u€ WhP(Q N eE; R™), where Q(o):={x € Q: dist(x,0Q) > «}.
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Appendix B
B.1. An asymptotic formula for parametric subadditive set functions

Let us consider a Carathéodory function #: RV x R — R that satisfies
VxeRY VEECR™, 0 < W(x, &) < c(1+|€7)

for some constants ¢ > 0 and p > 1. For each bounded open set 4 € %,(RY), we set
S(A4):=inf {/ W(x,é+ Vu)dx: ue Wol’p(A; [R%’")} , (B.1)
4

where ¢ € R™ is fixed. We have thus defined a set function .%¢: %y (RY) — [0, 400,
which satisfies

0 < F5A) < c(1+|EP)Ln(A).

Definition B.1. Let & : %y(RY) — [0, 4+00[ be a set function.
(i) & is called subadditive if for every A,B,C € Uy,(RY) with B C 4, C C A4,
BNC=0and ZN(A\ (BUC))=0, then ¥ (4) < ¥(B) + <L (C).
(i) If for every z€ ZV and A € U(RY), F(z + A)= F(A), then ¥ is said to be
7N -invariant.

It is easy to see that the set function #¢ defined by (B.1) is subadditive. If we
suppose in addition that W is [0, I[Y-periodic with respect to the first variable, then
¢ is ZV-invariant.

As a basic tool of some localization methods, the function ¢ have been used to
characterize the limit densities in I'-convergence problems. In the case of homogeniza-
tion, one is led to study the asymptotic behavior as ¢ — 0 of

- . | N B (e 11%))
1nf{/QW<8,Vu) dx: ue &+ WEhP(O; R )}

LN Q) - Zn((1/e)0)

where Q is an open cube of RV and we denote by Z(Q) the Lebesgue measure of

0

Given a subadditive and Z"-invariant set function . : %,(R") — [0, +oo[, define
s 1 N
W)= inf {kN (10, k[ )} :

It is not difficult to show that

. S((1/e)Q)

lim ————— =y(¥), B.2

NI ) R (B-2)
for every Q€ Cub(R") where we denote by Cub(R") the class of all open cubes
in RV. This fact has been used in some homogenization problems to identify the
limit homogenized density W'™(&) with y(%¢). A generalization of this result to the
stochastic setting (see [16] and references therein) has been used to deal with the

homogenization of stochastic functionals; see, for instance [1,11,21]. For other results
in this connection see [18].
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In the parametric case that is considered in this paper, one deals with a parametric
Samily {5} of subadditive and Z"-invariant set functions, which is associated with
{W,}. We are going to give a simple generalization of the asymptotic formula (12)
for such parametric set functions. More precisely, we consider a family {,} of set
functions defined on %,(R") that satisfies:

(S1) For each A€ A, &, is subadditive and Z"-invariant.

(S2) There exists ¢ > 0 such that 0 < .¥;(4) < cLn(A), for every A € U,(RY) and

for every A€ A.
(S3) Let {ax} C R be such that for each k € N*, lim supigoy;,(]o,k[/v) < ag.

Lemma B.1. If (S;)<(S3) hold then for each Q € cub(R") we have that:

2190) :
(@) lmswp Zamo) < 2. (i}

AETY

Si((1/6)0) < .
(b) (}lf)n_}(lg)f()) Zu0) = hmmf (& ;).

AETY
In particular, if

lim inf () > inf {kﬁ} (B3)

750
then

S((1/e)0) . ag
(e)2000) Ly ((1/2)0) = of. {FN} '
AET)

Remark B.1. In the nonparametric case ¥, = %, we can take ak:y(]o,k[N ), for
which (B.3) holds so that we obtain (B.2) as a corollary.

Remark B.2. It is easy to see that under (S;3)

lim sup (& 1nf k
_;Oopv( 1) < {k,v}

Thus, without loss of generality we can replace (B.3) by lim, -, 7(¢;) = infyen- {ap/kN}.

Proof of Lemma B.1. For (a), fix O € cub(R"). It is easy to see that for every k € N*
and ¢ > 0 small enough, there exist k, € N* and z, € Z" such that

1
(ke — 2)10,k[Y + k(z; + é) C —0c k10, k[N +kz,
where é:=(1,1,...,1). By subadditivity and 7N -invariance, we have

7 (ig) <k — 2DV 200N + 7 (iQ \ [0k — 2)[0,4T" + kG, + é)]) .
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Since, up to a set of zero Lebesgue measure, the set (1/6)Q\ [(k, —2)[0,k]" +k(z; +¢é)]
may be written as the disjoint union of kY — (k, —2)" integer translations of open sets
contained in ]0,k[", we deduce that

y/l (iQ) < (kg - Z)Nrsﬂ/l(]o,k[l\’) —+ (kév — (ks _ 2)N)CkN,

We thus obtain the estimate
S i((1/6)Q) f/l(]O,k[N) n k' —(ks—Z)Nc
$N((1/6)Q) kN (k: =2)V
Since k, — 0o as ¢ — 0, we deduce that lim sup ,, /(00 Si((1/e)0)/ Ln((1/e)0) < i,

AE€Ty

for every k € N* as we claimed.
To prove (b), we fix O € Cub(R") and write for suitable k, € N* and z, € ZV

(k= 20014246 C 0 C Tk 4z
We have
7:00,k[") < 7, (lg) +; ((]0 kY M +z0)\ - )

Similarly to (b), we can deduce that

S0k _ SA)Q) | kY~ (ke —=2)"

WS) <

kY Ln((1/6)0) (k)N
Hence
S ((1/6)Q)
hIAnj)lfy(y 2 (: AHOO) Ln((1/e)Q)

which completes the proof. [J

Appendix C
C.1. A technical lemma

We denote by ¥ the unit cell [0,1[Y~!. An element y €Y is denoted by (7, yN)
where p € Y and vy €[0,1[. Given o, [36]0, 2[ let us consider an open set w CC Y
with Lipschitz boundary and a Lipschitz function 6:w — Ja, 1 — [ C ]0,1[. The set

2:={(3,009)): y e w}

is then a Lipschitz manifold of dimension N — 1. Fix 59 €]0,min{a, 1 — }] and for
every n €10,70], define the set

Ti={(Gow): € o, py € [07) = 2.007) + 7| } .

Note that in the example of Section 4.3 we have 0 = 5 and no=1/2.
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Lemma C.1. If wc W;‘P(]O, 1IN R™) satisfies f]Ol[N\T wdy=0, then there exists a
AT,
constant ¢ > 0 such that for every n€10,10] we have that

(i)/ |w|f’dy<c/ Vwl? dy
10,1 [N \ T,] 10,1 [N \ T,,

(ii) / |W|de<c/ [Vw|?dy.
T, 10,10

Proof. First, let us define @f{ .0, Y — R by

and

[0+ if Pew
AN 2 >
0, ()= { i otherwise
and
L [ -t if jeo,
0, (§):= { % otherwise.

Set ¥, :={(D, yx) €10, 1[": yy > O (M)} and Y, :={(P, yx) €10, 1[": yv < O, (D)},
so that 10, 1[V \ T,=Y Uy U {(ﬁ,E)E]O,l[N: y€Y\ w}. We first prove
[ wGeionras<e [ (wulran ()
Jo,1[¥ ! 10,1V\Ty
where ¢’ is a constant which depends on «, f,w,0 and p. Let V, V' cc RV~ x10,1]
be two open neighborhoods of T such that V¥ cC V’. Consider a cut-off function ¢
between ¥V and V', ie.,, p€D(V'), 0 <@ <1 and ¢ =1 on V. Setting u:=pw, we

have that
1

A N ou
—w(3,0, ()= 5o (0 dt
6, (») CIN
for %y _ -almost every € 10,1[V~!. By the Holder inequality we deduce that

N N ! ou
(5.0 (NI < /
P
dr | dp

P
dz,

= (30)
o, (») | OVN
and the Fubini theorem yields

1
/ (5,07 ()7 df < / /
10,1[N—1 10,1[¥ 1 0, ()
P

dy.
P
dy </ |Vu|pdy:/ |Vu|pdy+/ [Vw|?dy
10,1[M\ T, 10,1[N\T T\T,

<2|volz, [ pPdyr@ e [ vwlray
10,1[M\T 10,1[¥\ T,

u .
R ’t
ayN(y )

o
dyn

But
ou

oy

/Y,r
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Hence, by the Poincaré—Wirtinger inequality
| mG.ejonras < @revelz s e [ (wupdy,
J0,1[v -1 10,10\ 7,
where the constant ¢ depends on a, f,w,0 and p. By similar arguments we obtain the
inequality
[ mGeygnrarse [ vulan
Jo, (V! 10,1[M\T,

To prove (i) we write

/ |W\de:/ |Vw|pdy+/ [Vw|f dy. (C2)
]O,I[N\Tu YYI+ Y,
We have
. N oA Noow
W, yn) = w5, OF (5) + / D 5ryde
0;(») N

for % y_j-almost every €10, 1[V " and #-almost every yy € ]@;(f/), 1[. Using the
Holder inequality we infer that

. . . ! ow . |?
WP < w0 NP+ [ |G| dr
0;(») | OYN
hence that
! ! ow r
/ (w(P, )7 dt < |w(P, @J(y))l"+/ r(y,t) dr
05 () 05 (5 | CYN

for #y_i-almost every y € ]0, 1[='. From (C.1) and the Fubini theorem, it follows
that

/ wlPdy < (' +1) [Vwl|? dy.
v 101\,

n

A similar inequality holds for the second term in the right-hand side of (C.2). Thus
(i) follows.
To establish (ii), we apply again the same arguments to obtain

0; ()
/ < / |w(y2t)|ﬁdt> a5 < / (5, 07 (5] 47
) 0, (¥) )
0,0 | 5 r
+ / ( / d dt) dp
@ 0, (¥)
and finally

0V
/ |w|pdy<max{c',l}/ |Vw|? dy,
T, 10,11¥

which finishes the proof. [J

(1)
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