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1. Introduction

In this paper we are concerned with some multiparameter integral functionals of the
form ∫

�
W�

(x
�
;∇u(x)

)
dx; (1)

where � is a bounded domain in RN ; u :� → Rm; �¿ 0 and W� :RN × RmN →
[0;+∞[ is supposed to be [0; 1[N -periodic with respect to the 7rst variable x∈RN .
The distinguishing feature of (1) here is that the integrand is permitted to depend
on a vector of parameters �= (�1; : : : ; �k)∈Rk with k¿ 1. We are interested in the
asymptotic behavior of (1) as � → 0 and � → 0.

Integral functionals of this type appear in the mathematical modeling of cellular
composite materials. When N =m= 3, (1) can be interpreted as the stored strain energy
of an elastic and heterogeneous material, u being a deformation or displacement 7eld.
When m= 1, u may be a di;erence of potential in a condenser. In any case, the
medium under consideration is composed of several materials, which are periodically
distributed at the microscopic scale given by �. In the applications, we often deal with
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two materials, one periodically included into the other one. In this case, the vector of
parameters � is used to describe certain properties of the inclusions like size, thickness,
sti;ness or conductivity; we refer the reader to Sections 3 and 4 for some examples.

When � is very small, then the microscopic structure of such a composite material
becomes complicated. Moreover, in some situations the parameter � is also very small.
The question is how to describe approximately the macroscopic behavior of the mate-
rial. Passing from the microscopic level to the macroscopic one corresponds to letting
� → 0 and � → 0 in (1). Assume that for each 7xed microscopic scale �¿ 0 we have
a model of the limit case “�= 0”. An alternative to derive a limit model for “�= 0
and �= 0” would be to perform an iterate limit process: 7rst let � → 0, then let � → 0.
However, without further justi7cations, this may appear to be arbitrary and ambiguous.
Furthermore, in many situations there are intrinsic relations between � and �, which
prevent us from letting � → 0 without letting � → 0 at the same time.

The present work is an attempt to develop general techniques for the asymptotic
analysis of functionals like (1) when all the parameters tend to zero (possibly following
a particular path in the set of parameters). We restrict our attention to certain parametric
integrands for which one may expect that homogenization occurs. In physical terms,
this means that the heterogeneous medium behaves at the macroscopic scale as an ideal
homogeneous one, so that the limit energy is of the form∫

�
W hom(∇u(x)) dx:

In absence of �, i.e. when W� ≡W , this kind of results have been obtained by applying
suitable variational methods. For scalar u and convex W see [20], the books [3,9]
and references therein; for vector-valued u and nonconvex W see [5–7,22] and the
book [8]. The notion of �-convergence for sequences of functions is used in all these
works. This convergence is variational in the sense that under some conditions, it
ensures the convergence of minimizers and minimum values, and, moreover, it is stable
under continuous perturbations. The accomplishment of this asymptotic analysis for
actual parametric integrands W� requires to overcome additional technical diMculties.
On the other hand, an important advantage of this approach is that many “degenerate”
homogenization problems can be interpreted as limits of this kind of multiparameter
integral functionals.

This paper is organized as follows. Section 2 is devoted to a general nonlinear
homogenization result for a class of multiparameter variational functionals. More pre-
cisely, in Section 2.1 we give some natural conditions on the integrands (cf. (C1)–
(C3)), which de7ne the type of multiparameter functionals that we study in this paper.
After a brief exposition of �-convergence theory in Section 2.2, we state and prove a
general homogenization theorem in Section 2.3. In fact, we introduce an unconstrained
family of functionals {F�;�} for which we establish �-convergence towards a homoge-
neous functional Fhom. We precise the meaning of “having a limit model for �= 0” in
(H1) and we introduce a condition (H2), which allows us to identify the limit density
of the homogenized functional. Then, we prove in Section 2.4 that the �-limit is not
a;ected by Dirichlet boundary conditions and we give a suMcient condition for the
relative compactness of minimizing sequences. This condition relates the behavior of �
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and � as they tend to zero. In Sections 3 and 4 some applications are indicated, with
a particular attention to convex integrands. A variety of techniques that may be useful
in the applications are described there. We recall in Appendix A an extension theo-
rem of [2], which is useful to overcome some technical diMculties due to an eventual
lack of coerciveness. In Appendix B we prove an asymptotic formula for parametric
subadditive set functions, which is used to verify (H2) in the applications. Finally, in
Appendix C we prove a technical result used in Section 4.

In the multiparameter setting of this work, some situations have been considered in
the literature. Usually, a homogenized �-limit functional is obtained for a path of the
form (�; �(�)) with �(�) → 0 as � → 0 (see, for instance, the iterated homogenization
theorem in [8, Chapter 22]). In some simpler cases, this is done by comparison with
other functionals (see [3, Remark 1:24]). Note that in our case, the representation
formula for W hom may depend on a relative behavior between the parameters.

2. Multiparameter homogenization

2.1. A class of multiparameter variational problems

Let m; N and k be positive integers. Here and subsequently, Y denotes the unit
cell [0; 1[N and � ⊂ Rk is a nonempty set of parameters such that �n → 0 for at
least one sequence {�n} ⊂ �. Let us suppose that to every �∈�, there corresponds a
Carath>eodory function

W� : RN × RmN → [0;+∞[

satisfying for each �∈RmN

(C1) W�(·; �) is Y -periodic: for every (x; z)∈RN × ZN , W�(x + z; �) =W�(x; �).
Consider a family of closed subsets {T�}�∈� ⊂ Y and a function r :� → [0; Pr ] with

Pr ¿ 0.
Let us de7ne E�:=Y \ T� + ZN and

r�(x):=

{
Pr if x∈E�;

r(�) if x∈RN \ E� =T� + ZN :

Assume that there exist p∈ ]1;+∞[ and c0 ¿ 0 such that
(C2) for every �∈� and for every x∈RN ; �′; �∈RmN

r�(x)|�|p6W�(x; �)6 c0r�(x)(1 + |�|p):

Note that r(�) may not be bounded away from 0; in this case, there are some technical
diMculties due to a lack of equi-coerciveness. In order to apply the extension techniques
recalled in Appendix A, it is required that

(C3) there exists T ⊂ Y such that for all �∈�, T� ⊂ T and the set E:=Y \ T +ZN

is connected, open and has Lipschitz boundary.
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Let � be a bounded open set in RN . Let us consider the following variational
problem:

(P�;�; g; �) inf
{∫

�
W�

(x
�
;∇u

)
dx +

∫
�
gu dx: u∈� + W 1;p

0 (�;Rm)
}

;

where (�; �)∈ ]0; �0]×�, g∈Lp′
(�;Rm) and �∈W 1;p(�;Rm) is a boundary condition

on the displacement. The 7rst integral corresponds to the stored strain energy of a
cellular elastic material, which is subject to external body forces given by g. Roughly
speaking, each cell contains an inclusion, which is characterized by the value of the
energy density in the set �T�. Observe that, since we only assume that E is con-
nected, the inclusions may be connected throughout the whole microstructure. Solving
(P�;�; g; �) amounts to 7nding the stable equilibria (i.e. minimal energy con7gura-
tions) of the structure. We are interested in the asymptotic behavior of (P�;�; g; �)
as (�; �) → (0; 0). The strategy will be to compute a suitable variational limit of
a parametrized sequence of integral functionals. This variational convergence will be
De Giorgi’s �-convergence.

2.2. �-convergence

Motivated by certain lower semi-continuity and perturbation problems in the calculus
of variations, De Giorgi introduced in [12] (see also [13]) the notion of �-convergence
for sequences of functions. For the convenience of the reader, we are going to recall
the de7nition and some properties of �-convergence.

Let (X; d) be a metric space and consider a family {Fs} of functionals from X into
PR=R ∪ {−∞;+∞}, where s is taken in a subset of Rq (s plays the role of a vector
of parameters). Given a sequence {sn} with sn → 0∈Rq as n → ∞, de7ne for every
u∈X (

�(d)-lim inf
n→∞ Fsn

)
(u):=inf

{
lim inf
n→∞ Fsn(un): un

d→u
}

and (
�(d)-lim sup

n→∞
Fsn

)
(u):=inf

{
lim sup
n→∞

Fsn(un): un
d→u
}

:

Clearly

�(d)-lim inf
n→∞ Fsn 6�(d)-lim sup

n→∞
Fsn :

The sequence {Fsn} is said to be �(d)-convergent to PF(u) in u as n → ∞ whenever

PF(u) =
(
�(d)-lim inf

n→∞ Fsn

)
(u) =

(
�(d)-lim sup

n→∞
Fsn

)
(u):

If the latter holds for every u∈X then we write PF =�(d)-limn→∞ Fsn .
Let !0 ⊂ (Rq)N be a set consisting of sequences {sn} ⊂ Rq such that sn → 0. If for

each sequence {sn}∈ !0 we have PF =�(d)-limn→∞ Fsn , then we say that the functional
PF is the �(d)-limit of {Fs} as s → 0 in !0 and we write PF =�(d)-lim

s
!0→0

Fs: Note
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that this de7nition is equivalent to:

(i) for all u∈X and for all sequences sn → 0 with {sn}∈ !0 and un
d→u

PF(u)6 lim inf
n→∞ Fsn(un);

(ii) for all u∈X and for all sn → 0 with {sn}∈ !0 there exists a recovery sequence,

that is, a sequence {un}∈X such that un
d→u and

PF(u) = lim
n→∞Fsn(un):

Observe that the constant sequence Fn ≡ F , �(d)-converges to the lower closure, also
called lower semi-continuous envelope, of F , which we denoted by cl(F). In fact, we
have

(�(d)- lim
n→∞F)(u) = cl(F)(u) = inf

{
lim inf
n→∞ F(un): un

d→u
}
:

More generally, if PF =�(d)-limn→∞ Fn for some sequence {Fn} then PF is lower
semi-continuous in (X; d). Another simple situation where �-convergence holds is the
case of nonincreasing sequences: if for all n∈N; Fn¿Fn+1 then �(d)-limn→∞ Fn =
cl(inf n∈N{Fn}): Nevertheless, in general the pointwise convergence and the �-conver-
gence are not comparable.

The following theorem is a well-known result (see [13]) that makes precise the
variational nature of �-convergence:

Theorem 2.1. Let G :X → R be a continuous function and assume that
PF =�(d)-lim

s
!0→0

Fs:

Then

lim sup
s
!0→0

(inf{Fs + G})6 inf{ PF + G}:

Moreover; if for each {sn}∈ !0 there exists a relative d-compact sequence {û n} ⊂ X
such that

Fsn(û n) + G(û n)6 inf{Fsn + G} + �n (2)

with �n → 0 as n → ∞; then

lim
s
!0→0

(inf{Fs + G}) = inf{ PF + G}

and every d-cluster point û∈X of {û n} satis<es
PF(û) + G(û) = inf{ PF + G}:

Remark 2.1. A sequence {û n} that satis7es (2) is usually referred to as an �n-minimizing
sequence for {Fsn + G}.

For a proof of this result and deeper discussions of the �-convergence theory we
refer the reader to the books [3,8,9].
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Let us return to the setting of Section 2.1. De7ne G :Lp(�;Rm) → R by

G(u):=
∫
�
gu dx

and let F�
�;� :Lp(�;Rm) → [0;+∞] be de7ned by

F�
�;�(u):=



∫
�
W�( x

� ;∇u) dx if u∈� + W 1;p
0 (�;Rm);

+∞ otherwise:

The variational problem (P�;�; g; �) may be written

inf{F�
�;�(u) + G(u): u∈Lp(�;Rm)}:

According to Theorem 2.1, to describe the “limit” of (P�;�; g; �) as (�; �) → (0; 0),
it suMces to compute the �-limit of {F�

�;�} for an appropriate topology. Because of

the highly oscillating nature of the density involved in the de7nition of F�
�;�, the best

we can expect to obtain is a weak convergence of the gradient of the minimizers.
On the other hand, under some conditions it is possible to establish a compactness
property of minimizing sequences for the strong topology of Lp(�;Rm). Therefore, the
�-convergence will be taken with respect to the strong topology of Lp(�;Rm). Taking
into account previous works in absence of parameter �, we may conjecture that there
exists a suitable density W hom : RmN → [0;+∞[ such that {F�

�;�} �-converges to a
homogenized functional of the form

Fhom;�(u) =



∫
�
W hom(∇u) dx if u∈� + W 1;p

0 (�;Rm);

+∞ otherwise:
(3)

In general, this is not true due to eventual irregular behaviors with respect to �.
In fact, we may have two or more subsequences �-converging to di;erent limits.
Nevertheless, we claim that under some additional hypotheses it is possible to obtain
a homogenization theorem of this type, giving a representation formula for W hom. This
is the aim of Section 2.3.

2.3. General homogenization theorem

Given a sequence {Fn} of functionals de7ned on Lp
loc(RN ;Rm), we denote by

�(Lp)-limn→∞ Fn the �-limit of {Fn} with respect to the topology of Lp
loc(RN ;Rm)

induced by the extended distance d(u; v) = (
∫
RN |u − v|p dx)1=p. Let Ub(RN ) denote

the class of all bounded open subsets of RN . For each (�; �)∈RmN × �, we de7ne
G�

� : Lp
loc(RN ;Rm) ×Ub(RN ) → [0;+∞] by

G�
�(v;A):=



∫
A
W�(x; � + ∇v) dx if v�A∈W 1;p

0 (A;Rm);

+∞ otherwise:
(4)

Let !0 ⊂ (�)N be a set consisting of sequences {�n} ⊂ Rk such that �n → 0. For
simplicity of notation, we denote by �

!0→0 an arbitrary sequence {�n}∈ !0. We 7rst
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require:
(H1) for every �∈RmN , there exists PG

�
!0

: Lp
loc(RN ;Rm) ×Ub(RN ) → [0;+∞] such

that for all k ∈N∗ and v∈Lp
loc(RN ;Rm),

PG
�
!0
(v; ]0; k[N ) =�(Lp)-lim

�
!0→0

G�
�(v; ]0; k[

N ):

This hypothesis may be interpreted by saying that one has to know the behavior
of the periodic structure over an ensemble of kN cells and at the unit scale. When
(H1) holds we say that we have a “limit model for the case �= 0 at the unit
scale”.

In order to characterize the limit homogenized density, we consider the optimal value
function S�

� : Ub(RN ) → [0;+∞[ de7ned by

S�
�(A) := inf{G�

�(v;A): v∈Lp(A;Rm)}

= inf
{∫

A
W�(x; � + ∇v) dx: v∈W 1;p

0 (A;Rm)
}

for every (�; �)∈RmN × �. Similarly, we de7ne

PS
�
!0
(]0; k[N ):=inf{ PG

�
!0
(v; ]0; k[N ): v∈Lp(]0; k[N ;Rm)}:

Let us denote by (�; �) → (0; 0) with �∈ !0 an arbitrary sequence {(�n; �n)} ⊂ ]0; �0]×�
such that (�n; �n) → (0; 0) and {�n}∈ !0. We suppose:

(H2) for every �∈RmN ,

lim
(�;�)→(0;0)

�∈!0

�NS�
�

(
1
�
]0; 1[N

)
= %( PS

�
!0
);

where

%( PS
�
!0
):= inf

k∈N∗

{
1
kN

PS
�
!0
(]0; k[N )

}
:

For a discussion of (H2), we refer the reader to Sections 3 and 4.

Theorem 2.2. Suppose that (C1)–(C3); (H1) and (H2) hold. Given �¿ 0 and �∈�;
let us consider the variational functional F�;� :Lp

loc(RN ;Rm) × Ub(RN ) → [0;+∞]
de<ned by

F�;�(u;A):=



∫
A
W�( x

� ;∇u) dx if u|A ∈W 1;p(A;Rm);

+∞ otherwise

and the homogeneous variational functional Fhom
!0

:Lp
loc(RN ;Rm)×Ub(RN ) → [0;+∞]

de<ned by

Fhom
!0

(u;A):=



∫
A
W hom

!0
(∇u) dx if u|A ∈W 1;p(A;Rm);

+∞ otherwise;
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where W hom
!0

:RmN → [0;+∞[ is given by

W hom
!0

(�) := %( PS
�
!0
)

= inf
k∈N∗

inf
v

{
1
kN

PG
�
!0
(v; ]0; k[N ): v∈Lp(]0; k[N ;Rm)

}
:

Then

Fhom
!0

(u;A) =�(Lp) − lim
(�;�)→(0;0)

�∈!0

F�;�(u;A)

for every A∈Ub(RN ) and u∈Lp
loc(RN ;Rm).

Proof. For simplicity of notation, throughout the proof we write (�; �) → (0; 0) with
�∈ !0 for an arbitrary sequence (�n; �n) → (0; 0) with {�n}∈ !0. Similarly, �

!0→0 with
�∈� stands for �n → 0 with {�n}∈ !0. Finally, the expression u�;� → u stands for a
sequence {un} converging to u for a Lp-norm.

We begin by noticing that (C1) and (C2) ensure the application of
the theory of variational functionals developed by Dal Maso and Modica in [10]
(see also [8,9]) to obtain that, upon extracting a subsequence, there exists ’ :RmN →
[0;+∞[ such that the sequence {F�;�} �(Lp)-converges on each A∈Ub(RN ) and for
every u∈Lp

loc(RN ;Rm) to a variational functional F0(u;A) with F0(u;A) =
∫
A ’(∇u) dx

whenever u|A ∈W 1;p(A;Rm). This follows by using some well-known direct methods of
�-convergence theory. Indeed, it is possible to apply the same arguments as in the proof
of Proposition 3.1 in [7] to this situation, with g(x; �) replaced by g�(x; �) = r�(x)|�|p
therein (see also Remark 12:4 and Example 11:4 in [8] and Theorems 4:8 and 6:1
in [10]); we omit the details. Moreover, using (C3) and arguing as in [2, Propo-
sition 3:6], we can deduce that F0(u;A) = + ∞ if u∈Lp

loc(RN ;Rm) \ W 1;p(A;Rm).
Hence

F0(u;A) =



∫
A
’(∇u) dx if u∈W 1;p(A;Rm);

+∞ otherwise:

It remains to prove that ’(�) =W hom
!0

(�) for every �∈RmN . The inequality ’(�)6
W hom

!0
(�) under (H1) follows immediately from

Lemma 2.1. If (H1) holds then for every linear function u(x) = �x, there exists a
sequence u�;� → �x in Lp(]0; 1[N ;Rm) with u�;� ∈ �x + W 1;p

0 (]0; 1[N ;Rm) and such that

lim
(�;�)→(0;0)

�∈!0

F�;�(u�;�; ]0; 1[N ) =Fhom
!0

(�x; ]0; 1[N ) =W hom
!0

(�):

Proof. The proof is adapted from [22, Lemma 2.1(a)]. Let �∈RmN . By de7nition of
W hom

!0
, for every .¿ 0 there exist k ∈N∗ and  . ∈Lp(]0; k[N ;Rm) such that

W hom
!0

(�)6
1
kN

PG
�
!0
( .; ]0; k[N )¡W hom

!0
(�) + .:
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Fix .¿ 0. According to (H1), there exists a sequence { .
� }�∈� ⊂ W 1;p

0 (]0; k[N ;Rm)
such that lim

�
!0→0

|| .
� −  .||p; ]0; k[N = 0 and

lim
�

!0→0
G�

�( 
.
� ; ]0; k[N ) = PG

�
!0
( .; ]0; k[N ): (5)

We extend  .
� from ]0; k[N to RN by kY -periodicity, and for given (�; �) we de7ne

u.
�;�(x):=

{
�x + � .

� ( x
� ) if x∈ (]0; 1[N )�k ;

�x if x∈ ]0; 1[N \ (]0; 1[N )�k ;

where (]0; 1[N )�k is the union of all the cubes of side �k which are contained in ]0; 1[N .
Of course, u.

�;� − �x∈W 1;p
0 (]0; 1[N ;Rm). Moreover, since

‖u.
�;� − �x‖p; ]0;1[N = �

∣∣∣∣∣∣ .
�

(x
�

)∣∣∣∣∣∣
p; (]0;1[N )�k

6 �
LN (]0; 1[N )

kN ‖ .
� ‖p; ]0; k[N

we have that lim (�;�)→(0;0)
�∈!0

‖u.
�;� − �x‖p; ]0;1[N = 0: By de7nition of F�;� and u.

�;�

F�;�(u.
�;�; ]0; 1[N ) =

∫
(]0;1[N )�k

W�

(x
�
; � + ∇ .

�

(x
�

))
dx

+
∫

]0;1[N\(]0;1[N )�k
W�

(x
�
; �
)

dx:

By kY -periodicity, we obtain∫
(]0;1[N )�k

W�

(x
�
; � + ∇ .

�

(x
�

))
dx

=
LN ((]0; 1[N )�k)

kN

∫
]0; k[N

W�(y; � + ∇ .
� (y)) dy:

From (5), we deduce that there exists 20 ¿ 0 such that for all �∈B(0; 20) ∩ �

W hom
!0

(�) − .¡
1
kN

∫
]0; k[N

W�(y; � + ∇ .
� ) dy¡W hom

!0
(�) + .:

We thus have the following estimates:

F�;�(u.
�;�; ]0; 1[N )¿LN ((]0; 1[N )�k)[W hom

!0
(�) − .]

and

F�;�(u.
�;�; ]0; 1[N )6LN ((]0; 1[N )�k)[W hom

!0
(�) + .]

+ c0 Pr(1 + |�|p)LN (]0; 1[N \ (]0; 1[N )�k)
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for every (�; �) with �∈B (0; 20) ∩ �. Consequently, for every .¿ 0

W hom
!0

(�) − .6 lim inf
(�;�)→(0;0)

�∈!0

F�;�(u.
�;�; ]0; 1[N )

6 lim sup
(�;�)→(0;0)

�∈!0

F�;�(u.
�;�; ]0; 1[N )6W hom

!0
(�) + .:

By a standard diagonalization argument (see for instance [3, Corollary 1:16]), we obtain
a mapping (�; �) �→ .(�; �) with .(�; �) → 0 as (�; �) → (0; 0) such that

lim
(�;�)→(0;0)

�∈!0

‖u.(�;�)
�;� − �x‖p; ]0;1[N = 0

and

lim
(�;�)→(0;0)

�∈!0

F�;�(u
.(�;�)
�;� ; ]0; 1[N ) =W hom

!0
(�):

Finally, setting u�;�:=u.(�;�)
�;� we obtain the required sequence.

To prove the converse inequality, i.e. ’(�)¿W hom
!0

(�), note that by the usual cut-o;
and slicing De Giorgi trick, recovery sequences can be chosen with the same bound-
ary values as their limit (see [14] and Remark 3:2 in [7]). Hence, when u�;� ∈ �x +
W 1;p

0 (]0; 1[N ;Rm) is a recovery sequence for F0(�x; ]0; 1[N ), by (H2) we have that

’(�) = F0(�x; ]0; 1[N )

= lim
(�;�)→(0;0)

�∈!0

F�;�(u�;�; ]0; 1[N )

¿ lim sup
(�;�)→(0;0)

�∈!0

inf{F�; �(v; ]0; 1[N ): v∈ �x + W 1;p
0 (]0; 1[N ;Rm)}

= lim sup
(�;�)→(0;0)

�∈!0

inf
{∫

]0;1[N
W�

(x
�
; � + ∇v

)
dx: v∈W 1;p

0 (]0; 1[N ;Rm)
}

= lim sup
(�;�)→(0;0)

�∈!0

�NS�
�

(
1
�
]0; 1[N

)

= %( PS
�
)

and the proof is complete.
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Remark 2.2. Arguing as in [2, Proposition 3:6] and [7, Proposition 3:3], it is possible
to prove that there exist some constants R; r ¿ 0 such that

r|�|p6W hom
!0

(�)6R(1 + |�|p)

for every �∈RmN , so that the limit homogenized functional is coercive.

2.4. Dirichlet boundary value problems and compactness

Theorem 2.2 may be useful for the asymptotic analysis of constrained variational
problems involving the functionals F�;�. In this section we consider the particular case
of Dirichlet boundary conditions.

Theorem 2.3. Under the hypotheses of Theorem 2:2; let � ⊂ RN be a Lipschitz
bounded open set and consider the variational problem

m�;� = inf
{∫

�
W�

(x
�
;∇u

)
dx: u∈� + W 1;p

0 (�;Rm)
}

;

where �¿ 0, �∈� and �∈W 1;p(�;Rm) is given. If we assume in addition that
�p=r(�) → 0 as (�; �) → (0; 0) with �∈ !0 then

lim
(�;�)→(0;0)

�∈!0

m�;� =m;

where

m= min
{∫

�
W hom

!0
(∇u) dx: u∈� + W 1;p

o (�;Rm)
}

:

Moreover, minimizing sequences for the problems m�;� converge as (�; �) → (0; 0)
with �∈ !0, upon extracting a subsequence, to minimizers for the problem m.

Proof. Let u∈� + W 1;p
0 (�;Rm). Theorem 2.2 ensures the existence of a sequence

{u�;�} ⊂ W 1;p(�;Rm) such that u�;� → u in Lp(�;Rm) and

Fhom
!0

(u) = lim
(�;�)→(0;0)

�∈!0

F�;�(u�;�):

Moreover {u�;�} can be chosen such that u�;� ∈�+W 1;p
0 (�;Rm) (see [14]). Therefore

F�;�(u�;�)¿m�;� and

Fhom
!0

(u)¿ lim sup
(�;�)→(0;0)

�∈!0

m�;�:

Since u∈� + W 1;p
0 (�;Rm) is arbitrary, we deduce that

m¿ lim sup
(�;�)→(0;0)

�∈!0

m�;�:
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On the other hand, let u�;� ∈�+W 1;p
0 (�;Rm) be such that F�;�(u�;�)6m�;�+�. Suppose

that there exists u∈Lp(�;Rm) such that u�;� → u in Lp(�;Rm). Then, by Theorem
2.2 we have

Fhom
!0

(u)6 lim inf
(�;�)→(0;0)

�∈!0

F�;�(u�;�):

Arguing as in [2] we obtain that indeed u∈� + W 1;p
0 (�;Rm), which yields

m=Fhom
!0

(u)6 lim inf
(�;�)→(0;0)

�∈!0

F�;�(u�;�)6 lim sup
(�;�)→(0;0)

�∈!0

m�;�6m:

Thus, we are reduced to proving u�;� → u in Lp(�;Rm) for some u∈Lp(�;Rm). Let
�′ be a bounded open subset of RN such that � ⊂⊂ �′, and let us consider the
functions

u�;�:=u�;� − �∈W 1;p
0 (�;Rm) ⊂ W 1;p

0 (�′;Rm)

extended to 0 in �′ \�. If we set v�;�:= Pu�;�|�′∩�E , then from the growth property (C2)
it follows easily that

‖v�;�‖1;p;�′∩�E = ‖v�;�‖1;p;�∩�E6 c;

where c is a nonnegative constant which only depends on p and �. Let us take .¿ 0
such that � ⊂⊂ �′(.). There exists �′ ¿ 0 such that for each 0¡�¡�′, �′(.) ⊂
�′(�k0) (with k0 given by Theorem A.1 in Appendix A) and there exists {zi: i∈ I�} ⊂
ZN with

� \ �E ⊂
⋃
i∈I�

�(T + zi) ⊂ �′(.) \ �E;

where I� is a 7nite index set. By Theorem A.1 in Appendix A, we have P�v�;� = v�;�
on �′ ∩ �E and ‖P�v�;�‖1;p;�′(.)6 c′, where c′ is a non-negative constant which only
depends on E; N and p. We can suppose, upon passing to a subsequence, that there
exists Pu∈W 1;p(�′(.);Rm) such that P�v�;� → Pu in Lp(�′(.);Rm). We claim that under
the assumption �p=r(�) → 0,

lim
(�;�)→(0;0)

�∈!0

‖P�v�;� − u�;�‖p;� = 0

and consequently u�;� → Pu + � in Lp(�′(.);Rm). Indeed, we have that∫
�
|P�v�;� − u�;�|p dx =

∫
�\�E

|P�v�;� − u�;�|p dx

6
∑
i∈I�

∫
�(T+zi)

|P�v�;� − u�;�|p dx

=
∑
i∈I�

�N
∫
T
|P�v�;�(�y + zi) − u�;�(�y + zi)|p dy:



F. Alvarez, J.-P. Mandallena / Nonlinear Analysis 50 (2002) 839–870 851

But P�v�;�(�y + zi) = Pu�;�(�y + zi) for a.e. y in a subset of @T of strictly positive
measure (in fact, this is true for every connected component of T ). Then, by Poincar>e’s
inequality we obtain∫

�
|P�v�;� − u�;�|p dx6 c′′�p

∑
i∈I�

�N
∫
T
|∇P�v�;�(�y + zi) −∇u�;�(�y + zi)|p dy

6 c′′�p
∫
�′(.)\�E

|∇P�v�;� −∇u�;�|p dx;

where c′′ is the Poincar>e constant which only depends on p and T . But∫
�′(.)\�E

|∇P�v�;� −∇u�;�|p dx

6 2p

(∫
�′(.)\�E

|∇P�v�;�|p dx +
∫
�\�E

|∇u�;�|p dx

)

because Pu�;� = 0 on �′(.) \ �. Moreover

∫
�\�E

|∇u�;�|p dx6 2p

(∫
�\�E

|∇�|p dx +
∫
�\�E

|∇u�;�|p dx

)

6 2p

(∫
�
|∇�|p dx +

1
r(�)

∫
�\�E

W�

(x
�
;∇u�;�

)
dx

)

6 2p
(∫

�
|∇�|p dx +

1
r(�)

F�;�(u�;�)
)

:

Therefore∫
�
|P�v�;� − u�;�|p dx6 c′′′

(
�p + �p

∫
�
|∇�|p dx +

�p

r(�)
(m�;� + �)

)

hence

lim sup
(�;�)→(0;0)

�∈!0

∫
�
|P�v�;� − u�;�|p dx6m lim

(�;�)→(0;0)
�∈!0

�p

r(�)
= 0

which 7nishes the proof.

Remark 2.3. In the case T = ∅ or r(�)¿ 8¿ 0, the condition �p=r(�) → 0 is auto-
matically satis7ed. When T� ≡ T �= ∅ and r(�) ≡ 0, we can argue as in the proof of
[7, Proposition 4.1] to establish the convergence of m�;� to m and the relative compactness
of P�-extensions of the restrictions to � ∩ �E of �-minimizing sequences for m�;�.
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3. Applications I: nonconvex integrands

3.1. Preliminaries

We are going to discuss some aspects and techniques related to the veri7cation of
(H1) and (H2) in the applications. Let us begin by considering the nonparametric case
W� ≡ W , where W : RN × RmN → [0;+∞[ is a nonconvex Carath>eodory function.
Under suitable periodicity and growth requirements on W , conditions (C1)–(C3) are
satis7ed with T� ≡ T , where either (i) T = ∅ and r�(x) ≡ Pr ¿ 0 or (ii) LN (T )¿ 0 and
r(�) ≡ 0. It is well-known that in this case homogenization occurs with homogenized
density given by

W hom(�) = inf
k∈N∗

{
1
kN S�(]0; k[N )

}
with

S�(]0; k[N ):=inf
w

{∫
]0; k[N∩E

W (x; � + ∇w) dx: w∈W 1;p
0 (]0; k[N ;Rm)

}
;

where E =Y \ T + ZN (of course, E =RN when T = ∅). We refer the reader to
[22, Theorem 1:3] for the coercive case, that is, when E =RN . For the case LN (T )¿ 0,
see [2,7]. Note that in this nonparametric setting, (H1) trivially holds with limit func-
tional PG

�
equals to the lower semi-continuous envelope cl(G�) of G�

� ≡ G� with respect
to the strong topology of Lp. Since the in7mum values of a function and its l.s.c. en-
velope are equal, it is possible to show that (H2) holds as a consequence of a classical
result for subadditive and ZN -invariant set functions (see Appendix B). Consequently,
Theorem 2.2 recovers the nonparametric case.

On the other hand, general properties of �-convergence (cf. Theorem 2.1) ensure
that in the parametric setting of Theorem 2.2 and under (H1), we have that

lim sup
�

!0→0

S�
�(]0; k[

N )6 PS
�
(]0; k[N ):

This allows us to apply Lemma B.1 in Appendix B to the parametric family {S�
�}�∈�

of subadditive and ZN -invariant set functions and with ak := PS
�
(]0; k[N ). We deduce

that for every open cube Q∈Cub(RN )

lim inf
�

!0→0
%(S�

�)6 lim inf
(�;�)→(0;0)

�∈!0

S�
�((1=�)Q)

LN ((1=�)Q)

6 lim sup
(�;�)→(0;0)

�∈!0

S�
�((1=�)Q)

LN ((1=�)Q)
6 %( PS

�
):

Let us consider the following stronger condition:

(Ĥ 2) For every �∈RmN , lim inf
�

!0→0
%(S�

�)¿ %( PS
�
).

Therefore, under (H1), it suMces to verify (Ĥ 2) to ensure that (H2) holds. In the
next section it is given a simple situation where it is easy to accomplish this.
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3.2. Elastic material with soft inclusions: monotone family of integrands

Let T ⊂ Y be a closed subset of the unit cell and suppose that E:=Y \ T +ZN is a
connected open subset of RN with Lipschitz boundary. Let p∈ ]1;+∞[ and consider
two Carath>eodory functions f1; f2 : RN×RmN → [0;+∞[ satisfying the following con-
ditions: fi(·; �) is Y -periodic and there exist R; r ¿ 0 such that r|�|p6fi(x; �)6R(1+
|�|p) for each i= 1; 2. Given .∈ [0; .0], de7ne W. : RN × RmN → [0;+∞[ by

W.(x; �):=
{

f1(x; �) if x∈E;
.f2(x; �) otherwise:

Proposition 3.1. Let �∈U(RN ). The functional F�;. : Lp(�;Rm) → [0;+∞] de<ned
by

F�;.(u) =



∫
�
W.

(x
�
;∇u

)
dx if u∈W 1;p(�;Rm);

+∞ otherwise;

�(Lp)-converges as (�; .) → (0; 0) towards the homogenized functional

Fhom(u) =



∫
�
W hom(∇u) dx if u∈W 1;p(�;Rm);

+∞ otherwise

with density given by

W hom(�) = inf
k∈N∗

inf
w

{
1
kN

∫
]0; k[N∩E

f1(x; � + ∇w) dx: w∈W 1;p
0 (]0; k[N ;Rm)

}
:

Proof. In order to apply Theorem 2.2 to this situation, set �:=[0; .0], s:=(�; .) and
identify � with .. Conditions (C1)–(C3) are trivially satis7ed with T. ≡ T , r(.) = r.
and c0 =R=r. As for every A∈Ub(RN ), the corresponding sequence {G�

.(·;A)}.∈[0; .0]

is nonincreasing, we have (cf. Section 2.2):

�(Lp)-lim
.→0

G�
.(·;A) = cl

(
inf
.¿0

G�
.(·;A)

)
= cl(G�

0(·;A))

so that (H1) holds. Furthermore

lim
.→0

%(S�
.) = inf

.¿0
inf

k∈N∗

{
1
kN S�

.(]0; k[
N )
}

= inf
k∈N∗

{
1
kN S�

0(]0; k[
N )
}

= %(S�
0)

with

S�
.(A) = inf

w

{∫
A∩E

f1(x; � + ∇w) dx

+ .
∫
A\E

f2(x; � + ∇w) dx: w∈W 1;p
0 (A;Rm)

}
:

Since the in7mum values of a function and its l.s.c. envelope are equal, we have

S�
0(A) = inf

w
{cl(G�

0(·;A))(w): w∈Lp(A;Rm)}:
Consequently, hypothesis (Ĥ2) follows, which 7nishes the proof.
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3.3. Some remarks and open problems

In the general multiparameter setting under (C1)–(C3), homogenization always oc-
curs in the sense of �(Lp)-convergence to an x-independent integral functional of the
displacements gradient, upon passing to a subsequence and with limit energy density
eventually depending on the corresponding subsequence. However, it is necessary to
assume additional hypotheses in order to characterize the limit functional as in the
conclusion of Theorem 2.2. It seems that (H1) alone does not suMce to do this. On
the other hand, since it is apparent that (H2) is very diMcult to verify for general
nonconvex integrands, one may ask whether this hypothesis is actually essential for
the �(Lp)-convergence analysis. This question has an aMrmative answer under some
natural conditions and in a sense that we are going to make precise.

From now on, assume that the family {F�;�} is equicoercive under (linear) Dirichlet
boundary value conditions, that is, there exists a Lp-relatively compact �-minimizing
sequence associated with the following multiparameter family of problems:

�NS�
�

(
1
�
]0; 1[N

)
= inf

{∫
]0;1[N

W�
(
x
� ;∇u

)
dx: u∈ �x + W 1;p

0 (]0; 1[N ;Rm)
}

:

For instance, by Theorem 2.3, this compactness property holds whenever �p=r(�) →
0 as (�; �)

!0→(0; 0). Then, by the property of convergence of minimum problems for
�-convergence, it follows that there exists W hom

!0
: RmN → [0;+∞[ such that for every

A∈Ub(RN ) and u∈Lp
loc(RN ;Rm)

�(Lp) − lim
(�;�)→(0;0)

�∈!0

F�;�(u;A) =



∫
A
W hom

!0
(∇u(x)) dx if u|A ∈W 1;p(A;Rm);

+∞ otherwise

if and only if for every �∈RmN the following limit exists:

lim
(�;�)→(0;0)

�∈!0

�NS�
�

(
1
�
]0; 1[N

)

and is equal to W hom
!0

(�) (we leave the details to the reader). Let us now suppose:

(Ĥ1) For every �∈RmN , there exists PG
�
!0
: Lp

loc(RN ;Rm)×Ub(RN ) → [0;+∞] such that
for all A∈Ub(RN ) and v∈Lp

loc(RN ;Rm),

PG
�
!0
(v;A) =�(Lp)-lim

�
!0→0

G�
�(v;A) and lim

�
!0→0

S�
�(A) = PS

�
!0
(A):

Of course (Ĥ1) is stronger than (H1): we need to have �(Lp)-convergence for every
A∈Ub(RN ) together with relative compactness of minimizing sequences. However
(Ĥ1) holds in many applications (for instance, the examples given in this paper). Under
this hypothesis, by a well-known asymptotic formula for subadditive and ZN -invariant
set functions (cf. Lemma B.1 in Appendix B), we have that

lim
�→0

�N PS
�
!0

(
1
�
]0; 1[N

)
= %( PS

�
!0
)
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hence

lim
�→0

lim
�

!0→0
�NS�

�

(
1
�
]0; 1[N

)
= %( PS

�
!0
):

Therefore, a standard diagonalization argument yields

lim sup
(�;�)→(0;0)

�∈!0

�NS�
�

(
1
�
]0; 1[N

)
= %( PS

�
!0
):

Thus, under the above conditions, there is homogenization with a unique limit func-
tional if and only if (H2) holds and the limit energy density W hom

!0
(�) is equal to

%( PS
�
!0
).

Observe that under (Ĥ1), by the classical subadditive theorem, the hypothesis (Ĥ2)
becomes

lim
�

!0→0
lim
k→∞

S�
�(]0; k[

N )
kN = lim

k→∞
lim
�

!0→0

S�
�(]0; k[

N )
kN :

An easy property ensuring this hypothesis is the continuity and uniform convergence as
k → ∞ of fk(�):=(1=kN )S�

�(]0; k[
N ) on a compact set for �. This will hold under a

sort of equicontinuity requirement on W� with respect to �, a very restrictive condition
(we leave the details to the reader). To our best knowledge, it is still unanswered
whether additional compactness conditions allow us to identify the limit energy density
in the general nonlinear setting. One may conjecture that the equicoerciveness of {F�;�}
together with (Ĥ1) are suMcient to this end, but we do not have general results in this
direction for the nonconvex case. Nevertheless, we shall see in Section 4 that in the
case of convex integrands it is possible to exploit (Ĥ1) together with some estimates
for minimizing sequences in order to prove that (H2) holds, obtaining thus the desired
characterization of the limit.

4. Applications II: convex integrands

4.1. General procedure

The aim of this section is to show that in the case of convex integrands it is possible
to exploit the existence of a relatively compact minimizing sequence associated with
{G�

�(·; ]0; k[N )}�∈� in order to prove that (Ĥ2) holds. From now on, we suppose that
(C4) for every �∈� and x∈RN , the function � → W�(x; �) is convex.

It is well-known (see [8,9,22]) that (C4) yields the so-called “cell-problem formula”

inf
k∈N∗

{
S�

�(]0; k[
N )

kN

}
=S�;]

� ; (6)

where

S�;]
� :=inf

w

{∫
]0;1[N

W�(y; � + ∇w) dy: w∈W 1;p
] (]0; 1[N ;Rm)

}
:
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Here, W 1;p
] (]0; 1[N ;Rm) is the space consisting of all the [0; 1[N -periodic functions that

belong to W 1;p
loc (RN ;Rm). The interest of S�;]

� is that it takes into account only one
minimization problem. Thus, (Ĥ2) is equivalent to

lim inf
�

!0→0
S�;]

� ¿ %( PS
�
): (7)

In the sequel, we say that {w�} ⊂ W 1;p
] (]0; 1[N ;Rm) is an 8�-minimizing sequence for

{S�;]
� } if for every �∈�

S�;]
� 6

∫
]0;1[N

W�(y; � + ∇w�) dy6S�;]
� + 8�

with 8� → 0 as �
!0→0 so that

lim inf
�

!0→0
S�;]

� = lim inf
�

!0→0

{∫
]0;1[N

W�(y; � + ∇w�) dy
}

:

The next result is useful to verify (7) in the applications.

Lemma 4.1. Suppose that (C1)–(C3) hold and let �∈RmN . If there exists an 8�-
minimizing sequence {w�} ⊂ W 1;p

] (]0; 1[N ;Rm) for {S�;]
� } such that

M ({w�}):=sup
�∈�

{∫
]0;1[N

r�(y)|w�(y)|p dy
}

¡ + ∞

then

lim inf
�

!0→0
S�;]

� ¿ inf
k∈N∗

{
1
kN lim inf

�
!0→0

S�
�(]0; k[

N )

}
: (8)

Proof. Fix k ∈N∗. Let us consider a cut-o; function ’ between ]0; k[N and Rk :=]0; k−
2[N + ê with ê= (1; : : : ; 1), that is, ’∈D(]0; k[N ); 06’6 1 and ’ ≡ 1 on Rk . We
can suppose that ‖∇’‖∞6 2. Setting u�:=’w�, we have u� ∈W 1;p

0 (]0; k[N ;Rm) and
∇u� =’∇w� + w� ⊗∇’. Hence

S�
�(]0; k[

N )6
∫

]0; k[N
W�(x; � + ∇u�) dx

=
∫
Rk

W�(x; � + ∇w�) dx +
∫

]0; k[N\Rk

W�(x; � + ∇u�) dx

6
∫

]0; k[N
W�(x; � + ∇w�) dx

+ c
∫

]0; k[N\Rk

r�(x)(1 + |w�|p + |� + ∇w�|p) dx
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for a suitable constant c¿ 0. Using the Y -periodicity of w� and r�, we deduce that

S�
�(]0; k[

N )6 kN
∫

]0;1[N
W�(y; � + ∇w�) dy

+ c(kN − (k − 2)N )
∫

]0;1[N
r�(y)(1 + |w�|p + |� + ∇w�|p) dy

6 kN
∫

]0;1[N
W�(y; � + ∇w�) dy

+ c(kN − (k − 2)N )
(

Pr + M ({w�}) +
∫

]0;1[N
r�(y)|� + ∇w�|p dy

)

6 [kN + c(kN − (k − 2)N )]
∫

]0;1[N
W�(y; � + ∇w�) dy

+ c(kN − (k − 2)N )( Pr + M ({w�})):

We thus obtain

inf
k∈N∗

{
1
kN lim inf

�
!0→0

S�
�(]0; k[

N )

}
6 lim inf

�
!0→0

S�
�(]0; k[

N )
kN

6 (1 + c − c(k − 2)N =kN ) lim inf
�

!0→0
S�;]

�

+ c(1 − (k − 2)N =kN )( Pr + M ({w�})):

Letting k → +∞, we obtain (8).

We can now describe a general procedure in the convex case. First, one establishes
(H1), that is, the �(Lp)-convergence of G�

�(·; ]0; k[N ) to some functional PG
�
!0
(·; ]0; k[N )

when �
!0→0. Then, we study the relative compactness in Lp(]0; k[N ;Rm) of minimizing

sequences for {S�
�(]0; k[

N )}. When such compactness property holds, we conclude that

S�
�(]0; k[

N ) → PS
�
!0
(]0; k[N ) as �

!0→0. Next, we prove the existence of a minimizing
sequence { Pw�} for {S�;]

� } such that M ({ Pw�})¡ + ∞ so that, as a consequence of
Lemma 4.1, we obtain

lim inf
�

!0→0
S�;]

� ¿ inf
k∈N∗

{
1
kN lim

�
!0→0

S�
�(]0; k[

N )

}
= %( PS

�
!0
):

Finally, we apply Theorem 2.2 to obtain a homogenization result with W hom
!0

(�) = %( PS
�
!0
).

Furthermore, we shall see how a convexity argument permits to show that it is possible
to consider only one minimization problem over a set of periodic functions, obtaining,

at least formally, a formula of the type W hom
!0

(�) = PS
�;]
!0

.
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Remark 4.1. This procedure is also valid for the scalar case m= 1 without any con-
vexity condition because

S�
�(A) = inf

{∫
A
W ∗∗

� (x; � + ∇v) dx: v∈W 1;p
0 (A;Rm)

}
;

where W ∗∗
� (x; ·) denotes the lower convex envelope of W�(x; ·), so that the cell-problem

formula (6) holds (see [22]).

4.2. Iterated homogenization: equicoercive family of integrands

Let H ⊂⊂ Y :=[0; 1[N be a nonempty closed subset of the unit cell with Lipschitz
boundary, and let us consider two Carath>eodory convex functions f1; f2 :RN ×RmN →
[0;+∞[ such that r|�|p6fi(x; �)6R(1 + |�|p) for i= 1; 2 and for some constants
R; r ¿ 0.

We suppose that each fi(·; �) is Y -periodic. For all A∈ ]0; A0] and �∈RmN we de7ne

WA(y; �):=
{

f1(y; �) if y∈Y \ H;
f2(

y
A ; �) if y∈H

(9)

and we extend it from Y to RN by Y -periodicity, obtaining WA :RN ×RmN → [0;+∞[.
Observe that the integrand WA is not simply obtained by considering

f1(y; �) if y∈Y \ H + ZN ;
f2(

y
A ; �) if y∈H + ZN

because this function is not periodic. In this example, the unit cell Y contains a het-
erogeneous inclusion H of periodic structure. Thus, in the density WA( ·� ; �) we con-
sider two periodicity scales: � and �A. By identifying � with A, it is easy to see that
{WA}A∈]0;A0] satis7es (C1)–(C4) with T = ∅; rA(x) ≡ r and c0 =R=r (there is no lack
of coercivity).

Proposition 4.1. Let � ⊂ RN be a bounded open set. The functional F�;A :Lp(�;Rm) →
[0;+∞] de<ned by

F�;A(u):=



∫
�
WA( x

� ;∇u) dx if u∈W 1;p(�;Rm);

+∞ otherwise;

�(Lp)-converges as (�; A) → (0; 0) towards the homogenized functional

Fhom(u) =



∫
�
W hom(∇u) dx if u∈W 1;p(�;Rm);

+∞ otherwise

with convex integrand given by

W hom(�) = inf
w

{∫
]0;1[N\H

f1(x; � + ∇w) dx

+
∫
H
fhom

2 (� + ∇w) dx: w∈W 1;p
] (]0; 1[N ;Rm)

}
;
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where

fhom
2 (�′):=inf

{∫
]0;1[N

f2(y; �′ + ∇w′) dy: w′ ∈W 1;p
] (]0; 1[N ;Rm)

}
:

Proof. In order to apply Theorem 2.2, we begin by noticing that it is possible to adapt
to this situation standard homogenization and lower semi-continuity methods to prove
that for every k ∈N∗, the functional given by

G�
A(v; ]0; k[

N ):=



∫

]0; k[N
WA(x; � + ∇v) dx if v∈W 1;p

0 (]0; k[N ;Rm);

+∞ otherwise

�(Lp)-converges as A → 0+ towards

PG
�
(v; ]0; k[N ):=

{
Ik(�x + v) if v∈W 1;p

0 (]0; k[N ;Rm);
+∞ otherwise;

where

Ik(g) =
∫

]0; k[N\(H+ZN )
f1(x;∇g) dx +

∫
]0; k[N∩(H+ZN )

fhom
2 (∇g) dx:

This means that (H1) holds. Moreover, if {vA}A¿0 ⊂ W 1;p
0 (]0; k[N ;Rm) is a A-minimizing

sequence for {S�
A(]0; k[

N )}A¿0, that is∫
]0; k[N

WA(y; � + ∇vA) dy=G�
A(vA; ]0; k[

N )6S�
A(]0; k[

N ) + A

then, by coerciveness, {vA}A¿0 is relatively compact in Lp(]0; k[N ;Rm), and conse-
quently

lim
A→0+

S�
A(]0; k[

N ) = PS
�
(]0; k[N ):

On the other hand, let {wA}A¿0 ⊂ W 1;p
] (]0; 1[N ;Rm) be a A-minimizing sequence for

{S�;]
A }.

From the growth condition (C2) with rA(x) ≡ r ¿ 0 and c0 =R=r, we obtain∫
]0;1[N

|∇wA(y)|p dy6 c0(1 + |�|p) + A:

Setting

PwA:=wA −
∫

]0;1[N
wA dy

we have that { PwA}A¿0 is also a A-minimizing sequence for {S�;]
A } and, moreover,

from the Poincar>e–Wirtinger inequality we deduce that, for a suitable constant c¿ 0,∫
]0;1[N

| PwA(y)|p dy6 c
∫

]0;1[N
|∇wA(y)|p dy:

Hence

M ({ PwA}) = sup
A∈]0;A0]

{∫
]0;1[N

r| PwA(y)|p dy
}
6 cR(1 + |�|p) + crA0:
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Therefore, by Lemma 4.1 we obtain

lim inf
A→0+

S];�
A ¿ inf

k∈N∗

{
1
kN lim

A→0+
S�

A(]0; k[
N )
}

= %( PS
�
):

Thus, (H2) holds. Applying Theorem 2.2 yields as homogenized density

W hom(�) = %( PS
�
) = inf

k∈N∗
inf
w

{
1
kN Ik(� + ∇w): w∈W 1;p

0 (]0; k[N ;Rm)
}

:

Since f1(x; ·) and fhom
2 are convex, we deduce [22] that indeed

W hom(�) = inf
w

{
I1(� + ∇w): w∈W 1;p

] (]0; 1[N ;Rm)
}
;

which 7nishes the proof.

For similar iterated homogenization formulae see [4] and [8, Ch. 22].

4.3. Thin and soft inclusions: nonequicoercive family of integrands

For simplicity of exposition, we are going to consider a particular con7guration.
However, the following analysis remains valid for more general situations. In the sequel,
we denote by Ŷ the (N − 1)-dimensional unit cell [0; 1[N−1 so that any element y∈Y
may be written (ŷ; yN ) where ŷ∈ Ŷ and yN ∈ [0; 1[. Let B ⊂⊂ Y be given by B:=!×
{1=2} with ! ⊂⊂ Ŷ being a smooth closed subset. Thus B is a closed subset of the
hyperplane {y∈RN : yN = 1=2}, whose constant normal vector eN is (0; : : : ; 0; 1)∈RN ,
the N th vector of the canonical basis of RN . Setting

TD:={(ŷ; yN )∈Y : ŷ∈!; |yN − 1=2|6 D=2}
for every D∈ ]0; 1=2], and

T :=T1=2 =!× [1=4; 3=4]

we have that B ⊂ TD ⊂ T and, moreover, dist(TD; B) = D=2. Hence, TD shrinks to B as
D → 0. Note also that LN (TD) = DHN−1(B), where HN−1 is the (N − 1)-Hausdor;
measure. Let us consider two convex functions f1 :RN×RmN → [0;+∞[ and f2 :RmN →
[0;+∞[ such that r|�|p6fi(x; �)6R(1 + |�|p) for i= 1; 2 and for some constants
R; r ¿ 0. For each (.; D)∈ ]0;+∞[ × ]0; 1

2 ] we de7ne W.;D :RN ×RmN → [0;+∞[ by

W.;D(x; �):=
{

f1(x; �) if x∈Y \ TD + ZN ;
.f2(�) if x∈TD + ZN :

Intuitively, . is a small parameter taking into account the relatively low sti;ness of
the inclusion in TD with respect to the material in Y \ TD. From now on, we write
(.; D)

E0→(0; 0) for an arbitrary sequence (.n; Dn) → (0; 0) such that limn→∞ .n=(2Dn)p−1 =
E0 ∈ [0;+∞]. If E0 = 0 then we assume in addition that limn→∞ Dp

n =.n = 0, which
clearly holds when E0 ¿ 0. When E0 = + ∞, we use the convention +∞× 0 = 0.
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Proposition 4.2. Let � ⊂ Rn be a bounded open set. The sequence of functionals
F�;.;D :Lp(�;Rm) → [0;+∞] de<ned by

F�;.;D(u):=



∫
�
W.;D( x

� ;∇u) dx if u∈W 1;p(�;Rm);

+∞ otherwise

�(Lp)-converges as (�; .; D) → (0; 0; 0) with (.; D)
E0→(0; 0) towards the homogenized

functional

Fhom(u) =



∫
�
W hom

E0
(∇u) dx if u∈W 1;p(�;Rm);

+∞ otherwise

with convex density given by

W hom
E0

(�) = inf
w∈W 1;p

] (]0;1[N\B;Rm)

{∫
]0;1[N\B

f1(y; � + ∇w) dy

+E0

∫
B
f∞;p

2 ([w] ⊗ eN ) dŷ
}

;

where f∞;p
2 is the recession function of order p of f2; which is de<ned by

f∞;p
2 (�′):= lim

t→∞
1
tp

f2(t�′)

and [w] is the jump of w on B; that is; [w]:=w+|B − w−|B; where w±|B denotes the
trace of w± on B with w+ =w|{yN¿1=2} and w− =w|{yN¡1=2}.

Proof. In this example we take �= (.; D)∈ ]0; 1] × ]0; 1
2 ]. If we set

r.;D(x):=
{

r if x∈Y \ TD + ZN ;
r. if x∈TD + ZN

then it is direct to verify that {W.;D} satis7es (C1)–(C4). By direct application of
[17, Propositions 4:1–4:3], we obtain that the functional

G�
.;D(v; ]0; 1[N ):=



∫

]0;1[N
W.;D(x; � + ∇v) dx if v∈W 1;p

0 (]0; 1[N ;Rm);

+∞ otherwise

�(Lp)-converges as (.; D)
E0→(0; 0) towards

PG
�
E0

(v; ]0; 1[N ):=

{
IE0 (�x + v) if v∈W 1;p

0 (]0; 1[N \ B;Rm);

+∞ otherwise

with

IE0 (g):=
∫

]0;1[N\B
f1(y;∇g) dy + E0

∫
B
f∞;p

2 ([g] ⊗ eN ) dŷ:
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Moreover, if {v.;D} ⊂ W 1;p
0 (]0; 1[N ;Rm) is a .-minimizing sequence associated with the

minimization of G�
.;D(·; ]0; 1[N ), then {v.;D} is relatively compact in Lp(]0; 1[N ;Rm). The

�(Lp)-convergence of G�
.;D(v; ]0; k[

N ) for an arbitrary k ∈N∗ can be handled in much
the same way. Indeed, it is possible to prove that for every k ∈N∗, the corresponding
functional G�

.;D(v; ]0; k[
N ); �(Lp)-converges as (.; D)

E0→(0; 0) towards

PG
�
E0

(v; ]0; k[N ):=
{

IE0 ;k(�x + v) if v∈W 1;p
0 (]0; k[N \ (B + ZN );Rm);

+∞ otherwise;

where

IE0 ;k(g):=
∫

]0; k[N\(B+ZN )
f1(x;∇g) dx + E0

∫
]0; k[N∩(B+ZN )

f∞;p
2 ([g] ⊗ eN ) dx̂

and if {v.;D} ⊂ W 1;p
0 (]0; k[N ;Rm) is a .-minimizing sequence for {S�

.;D(]0; k[
N )}, then

{v.;D} is relatively compact in Lp(]0; k[N ;Rm). This follows by the same method as
in [18]; we omit the details. Consequently, (H1) holds and, moreover, the relative
compactness of minimizing sequences ensures

lim(.; D)
E0→(0; 0)S�

.;D(]0; k[
N ) = PS

�
E0

(]0; k[N );

where

PS
�
E0

(]0; k[N ):=inf
{
IE0 ;k(�x + v): v∈W 1;p

0 (]0; k[N \ (B + ZN );Rm)
}

for every k ∈N∗. In order to apply Lemma 4.1, the only point remaining concerns the
existence of a .-minimizing sequence { Pw.;D} ⊂ W 1;p

] (]0; 1[N ;Rm) for {S�;]
.;D} such that

M ({ Pw.;D})¡ + ∞. Let {w.;D} ⊂ W 1;p
] (]0; 1[N ;Rm) be a .-minimizing sequence for

{S�;]
.;D}, and set

Pw.;D:=w.;D −
∫

]0;1[N\T
w.;D dy;

which is also a .-minimizing sequence for {S�;]
.;D}. We can apply Lemma C.1 of

Appendix C to deduce that∫
]0;1[N\TD

| Pw.;D|p dy6 c′
∫

]0;1[N\TD

|∇w.;D|p dy

and ∫
TD

| Pw.;D|p dy6 c′
∫

]0;1[N
|∇w.;D|p dy;

where the constant c′ ¿ 0 does not depend on D. Hence∫
]0;1[N

r.;D(y)| Pw.;D(y)|p dy = r
∫

]0;1[N\TD

| Pw.;D(y)|p dy + r.
∫
TD

| Pw.;D(y)|p dy

6 c′′
∫

]0;1[N
r.;D(y)|∇w.;D(y)|p dy
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which together with (C2) yield M ({ Pw.;D})¡ + ∞. Therefore we can apply Theorem
2.2 to this situation, and we obtain a homogenization result with limit density given
by

%( PS
�
E0

) = inf
k∈N∗

inf
w

{
1
kN IE0 ;k(�x + v): v∈W 1;p

0 (]0; k[N \ (B + ZN );Rm)
}

:

But f1(x; ·) and f∞;p
2 are convex, which allows us to consider only periodic functions

in a single minimization problem. This completes the proof.

Remark 4.2. We may distinguish three di;erent qualitative behaviors at the micro-
scopic level depending on the value of E0. If E0 = 0 then the sti;ness of the inclusion
is too low to maintain adherence and at the limit the material is free to separate and
present 7ssures along B. When E0 ∈ ]0;+∞[, there is an elastic restoring potential on B,
which does not forbid 7ssures to appear but penalizes them. If E0 =+∞ then the sti;-
ness of the inclusion is strong enough to prevent 7ssures; in fact, since +∞×0 = 0 and
f∞;p

2 (�)¿ r|�|p, the minimization problem de7ning W hom
E0

(�) has [v] = 0 as an implicit
constraint.

Remark 4.3. Taking into account [17, Proposition 5:2], it is possible to consider the
case

W.;D;A(y; �):=

{
f1(y; �) if y∈Y \ TD;

.f2(
y
A ; �) if y∈TD

under the additional conditions A ≈ D or D=A → +∞ and E0 ∈ [0;+∞[, obtaining a
limit density W hom

E0
(�) of the form

inf
w∈W 1;p

] (]0;1[N\B;Rm)

{∫
]0;1[N\B

f1(y; � + ∇w) dy + E0

∫
B

(fhom
2 )∞;p([w] ⊗ eN ) dŷ

}
:

On the other hand, under suitable connectness conditions, these homogenization results
are valid when B∩@Y �= ∅, that is, when in some directions the inclusions are connected
throughout the whole periodic structure.
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Appendix A

A.1. The Acerbi et al. extension theorem from periodic connected sets

In this paper we consider families of functionals {F�;�} with �¿ 0 and �∈Rk . For
abbreviation, we write s instead of (�; �) when no confusion can arise. Let sn → 0 and
u∈Lp(�;Rm) be such that(

�-lim inf
n→∞ Fsn

)
(u)¡ + ∞:

By de7nition, there exists a sequence un → u in Lp(�;Rm) such that lim inf n→∞ Fsn(un)
¡+∞, hence, up to a subsequence supn∈N {Fsn(un)}¡+∞: Suppose that p∈ ]1;+∞[
and that the family {F�;�} satis7es the following growth condition: there exist constants
r; R¿ 0 and a connected open set E ⊂ RN such that for every v∈W 1;p(�;Rm)

r‖∇v‖pp;�∩�E6F�;�(v)6R(1 + ‖∇v‖pp;�): (A.1)

Since we deal with periodic structures, we assume moreover that E is periodic, i.e. for
all z ∈ZN ; E = z + E. We deduce that

sup
n∈N

{∫
�∩�nE

|∇un|p dx
}

¡ + ∞:

If E = ∅, then a standard argument shows that, up to a subsequence, un * u weakly
in W 1;p, so that u belongs to W 1;p(�;Rm). When E �= ∅, the idea is to extend un

from � ∩ �nE to the whole of �, keeping the above uniform boundedness property.
This extension is not diMcult to construct when the complement of E is discon-
nected (see [15]), and it is no longer possible in the general case. In fact, � ∩ �E
may be disconnected so that we cannot expect to control the W 1;p norm of the ex-
tended function on the whole of �. In Acerbi et al. [2] have considered this ex-
tension problem, and they showed that all the diMculty lies in the behavior near
@�. For the reader’s convenience, we state without proof their precise
result.

Theorem A.1 (Acerbi et al. [2]). Let E be a periodic; connected; open subset of RN ;
with Lipschitz boundary. There exist constants k0; k1; k2 ¿ 0 such that for every
bounded open set � ⊂ RN and �¿ 0; there exists a linear and continuous exten-
sion operator P� : W 1;p(� ∩ �E;Rm) → W 1;p

loc (�;Rm) with:
(i) P�u= u a.e. in � ∩ �E;
(ii)

∫
�(�k0)

|P�u|p dx6 k1
∫
�∩�E |u|p dx,

(iii)
∫
�(�k0)

|∇(P�u)|p dx6 k2
∫
�∩�E |∇u|p dx,

for every u∈W 1;p(� ∩ �E;Rm); where �(8):={x∈� : dist(x; @�)¿8}:
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Appendix B

B.1. An asymptotic formula for parametric subadditive set functions

Let us consider a Carath>eodory function W : RN × RmN → R that satis7es

∀x∈RN ∀�∈RmN ; 06W (x; �)6 c(1 + |�|p)

for some constants c¿ 0 and p¿ 1. For each bounded open set A∈Ub(RN ), we set

S�(A):=inf
{∫

A
W (x; � + ∇u) dx: u∈W 1;p

0 (A;Rm)
}

; (B.1)

where �∈RmN is 7xed. We have thus de7ned a set function S�: Ub(RN ) → [0;+∞[,
which satis7es

06S�(A)6 c(1 + |�|p)LN (A):

De&nition B.1. Let S :Ub(RN ) → [0;+∞[ be a set function.
(i) S is called subadditive if for every A; B; C ∈Ub(RN ) with B ⊂ A; C ⊂ A;

B ∩ C = ∅ and LN (A \ (B ∪ C)) = 0; then S(A)6S(B) + S(C).
(ii) If for every z ∈ZN and A∈Ub(RN ); S(z + A) =S(A); then S is said to be

ZN -invariant.

It is easy to see that the set function S� de7ned by (B.1) is subadditive. If we
suppose in addition that W is [0; 1[N -periodic with respect to the 7rst variable, then
S� is ZN -invariant.

As a basic tool of some localization methods, the function S� have been used to
characterize the limit densities in �-convergence problems. In the case of homogeniza-
tion, one is led to study the asymptotic behavior as � → 0 of

1
LN (Q)

inf
{∫

Q
W
(x
�
;∇u

)
dx: u∈ �x + W 1;p

0 (Q;Rm)
}

=
S�((1=�)Q)
LN ((1=�)Q)

;

where Q is an open cube of RN and we denote by LN (Q) the Lebesgue measure of
Q.

Given a subadditive and ZN -invariant set function S :Ub(RN ) → [0;+∞[, de7ne

%(S):= inf
k∈N∗

{
1
kN S(]0; k[N )

}
:

It is not diMcult to show that

lim
�→0+

S((1=�)Q)
LN ((1=�)Q)

= %(S); (B.2)

for every Q∈Cub(RN ) where we denote by Cub(RN ) the class of all open cubes
in RN . This fact has been used in some homogenization problems to identify the
limit homogenized density W hom(�) with %(S�). A generalization of this result to the
stochastic setting (see [16] and references therein) has been used to deal with the
homogenization of stochastic functionals; see, for instance [1,11,21]. For other results
in this connection see [18].
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In the parametric case that is considered in this paper, one deals with a parametric
family {S�

�} of subadditive and ZN -invariant set functions, which is associated with
{W�}. We are going to give a simple generalization of the asymptotic formula (12)
for such parametric set functions. More precisely, we consider a family {S�} of set
functions de7ned on Ub(RN ) that satis7es:

(S1) For each �∈�; S� is subadditive and ZN -invariant.
(S2) There exists c¿ 0 such that 06S�(A)6 cLN (A), for every A∈Ub(RN ) and

for every �∈�.
(S3) Let {ak} ⊂ R be such that for each k ∈N∗; lim sup

�
!0→0

S�(]0; k[
N )6 ak :

Lemma B.1. If (S1)–(S3) hold then for each Q∈ cub(RN ) we have that:

(a) lim sup
(�;�)→(0;0)

�∈!0

S�((1=�)Q)
LN ((1=�)Q) 6 inf

k∈N∗

{ ak
kN

}
;

(b) lim inf
(�;�)→(0;0)

�∈!0

S�((1=�)Q)
LN ((1=�)Q) ¿ lim inf

�
!0→0

%(S�):

In particular; if

lim inf
�

!0→0
%(S�)¿ inf

k∈N∗

{ ak

kN

}
(B.3)

then

lim
(�;�)→(0;0)

�∈!0

S�((1=�)Q)
LN ((1=�)Q)

= inf
k∈N∗

{ ak

kN

}
:

Remark B.1. In the nonparametric case S� ≡ S, we can take ak =S(]0; k[N ), for
which (B.3) holds so that we obtain (B:2) as a corollary.

Remark B.2. It is easy to see that under (S3)

lim sup
�

!0→0

%(S�)6 inf
k∈N∗

{ ak

kN

}
:

Thus, without loss of generality we can replace (B.3) by lim
�

!0→0
%(S�) = inf k∈N∗{ak=kN}.

Proof of Lemma B.1. For (a), 7x Q∈ cub(RN ). It is easy to see that for every k ∈N∗

and �¿ 0 small enough, there exist k� ∈N∗ and z� ∈ZN such that

(k� − 2)]0; k[N + k(z� + ê) ⊂ 1
�
Q ⊂ k�]0; k[N+kz�

where ê:=(1; 1; : : : ; 1). By subadditivity and ZN -invariance, we have

S�

(
1
�
Q
)
6 (k� − 2)NS�(]0; k[

N ) + S�

(
1
�
Q \ [(k� − 2)[0; k]N + k(z� + ê)]

)
:
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Since, up to a set of zero Lebesgue measure, the set (1=�)Q\[(k�−2)[0; k]N +k(z�+ ê)]
may be written as the disjoint union of kN

� − (k� − 2)N integer translations of open sets
contained in ]0; k[N , we deduce that

S�

(
1
�
Q
)
6 (k� − 2)NS�(]0; k[

N ) + (kN
� − (k� − 2)N )ckN :

We thus obtain the estimate

S�((1=�)Q)
LN ((1=�)Q)

6
S�(]0; k[

N )
kN +

kN
� − (k� − 2)N

(k� − 2)N
c:

Since k� → ∞ as � → 0,we deduce that lim sup (�;�)→(0;0)
�∈!0

S�((1=�)Q)=LN ((1=�)Q)6 ak
kN ,

for every k ∈N∗ as we claimed.
To prove (b), we 7x Q∈Cub(RN ) and write for suitable k� ∈N∗ and z� ∈ZN

↔ (k� − 2)]0; 1[N+z� + ê ⊂ 1
�
Q ⊂ ]0; k�[N + z�:

We have

S�(]0; k�[
N )6S�

(
1
�
Q
)

+ S�

(
(]0; k�[N + z�) \ 1

�
PQ
)

:

Similarly to (b), we can deduce that

%(S�)6
S�(]0; k�[

N )
kN
�

6
S�((1=�)Q)
LN ((1=�)Q)

+
kN
� − (k� − 2)N

(k�)N
c:

Hence

lim inf
�

!0→0
%(S�)6 lim inf

(�;�)→(0;0)
�∈!0

S�((1=�)Q)
LN ((1=�)Q)

;

which completes the proof.

Appendix C

C.1. A technical lemma

We denote by Ŷ the unit cell [0; 1[N−1. An element y∈Y is denoted by (ŷ; yN )
where ŷ∈ Ŷ and yN ∈ [0; 1[. Given 8; G∈ ]0; 1

2 [, let us consider an open set ! ⊂⊂ Ŷ
with Lipschitz boundary and a Lipschitz function H :! → ]8; 1 − G[ ⊂ ]0; 1[. The set

B:={(ŷ; H(ŷ)): ŷ∈!}
is then a Lipschitz manifold of dimension N − 1. Fix D0 ∈ ]0;min{8; 1 − G}] and for
every D∈ ]0; D0], de7ne the set

TD:=
{

(ŷ; yN ): ŷ∈!; yN ∈
[
H(ŷ) − D

2
; H(ŷ) +

D
2

]}
:

Note that in the example of Section 4.3 we have H ≡ 1
2 and D0 = 1=2.
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Lemma C.1. If w∈W 1;p
] (]0; 1[N ;Rm) satis<es

∫
]0;1[N\TD0

w dy= 0; then there exists a
constant c¿ 0 such that for every D∈ ]0; D0] we have that

(i)
∫

]0;1[N\TD

|w|p dy6 c
∫

]0;1[N\TD

|∇w|p dy

and

(ii)
∫
TD

|w|p dy6 c
∫

]0;1[N
|∇w|p dy:

Proof. First, let us de7ne I+
D ; I

−
D : Ŷ → R by

I+
D (ŷ):=

{
H(ŷ) + D

2 if ŷ∈!;
1
2 otherwise

and

I−
D (ŷ):=

{
H(ŷ) − D

2 if ŷ∈!;
1
2 otherwise:

Set Y+
D :={(ŷ; yN )∈ ]0; 1[N : yN ¿I+

D (ŷ)} and Y−
D :={(ŷ; yN )∈ ]0; 1[N : yN ¡I−

D (ŷ)},
so that ]0; 1[N \ TD =Y+

D ∪ Y−
D ∪ {(ŷ; 1

2 )∈ ]0; 1[N : ŷ∈ Ŷ \ !}. We 7rst prove∫
]0;1[N−1

|w(ŷ; I+
D (ŷ))|p dŷ6 c′

∫
]0;1[N\TD

|∇w|p dy; (C.1)

where c′ is a constant which depends on 8; G; !; H and p. Let V; V ′ ⊂⊂ RN−1 × ]0; 1[
be two open neighborhoods of T such that V ⊂⊂ V ′. Consider a cut-o; function ’
between V and V ′, i.e., ’∈D(V ′), 06’6 1 and ’ ≡ 1 on V . Setting u:=’w, we
have that

−w(ŷ; I+
D (ŷ)) =

∫ 1

I+
D (ŷ)

@u
@yN

(ŷ; t) dt

for LN−1-almost every ŷ∈ ]0; 1[N−1. By the HSolder inequality we deduce that

|w(ŷ; I+
D (ŷ))|p6

∫ 1

I+
D (ŷ)

∣∣∣∣ @u
@yN

(ŷ; t)
∣∣∣∣
p

dt;

and the Fubini theorem yields∫
]0;1[N−1

|w(ŷ; I+
D (ŷ))|p dŷ6

∫
]0;1[N−1

(∫ 1

I+
D (ŷ)

∣∣∣∣ @u
@yN

(ŷ; t)
∣∣∣∣
p

dt

)
dŷ

=
∫
Y+
D

∣∣∣∣ @u
@yN

∣∣∣∣
p

dy:

But ∫
Y+
D

∣∣∣∣ @u
@yN

∣∣∣∣
p

dy6
∫

]0;1[N\TD

|∇u|p dy=
∫

]0;1[N\T
|∇u|p dy +

∫
T\TD

|∇w|p dy

6 2p‖∇’‖p∞
∫

]0;1[N\T
|w|p dy + (2p + 1)

∫
]0;1[N\TD

|∇w|p dy:
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Hence, by the Poincar>e–Wirtinger inequality∫
]0;1[N−1

|w(ŷ; I+
D (ŷ))|p dŷ6 [2p(c‖∇’‖p∞ + 1) + 1]

∫
]0;1[N\TD

|∇w|p dy;

where the constant c depends on 8; G; !; H and p. By similar arguments we obtain the
inequality∫

]0;1[N−1
|w(ŷ; I−

D (ŷ))|p dŷ6 c′
∫

]0;1[N\TD

|∇w|p dy:

To prove (i) we write∫
]0;1[N\TD

|w|p dy=
∫
Y+
D

|∇w|p dy +
∫
Y−
D

|∇w|p dy: (C.2)

We have

w(ŷ; yN ) =w(ŷ; I+
D (ŷ)) +

∫ yN

I+
D (ŷ)

@w
@yN

(ŷ; t) dt

for LN−1-almost every ŷ∈ ]0; 1[N−1 and L1-almost every yN ∈ ]I+
D (ŷ); 1[. Using the

HSolder inequality we infer that

|w(ŷ; yN )|p6 |w(ŷ; I+
D (ŷ))|p +

∫ 1

I+
D (ŷ)

∣∣∣∣ @w@yN
(ŷ; t)

∣∣∣∣
p

dt

hence that∫ 1

I+
D (ŷ)

|w(ŷ; t)|p dt6 |w(ŷ; I+
D (ŷ))|p +

∫ 1

I+
D (ŷ)

∣∣∣∣ @w@yN
(ŷ; t)

∣∣∣∣
p

dt

for LN−1-almost every ŷ∈ ]0; 1[N−1. From (C.1) and the Fubini theorem, it follows
that ∫

Y+
D

|w|p dy6 (c′ + 1)
∫

]0;1[N\TD

|∇w|p dy:

A similar inequality holds for the second term in the right-hand side of (C.2). Thus
(i) follows.

To establish (ii), we apply again the same arguments to obtain∫
!

(∫ I+
D (ŷ)

I−
D (ŷ)

|w(ŷ; t)|p dt

)
dŷ6

∫
!
|w(ŷ; I+

D (ŷ))|p dŷ

+
∫
!

(∫ I+
D (ŷ)

I−
D (ŷ)

∣∣∣∣ @w@yn
(ŷ; t)

∣∣∣∣
p

dt

)
dŷ

and 7nally∫
TD

|w|p dy6max{c′; 1}
∫

]0;1[N
|∇w|p dy;

which 7nishes the proof.
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