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FINITE RANK APPROXIMATION BASED METHOD FOR
SOLVING THE RTE IN STELLAR ATMOSPHERES AND

APPLICATION TO AN INVERSE PROBLEM

Axel Osses1, 2 and Olivier Titaud3

Abstract. The Finite Rank Approximation (FRA) based method is
well known in operator approximation theory but it is also useful for
suggesting numerical methods for solving integral equations. In this
document we describe two FRA methods for the numerical resolution of
the integral formulation of the 1D Radiative Transfer Equation (RTE)
posed in a static slab; we browse some advantages of them (especially
the possibility to control the error) and we give some reduction of
computation technics (iterative refinement schemes) which can be used
with these methods. Numerical results obtained for a realistic Sun
atmosphere model are given. In the last section we give an example
of an inverse problem associated to the RTE: we show the iterative
recovering of the albedo from the measurement of the outgoing specific
intensity at a surface of the considered domain.

1 The transfer equation in stellar atmospheres

We consider a simplified 1D steady-state transfer equation posed in a static slab,
stratified in plane-parallel homogeneous layers (Mihalas 1970): for all τ ∈]0, τ⋆[
and all µ ∈ [−1, 1],

µ
∂I

∂τ
(τ, µ) = I(τ, µ) −

̟(τ)

2

∫ 1

−1

I(τ, µ′) dµ′ − S⋆(τ), (1.1)
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where I, ̟ and S⋆ denote the specific intensity, the albedo and the primary creation

rate respectively. The position variable τ is the optical depth at a given frequency,
whose maximum value τ⋆ is the optical thickness of the atmosphere. The cosine of
the angle of incidence (zenith angle) is denoted by µ. We suppose moreover that
we know the specific intensity of the incoming radiation on both boundary planes,
i.e. {

I(0, µ) = I−0 (µ) −1 ≤ µ < 0,
I(τ⋆, µ) = I+

⋆ (µ) 0 < µ ≤ 1,
(1.2)

where I−0 and I+
⋆ are given functions (see Figure 8a section 5). We define the

source function by

S(τ) = S⋆(τ) +
̟(τ)

2

∫ 1

−1

I(τ, µ) dµ, τ ∈ [0, τ⋆]. (1.3)

By injecting (1.3) in (1.1) we get an expression of I in terms of S and the boundary
values I−0 and I+

⋆ : for all τ ∈ [0, τ⋆],

I(τ, µ) =





I−0 (µ) exp

[
τ

µ

]
−

1

µ

∫ τ

0

S(s) exp

[
τ − s

µ

]
ds, µ < 0,

S(τ), µ = 0,

I+
⋆ (µ) exp

[
−

τ⋆ − τ

µ

]
+

1

µ

∫ τ⋆

τ

S(s) exp

[
−

s− τ

µ

]
ds, µ > 0.

(1.4)

The source function satisfies the following weakly integral equation

S(τ) = S0(τ) +
̟(τ)

2

∫ τ⋆

0

E1(|τ − σ|)S(σ) dσ, τ ∈ [0, τ⋆], (1.5)

where the free term S0 is given for all τ ∈ [0, τ⋆] by

S0(τ) = S⋆(τ) +
̟(τ)

2

(∫ 0

−1

I−0 (µ) exp(τ/µ) dµ

+

∫ 1

0

I+
⋆ (µ) exp[−(τ⋆ − τ)/µ] dµ

)
. (1.6)

The kernel E1 is the first element of the exponential integral functions family
(Ek)k≥1 (Gradshteyn & Ryzhik 2000); these functions are defined for all τ > 0 if
k = 1 and for all τ ≥ 0 if k > 1 by

Ek(τ) =

∫ 1

0

exp(−τ/µ)µk−2 dµ k ≥ 1. (1.7)

E1 is a weakly singular function at zero, i.e. it is singular at zero but it remains
integrable on [0, τ⋆]. Equation (1.5) belongs to a larger class of equations named
Fredholm integral equations.
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2 The FRA methods

The finite rank approximate (FRA) method is a very general method useful for
operators approximations. It is used in spectral analysis but it can also be used
to suggest and study some numerical methods for integral or partial differential
equations (Ahues et al. 2001).

2.1 The RTE involves two operators

Equation (1.5) involves two functional operators acting on the unknown function
S: the identity operator, denoted I, and an integral operator T defined by

(TS)(τ) =
̟(τ)

2

∫ τ⋆

0

E1(|τ − σ|)S(σ) dσ, τ ∈ [0, τ⋆]. (2.1)

Once we note this, we can remark that equation (1.5) can be written as

(I − T )S = S0. (2.2)

Remark on notations. In the astrophysical literature, it is usual to introduce
the lambda operator as defined by (ΛS)(τ) = 1

2

∫ τ⋆

0
E1(|τ − σ|)S(σ)dσ and then

T = ̟Λ.

Solvability of the integral equation. It is of importance to know if an equation
admits a solution and if it is unique or not. If

sup
τ∈[0,τ⋆]

{|̟(τ)|} ×
(
1 − E2

(τ⋆

2

))
< 1, (2.3)

then Equation (2.2) admits a unique solution for each S0, which continuously
depends on it (Titaud 2001). For example, as E2

(
τ⋆

2

)
< 1, this condition is

satisfied if the albedo is less than or equal to one within the slab.

2.2 The two main ideas of the FRA methods

FRA methods are based on two main ideas. The first one is to replace into the
original equation the exact operator T by an approximate one Tn, where n refers
to some accuracy. We denote by Sn the solution of the corresponding approximate
equation, which is

(I − Tn)Sn = S0. (2.4)

The second and main idea is to choose Tn as a finite rank operator, that is an
operator whose image set is of finite rank: the image of a function Sn by such
operator is a finite linear combination of a family of given functions, i.e.

TnSn =

n∑

j=1

xn(j)en,j . (2.5)
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Then, once the coefficients xn(j), 1 ≤ j ≤ n, are determined (see below), from (2.4)
we get the following very important statement to recover Sn:

Sn =

n∑

j=1

xn(j)en,j + S0. (2.6)

Before browsing the general case, we give in the following sections two ways to
construct such an operator Tn and the corresponding way to compute the coeffi-
cients xn(j), 1 ≤ j ≤ n.

Solvability of the approximate solution. If Tn is close enough to T (in some
sense), then equation (2.4) admits a unique solution (Ahues et al. 2001).

2.2.1 First example: product integration based operator

Construction of Tn. Let us define a discretization grid on [0, τ⋆]:

0 = τ0 < τ1 · · · < τn−1 < τn = τ⋆. (2.7)

Then the statement TSn(τ) =
n∑

j=1

̟(τ)

2

∫ τj

τj−1

E1(|τ − σ|)Sn(σ) dσ and an extended

integral mean value theorem suggest the following approximation:

(TSn)(τ) ≈

n∑

j=1

Sn(τj)
̟(τ)

2

∫ τj

τj−1

E1(|τ − σ|) dσ. (2.8)

Consequently, we define Tn as

(TnSn)(τ) =

n∑

j=1

Sn(τj)
̟(τ)

2

∫ τj

τj−1

E1(|τ − σ|) dσ, (2.9)

and finally we identify

xn(j) = Sn(τj), (2.10)

en,j(τ) =
̟(τ)

2

∫ τj

τj−1

E1(|τ − σ|) dσ. (2.11)

Note that the integral term in (2.11) can be expressed in terms of E2 (Titaud
2001).

Determination of the entries xn(j). In this case, we remark that the coefficient
xn(j) of the linear combination (2.5) corresponds to the evaluation of Sn at the
node τj (this is not always the case, as we will see in the next example). To
get an equation for these entries, we evaluate both members of the approximate
equation (2.4) at each node τi: for all 1 ≤ i ≤ n, we have

Sn(τi) − (TnSn)(τi) = S0(τi), (2.12)
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that is, following definition (2.10) of xn(i),

xn(i) −

n∑

j=1

xn(j)en,j(τi) = S0(τi). (2.13)

If we define

An(i, j) = en,j(τi) =
̟(τi)

2

∫ τj

τj−1

E1(|τi − σ|) dσ, (2.14)

bn(i) = S0(τi), (2.15)

Equations (2.13) can be written as the linear system

(In − An)xn = bn, (2.16)

where In denotes the identity matrix of order n. Once this system is solved (see
section 4 later), we get from (2.6) and (2.11)

Sn(τ) =
̟(τ)

2

n∑

j=1

xn(j)

∫ τj

τj−1

E1(|τ − σ|) dσ + S0(τ), τ ∈ [0, τ⋆]. (2.17)

One remarks that this way to construct Tn is natural because it involves the values
of the approximate solution Sn at the nodes of the grid. But this aspect hides a bad
feature: this method does not converge uniformly (Largillier & Titaud 2002), i.e.
the speed of the convergence at a point depends on it. With a uniform convergence,
the approximate solution converges at the same speed at all point, which is very
useful to get better approximations. In the following example (projection based
method) we construct a uniformly convergent method.

2.2.2 Second example: a projection based method

Construction of Tn. Let us define a grid of n ≥ 2 nodes on [0, τ⋆] by

0 = τ1 < τ2 < · · · < τn−1 < τn = τ⋆. (2.18)

We approach TSn by piecewise affine interpolations, as shown in Figure 1.

τ1 τj−1 τj τj+1 τ⋆

1
TSn(τ)

TnSn(τ)

Fig. 1. Piecewise affine interpo-
lation (dashed) of TSn (solid).

1
en,j

1

τ1 τj−1 τj τj+1 τ⋆

Fig. 2. Hat function.
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Between two nodes, that is, for all τ ∈ [τj , τj+1], 1 ≤ j ≤ n − 1 we have

TnSn(τ) = (TSn)(τj) +
(TSn)(τj+1) − (TSn)(τj)

τj+1 − τj

(τ − τj). (2.19)

Introducing the characteristic functions of the intervals [τj , τj+1], 1 ≤ j ≤ n − 1,

for all τ ∈ [0, τ⋆], 1[τj,τj+1](τ) =

{
1 if τ ∈ [τj , τj+1],
0 otherwise,

(2.20)

we expand expression (2.19) for all τ ∈ [0, τ⋆]:

TnSn(τ) =

n−1∑

j=1

[
(TSn)(τj) +

(TSn)(τj+1) − (TSn)(τj)

τj+1 − τj

(τ − τj)

]
· 1[τj,τj+1](τ)

=

n−1∑

j=1

(TSn)(τj)
τj+1 − τ

τj+1 − τj

· 1[τj ,τj+1](τ)

+
n−1∑

j=1

(TSn)(τj+1)
τ − τj

τj+1 − τj

· 1[τj,τj+1](τ)

=

n−1∑

j=1

(TSn)(τj)
τj+1 − τ

τj+1 − τj

· 1[τj ,τj+1](τ)

+

n∑

j=2

(TSn)(τj)
τ − τj−1

τj − τj−1
· 1[τj−1,τj ](τ)

= (TSn)(τ1)
τ2 − τ

τ2 − τ1
· 1[τ1,τ2](τ) + (TSn)(τn)

τ − τn−1

τn − τn−1
· 1[τn−1,τn](τ)

+

n−1∑

j=2

(TSn)(τj)

[
τ − τj−1

τj − τj−1
· 1[τj−1,τj ](τ) +

τj+1 − τ

τj+1 − τj

· 1[τj,τj+1](τ)

]
.

(2.21)

If we define the family (en,j)
n
j=1 of piecewise affine functions — so called hat

functions (see Figure 2 above) — by

en,1(τ) =
τ2 − τ

τ2 − τ1
· 1[τ1,τ2](τ), τ ∈ [0, τ⋆], (2.22)

en,n(τ) =
τ − τn−1

τn − τn−1
· 1[τn−1,τn](τ), τ ∈ [0, τ⋆], (2.23)

and for 2 ≤ j ≤ n − 1

en,j(τ) =
τ − τj−1

hj

1[τj−1,τj](τ) +
τj+1 − τ

hj+1
1[τj,τj+1](τ), τ ∈ [0, τ⋆], (2.24)

where
hj = τj − τj−1, 2 ≤ j ≤ n, (2.25)
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then Equality (2.21) becomes

(TnSn)(τ) =
n∑

j=1

(TSn)(τj)en,j(τ). (2.26)

Finally, identifying

xn(j) = (TSn)(τj), (2.27)

we get the general form (2.5) which allows us to look at Tn as a finite rank operator.

Determination of the entries xn(j). In this case, we remark that the coefficient
xn(j) of the linear combination (2.5) corresponds to the evaluation of (TSn) at the
node τj . In order to get equations for these entries, we apply T on both members
of equation (2.4) before evaluating them at each node τi. We get, for all 1 ≤ i ≤ n,

(TSn)(τi) − [T (TnSn)](τi) = (TS0)(τi), (2.28)

(TSn)(τi) −
n∑

j=1

xn(j)(Ten,j)(τi) = (TS0)(τi). (2.29)

If we define

An(i, j) = (Ten,j)(τi) =
̟(τi)

2

∫ τ⋆

0

E1(|τi − σ|)en,j(σ) dσ, (2.30)

bn(i) = (TS0)(τi) =
̟(τi)

2

∫ τ⋆

0

E1(|τi − σ|)S0(σ) dσ, (2.31)

and if we take into account definition (2.27) of xn, Equations (2.29) can be written
as the linear system

(In − An)xn = bn. (2.32)

Once this system is solved (see section 4), we get from (2.6)

Sn =
n∑

j=1

xn(j)en,j + S0, (2.33)

where (en,j)
n
j=1 are defined by (2.22)-(2.24). The entries of the matrix An defined

by (2.30) can be expressed in terms of the exponential integral functions E2 and
E3 (Titaud 2001). One can notice that these entries do not correspond to the
values of the approximate solution Sn at the nodes of the grid but to the value
of the image of it by the exact operator T . This method is uniformly convergent,
contrary to the product integration method described above.

Remarks. This method uses affine interpolations but it can be generalized to
polynomial interpolations of higher order (Ahues et al. 2001).
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2.2.3 General case

Suppose that we have constructed an approximate operator Tn with a given family
of basis functions (en,j)

n
j=1, i.e. such that

TnSn =

n∑

j=1

xn(j)en,j . (2.34)

From the two previous examples, it is clear that the coefficients xn(j) of the linear
combination depend linearly on Sn. Then xn(j) is a real valued linear function of
Sn and we will write

xn(j) = ℓn,j(Sn), (2.35)

which gives in the definition of Tn:

TnSn =

n∑

j=1

ℓn,j(Sn) × en,j. (2.36)

The approximate equation (2.4) becomes

Sn −

n∑

j=1

ℓn,j(Sn) × en,j = S0. (2.37)

Now, if we apply ℓn,i, i = 1 . . . n, on both members of the previous equality, we
get

ℓn,i(Sn) −

n∑

j=1

ℓn,j(Sn) × ℓn,i(en,j) = ℓn,i(S0), 1 ≤ i ≤ n. (2.38)

If we set finally
An(i, j) = ℓn,i(en,j), bn(i) = ℓn,i(S0), (2.39)

it is clear that equalities (2.38), which are valid for all i = 1 . . . n, can be written
as the following linear system

(In − An)xn = bn, (2.40)

where In denotes the identity matrix of order n. In the following An is called
matrix of the discretized problem. Once this system is solved, we get Sn by (2.35)
and (2.37):

Sn(τ) =

n∑

i=1

xn(i)en,i(τ) + S0(τ), τ ∈ [0, τ⋆]. (2.41)

It is important to notice that Sn is known all over [0, τ⋆]. We have got an ex-
pression of Sn in terms of τ which allows us to compute some integrals where Sn

is involved without other approximations: for instance, we can inject Sn in the
solution (1.4) to get an approximation of the specific intensity (see the numerical
experiment section 5). This feature is also useful in the error analysis (see the next
section). In the case of product integration method, from (2.10) and (2.35), we
identify ℓn,i(Sn) = Sn(τi). Similarly, in the case of projection method, from (2.27)
and (2.35), we identify ℓn,i(Sn) = (TSn)(τi).
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3 Error analysis

FRA methods give us an approximate solution Sn of the exact one S. In order
to know if the approximation is close to the solution, we need to estimate the
difference

en = Sn − S. (3.1)

We call this error the discretization error because it comes from the method used
to approach the original problem by a discretization method — the subscript n
refers to it. Except for some particular cases where the solution of (1.5) is known
(Rutily & Bergeat 1994), it is obviously impossible to compute en. We need then
to find other ways to evaluate the quality of the approximate solution.

3.1 Error bounds

Any good numerical method provides a bound Mn of the error

‖en‖ = ‖Sn − S‖ ≤ Mn, (3.2)

which generally depends on the discretization method, on some parameters of the
problem and on the largest grid step of the discretization grid

h = max
2≤j≤n

|τj − τj−1|. (3.3)

For FRA methods applied to problem (1.5) we have Mn = Mn(τ⋆, ̟, E1, h). The
norm ‖ · ‖ must be chosen accordingly to the functional space which S and Sn

belong to. This technical aspect will not be detailed and we will assume that the
norm is the usual one in the space of continuous functions, i.e.

‖S‖ = sup
τ∈[0,τ⋆]

|S(τ)|. (3.4)

This norm is called infinity norm or uniform norm. The first way to control the
error is then to fix the parameters of the numerical method in order to get Mn as
smaller as we want. But, in some cases these bounds can not be used in practice
because there are too pessimistic (Ahues et al. 2002). Some relative error bounds
for the FRA methods described above are given in (Ahues et al. 2002; Titaud
2001).

3.2 Residuals

Another way to evaluate the quality of an approximate solution Sn is to estimate
the discretization residual, which is defined by

rn = (I − T )Sn − S0, (3.5)

where the subscript n also refers to the discretization method. This function
estimates how the approximate solution Sn solves the exact equation (2.2) at each

point of the interval. A small residual means that (I − T )Sn effectively predicts
the right-hand side S0.



10 Title : will be set by the publisher

3.2.1 The residual equation

As problem (2.2) is linear, any error e on the exact solution satisfies the same
equation as the unknown S when the second member S0 is replaced by the corre-
sponding residual r. This important relationship is called the residual equation:

(I − T )e = r. (3.6)

We can derive it by noting that the residual associated with the exact solution S
is zero: (I − T )S − S0 = 0. This equation is the key of residual correction technic

whose aim is to refine some approximate solutions (see section 4). If we define the
norm of the operator T by

‖T ‖ = sup{‖Tx‖, ‖x‖ = 1}, (3.7)

and if we suppose that (I−T ) is invertible (that is, equation (2.2) admits a unique
solution), from (3.6) and the well known inequality ‖(I − T )−1‖ ≤ 1/(1 − ‖T ‖),
we can derive a first bound for the error in terms of the residual:

‖e‖ ≤
1

1 − ‖T ‖
‖r‖. (3.8)

There is another way to know how the residual measures the error in terms of the
condition number of the operator (I − T ), defined by

κ(I − T ) = ‖I − T ‖ × ‖(I − T )−1‖ ≥ 1. (3.9)

On the first hand, noting that (I − T )e = r and S = (I − T )−1S0, we get ‖r‖ ≤
‖I − T ‖ × ‖e‖ and 1/‖S0‖ ≤ ‖(I − T )−1‖/‖S‖. On the second hand, using the
inverse relations e = (I−T )−1r and (I−T )S = S0, we get ‖e‖ ≤ ‖(I−T )−1‖×‖r‖
and 1/‖S‖ ≤ ‖I − T ‖/‖S0‖. Mixing these two inequalities we get

1

κ(I − T )

‖r‖

‖S0‖
≤

‖e‖

‖S‖
≤ κ(I − T )

‖r‖

‖S0‖
. (3.10)

For example, suppose that we have reached a relative residual ‖r‖/‖S0‖ = 10−2.
If the condition number is large, for instance κ(I −T ) = 105, then we have 10−7 ≤
‖e‖/‖S‖ ≤ 103: the relative error can be large although the relative residual is
small. If the condition number is small, say κ(I−T ) = 10, then 10−3 ≤ ‖e‖/‖S‖ ≤
10−1 and the relative error is necessarily small.

3.2.2 Case of the projection method

Suppose that S0 =
∑n

j=1 sn(j)en,j . Then we get the following expression of the
discretization residual of the approximate solution (2.33) of problem (1.5) given
by the projection based method: for all τ ∈ [0, τ⋆], we have

rn(τ) =

n∑

j=1

(yn(j) − sn(j))en,j(τ) − yn(j)
̟(τ)

2

∫ τ⋆

0

E1(|τ − σ|)en,j(σ) dσ. (3.11)
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It is important to notice that since the above integrals have got an expression in
terms of E2 and E3, it is possible to compute the discretization residual for all

τ ∈ [0, τ⋆].

4 Resolution of the linear system

4.1 Global error

FRA methods, as quite all numerical methods, involve the resolution of a linear
system and then suffer from the impossibilities to compute exactly the entries of the
discretization matrix An and to compute exactly the solution of the system (In −
An)xn = bn. Let us denote by x̂n the computed solution of the linear system (2.40)

and Ŝn the corresponding approximation of Sn, i.e.

Ŝn =

n∑

j=1

x̂n(j)en,j + S0. (4.1)

Then, the numerical method used to solve the linear system will add the following
computation error:

ê = Ŝn − Sn =

n∑

j=1

(x̂n − xn)(j)en,j , (4.2)

and finally we get the following bound for the global error e = Ŝn − S in the
numerical resolution of the transfer equation with a FRA method (or any numerical
methods which involves the resolution of a linear system):

‖e‖ ≤ ‖ê‖ + ‖en‖. (4.3)

To get a coherent final approximation, one should choose a linear system solver
which ensures a computation error ‖ê‖ of the order of the discretization error ‖en‖.
In other words, it is useless to use a sophisticated system solver if the discretization

error remains large. The associated global residual is given by:

r = (I − T )Ŝn − S0 =

n∑

j=1

x̂n(j)(I − T )en,j − TS0. (4.4)

It is linked with the global error by the residual equation (3.6). Remark that

generally the inequality ‖r‖ ≤ ‖r̂‖+‖rn‖ does not hold, where r̂ = (I−Tn)Ŝn−S0

is the computation residual, i.e. the residual of Ŝn with respect to the approximate
equation (I − Tn)Sn = S0. Indeed we have

r = (I − T )(ê + en) = (I − Tn)ê + (Tn − T )ê + rn = (Tn − T )ê + r̂ + rn.
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4.2 Gaussian Elimination method for dense unstructured linear systems

The choice of the numerical method to solve a linear system highly depends on the
structure of the corresponding matrix. Almost all numerical methods for integral
equations involve the resolution of a square dense linear system and FRA methods
have got this feature. Moreover, if the discretization grid is not uniform or if the
albedo is not constant, this system is unstructured. Figure 3 shows an example of
such a discretization matrix for a non-uniform grid and a variable albedo.

i 1 2 3 4 5

τi 0, 0 0, 1 1, 0 4, 0 7, 445

̟(τi) 5, 29.10−01 3, 27.10−03 7, 46.10−04 3, 98.10−04 5, 59.10−04

An =

2

6

6

6

6

4

4, 31.10−02 1, 31.10−01 8, 07.10−02 9, 22.10−03 1, 91.10−04

1, 87.10−04 1, 22.10−03 6, 13.10−04 6, 53.10−05 1, 32.10−06

4, 33.10−06 9, 54.10−05 5, 30.10−04 6, 01.10−05 8, 76.10−07

3, 92.10−08 6, 14.10−07 3, 13.10−05 3, 37.10−04 2, 74.10−05

1, 02.10−09 1, 53.10−08 4, 42.10−07 3, 97.10−05 2, 40.10−04

3

7

7

7

7

5

Fig. 3. Example of a discretization matrix for a non-uniform grid
projection method and a variable albedo.

In their introduction to the Gaussian Elimination (GE) method (also known as the
LU decomposition method), Golub & Van Loan (1996) say that it is “the algorithm
of choice when [the matrix] is square, dense and unstructured”. One can find in
(Golub & Van Loan 1996) different implementations of GE based algorithms. A
very complete error and stability analysis of GE with historical references can be
found in (Higham 1996).

4.3 Iterative refinement

Description of Iterative Refinement (IR). Suppose we want to compute a
very accurate approximation SN , that is to solve the approximate equation

(I − TN)SN = S0, (4.5)

where the number of grid nodes N is very large. In order to attain this given
precision, the largest grid step hN will be so small that the dimension of the
corresponding linear system (2.40) of rank N will be prohibitively large from a
computational point of view.

Refinement schemes allow us to reach iteratively the exact solution of a large
scale linear system by means of the resolution of a sequence of linear systems of
moderate fixed size. This technic is often implemented with the LU decomposi-
tion method because the factorization of the matrix involved in the small system
can be reused. Next, n refers to a coarse approximation, while the subscript N
denotes a fine one. To understand the structure of the refinement schemes we
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need to introduce the resolvent operator of the operator T involved in the integral
equation (2.2):

R = (I − T )−1. (4.6)

Then the solution of equation (I −T )S = S0 is given by S = RS0. If we denote by
Rn a coarse approximation of the exact resolvent operator R, then Sn = RnS0 is an
approximation of S. Section 2.2 was devoted to describe how to construct such an

approximate resolvent by the FRA method: we used Rn = R
(A)
n = (I −Tn)−1 but

it can be generalized (see below). The process of iterative refinement is based on
the residual correction technic which consists in using the residual equation (3.6)
to improve an approximate solution computed by a numerical method. The basic
scheme is the following: let S(0) be an approximation of S; for k = 0, 1, . . . , do
the following three steps:

◦ Compute the finest approx. residual r(k) = (I − TN)S(k) − S0

◦ Solve the coarse residual equation e(k) = Rnr(k)

◦ Correct the approximation S(k+1) = S(k) − e(k)

(4.7)

The scheme should be stopped when the finest approximation relative residual
‖r(k)‖/‖S0‖ is small enough.

Three iterative refinement schemes. The most elementary way to refine an
approximate solution S(0) is to choose Rn equal to the resolvent of the approximate

operator (I−Tn) i.e., Rn = R
(A)
n = (I−Tn)−1. The corresponding scheme is called

Atkinson scheme (Atkinson 1976):

{
S(0) = R

(A)
n S0,

S(k+1) = S(0) + R
(A)
n (TN − Tn)S(k), k ≥ 0.

(4.8)

Since the exact resolvent operator R satisfies the identities R = R T + I = TR+ I,

we may suggest two new approximations of R which are: R
(B)
n = R

(A)
n T + I and

R
(C)
n = TR

(A)
n + I. These approximate resolvent operators lead to the following

schemes. The Brakhage scheme is given by (Atkinson 1976):

{
S(0) = R

(B)
n S0,

S
(k+1)
n = S(0) + R

(A)
n (TN − Tn)TNS(k), k ≥ 0,

(4.9)

and the C scheme is given by (Ahues et al. 2002):

{
S(0) = R

(C)
n S0,

S(k+1) = S(0) + TNR
(A)
n (TN − Tn)S(k), k ≥ 0.

(4.10)

Remark that these schemes were rewritten in an equivalent way as (4.7) to avoid
some unstabilities due to the convergence to zero of the residual. A brief compar-
ison between non-stationary iterative methods and iterative refinement schemes
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was performed on an example, where a projection method in the space L1([0, τ⋆])
was used, in (D’Almeida et al. 2003). Complete descriptions of the implemen-
tation of these schemes applied on problem (2.2) can be found in (Titaud 2001
; D’Almeida et al. 2003) . Some numerical results about the behavior of these
schemes with respect to τ⋆ and ̟ are given in (Titaud 2001, Ahues et al. 2002).
A parallelization of these algorithms is described in (Ahues et al. 2002).

4.4 Gain of computational and memory costs

Structure of the matrix of the discretized problem. As the kernel of the
integral equation (1.5) decreases exponentially at infinity, if τ⋆ is large, a lot of
entries of the discretization matrix (2.30) are close to zero. Figure 4 shows the
profile of this matrix for a projection method applied with a uniform grid of 100
elements on [0, 100].
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Fig. 4. Profile of a
discretization matrix An.
Only coefficients of modu-
lus greater than 10−12 are
plotted.

A trick to reduce memory and computational costs. A consistent way to
replace by zero some small entries of the matrix An — in the case of a projec-
tion approximation — is suggested and justified in (Titaud 2004). The main idea

is to truncate the kernel E1 and to construct another approximate operator T̃n

in such a way that the corresponding matrix Ãn has got a band structure and
that we can control the error ‖S̃n − Sn‖ between the corresponding approximate

solution S̃n and the original discretized problem approximate solution Sn (with-
out cancellation). Moreover the trick avoids the computation of the entries which
may be replaced by zero: it permits us to know what entries will be small be-
fore computing them. In the case of a large matrix, we gain computation time
and memory. The second point allows us to choose the error ‖S̃n − Sn‖ at worst
of the order of the discretization one ‖S − Sn‖ which can be evaluated by mean
of the residual (see section 3.2.1). Indeed, using the triangle inequality we have

‖S̃n − S‖ ≤ ‖S̃n − Sn‖ + ‖S − Sn‖.

Iterative methods to solve band linear system. The band matrix produced
by the previous technic shows few non-zero off-diagonals and then iterative meth-
ods (like Jacobi, SOR, Gauss-Seidel, Krylov subspaces based methods, etc.) for

solving the corresponding sparse system (Ãn − In)xn = b̃n should be used. Com-
plete description of basic iterative methods can be found in (Golub & Van Loan
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1996). For a good overview of practical iterative algorithms for solving large-scale
linear sparse systems see (Saad 2003), especially for Krylov subspace technics. An
accuracy and stability analysis is treated in (Higham 1996). Using iterative refine-
ment to solve this kind of systems is also possible (D’Almeida et al. 2003).

Remarks on multigrid methods (MG). Jacobi and Gauss-Seidel iterations for
solving linear system Ax = b are both of the form xk+1 = Gxk + b. The matrix G

is often called the iteration matrix (which is not the matrix A). We call high fre-

quency modes or oscillatory modes the eigenvectors of the iteration matrix G which
correspond to the largest eigenvalues of this matrix. The other eigenvectors (i.e.
associated to the smallest eigenvalues) are called low frequency modes or smooth

modes. During the iteration process, oscillatory components of the error (or of
the residual), are rapidly eliminated while smooth ones are slowly reduced. This
property, which is shared by the majority of standard iterative methods, is called
the smoothing property (Briggs et al. 2000). Multigrid methods take advantage of
the fact that a smooth error appears more oscillatory on a coarser grid than on
a fine one, to overcome this problem. The main idea is to move to a coarser grid
when the iterative scheme is stagnating. There is a noteworthy difference between
IR schemes and MG methods: the last ones are based on iterative methods and
then they are well suited for sparse systems and unsuitable for dense ones. IR
are well suited for dense matrices and some kind of sparse ones (D’Almeida et

al. 2003). Moreover MG methods start with an approximate solution given on a
fine grid whereas IR schemes start with a coarse approximate solution. But both
are based on the correction residual technic which takes advantage of the residual
equation (3.6). A very good introduction to these methods can be found in (Briggs
et al. 2000). A repository for information related to multigrid can be found in
www.mgnet.org.

5 Numerical experiments in the Sun’s atmosphere

Let us test the projection method described in section 2.2.2 on a realistic transfer
calculation. We solved problem (1.5) in the solar atmosphere at λ = 500 nm. To
derive the coefficients of the radiative transfer equation (1.1), we used the temper-
ature, electronic and atomic hydrogen number densities as given by the model of
Vernazza et al. (1981). This NLTE model includes the Sun’s chromosphere and the
beginning of the transition region, where the gradients are high, the albedo close
to unity and the transfer equation difficult to solve (Rutily & Chevallier 2005).
The opacity χ at λ = 500nm has been deduced from the corresponding tabulated
optical depth and we have τ⋆ = 7.445. The scattering coefficient σ, which describes
the Thomson scattering on free electrons and the Rayleigh scattering on hydrogen
atoms, was calculated with the help of the tabulated electronic and atomic hy-
drogen number densities. Denoting by Bλ the Planck function at frequency λ, we
deduced the albedo ̟ = σ/χ and the primary creation rate S⋆ = (1 − ̟)Bλ(T ),
the temperature T being given by the model. Concerning the boundary conditions,
we supposed no incoming radiation at the top surface (I−0 (µ) = 0) and we adopted
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the diffusion approximation at the bottom surface: I+
0 (µ) = Bλ(τ∗)+µdBλ/dτ(τ∗).
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Fig. 5. Free term
S0 (solid) and albedo
(dashed) — from Ver-
nazza et al. (1981)
NTLE model of the Sun
atmosphere, λ = 500nm.

Figure 5 shows the free term S0 (1.6) and the albedo ̟ involved in (1.5). Figure 6
shows the approximate source function Sn (2.33) constructed with the projection
method described in section 2.2.2; the discretization grid is non-uniform and has
n = 33 nodes: they correspond to some optical depths tabulated by the model.
Note that the corresponding relative residual — drawn in the same Figure 6 — is
very small (its maximum value is less than 10−6), which shows that the projection
method is able to solve realistic continuum radiative transfer problems. Figures
7a and 7b show an approximate specific intensity In for µ ≤ 0 and µ > 0, re-
spectively. It is deduced from replacing S by Sn into the solution (1.4). No other
approximation is made here because the integrations over Sn can be performed in
terms of exponential integral functions. This advantage comes from the fact that
Sn(τ) is known for all τ ∈ [0, τ⋆] (see section 2.2.3). ALI methods do not have this
feature. From this model we deduce an approximation of the outgoing radiation
specific intensity at the surface τ = 0, that is we can compute I+

0 (µ) = I(0, µ),
for 0 < µ ≤ 1. This quantity will be used in the inverse problem described in the
next section.
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6 Inverse problems

We consider here the following non-linear inverse problem: we want to recover
the albedo — that we will denote by ˜̟ from now — in Equation (1.1) from the
knowledge (i.e. the measurement) of the corresponding Outgoing Radiation Spe-

cific Intensity (ORSI) at the surface τ = 0, i.e. from Ĩ(0, µ), 0 < µ ≤ 1. Up to
now, we considered a direct radiative transfer problem: the aim was to compute
the specific intensity I from the knowledge of the parameters τ⋆, ̟, S⋆ and of the
incoming radiation I−0 (µ), −1 ≤ µ < 0, and I+

⋆ (µ), 0 < µ ≤ 1 (see Figure 8a&b).

1

1
τ = 0

τ = τ⋆

τ

I
−
0 (µ) = 0

I
+
⋆ (µ) = B(τ⋆) + µ

dB

dτ
(τ⋆)

θ

µ = cos θ

Fig. 8a. Direct problem:
̟, I−0 , I+

⋆ −→ I(τ, µ)

1

1

τ = 0

τ = τ⋆

τ

Ĩ
+
0 measurement

Fig. 8b. Inverse problem:

Ĩ+
0 −→ ̟ (nonlinear)

We suppose that τ⋆ is known and that S⋆(τ) = (1 − ̟(τ))Bλ(τ): in the fol-
lowing numerical experiments, we use the same model of the last section. We
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suppose that the target albedo ˜̟ is a piecewise affine function defined by

˜̟ (τ) =

n∑

i=1

w̃ien,i(τ), τ ∈ [0, τ⋆], (6.1)

where the family (en,i)
n
i=1 is defined by (2.22)-(2.24) from a given fixed grid (τi)

n
i=1.

Then w̃i = ˜̟ (τi) are the entries of w̃, the vector value of ˜̟ on the previous grid.
We define the ORSI on the boundary layer τ = 0 for positive µ by:

I+
0 : µ ≥ 0 7→ I(0, µ), (6.2)

where I is the solution of problem (1.1) with a given albedo ̟, and we denote by
R the observational or response operator

R : w 7→ I+
0 , (6.3)

where w is the vector value of ̟ on the grid (τi)
n
i=1. The bijectivity of the map

R is not obvious and it has not be studied in the case of equation (1.1) yet, but
in the semi-space case (Bal 2000).

Our goal is to recover an approximation of w̃ from a finite number p of measure-
ments of the corresponding ORSI Ĩ+

0 . The idea (McCormick 1992) is to minimize
the following quadratic error

Q(w) =
1

2
(Y(w) − ỹ)T R(Y(w) − ỹ) +

1

2
(w − w̄)T B(w − w̄), w ∈ R

n, (6.4)

where ỹ ∈ R
p denotes the observation vector whose entries are ỹk = R(w̃)(µk);

Y(w) ∈ R
p is the vector of entries R(w)(µk), 1 ≤ k ≤ p; w̄ is a first guess of the

target w̃; R and B are matrices whose role is to balance both members of Q. For

the observation part of Q we choose R(k, l) = (
∫ 1

0
ep,kep,l(µ)dµ)/σ̃, 1 ≤ k, l ≤ p,

where σ̃ is a percentage of |ỹp| which represents the variance of the error on the
observations. The family of functions (ep,k)p

k=1 are defined on [0, 1] from (µk)p
k=1

in an similar manner than in (2.22)-(2.23)-(2.24). The weights on the parameter
part of Q are chosen as B(i, j) = σiσj(

∫ τ⋆

0 en,ien,j(τ)dτ )/(σ2σ2
̟), 1 ≤ i, j ≤ n,

where σ̟ is the variance of the error on the studied parameter ̟; the family
of functions (en,i)

n
i=1 is defined by (2.22)-(2.23)-(2.24); σ = max1≤i≤n σ2

i where
σi represents the sensibility of the response operator R with respect to a local
perturbation ∆

w̄
of the guess w̄ (see Fig. 9a):

σ2
i =

1

M2
ii∆

2
w̄

∫ 1

0

|R(w̄ + ∆
w̄
di) −R(w̄)|2(µ) dµ, (6.5)

where di is the ith element of the canonical basis of R
n and Mii =

∫ τ⋆

0
en,i(τ)2dτ .

This work is more realistic than the one presented in the GRETA (because we
consider a finite number p of observations) but it is still in development. Fig. 9b.
shows the 100th iteration of a Kalman Filter type algorithm (Balakrishnan 1984)
used to minimize Q effectively (in GRETA, we used also other algorithm). Each
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iteration contains a Best Linear Unbiased Estimator step (BLUE step) where in-
tervenes the linearized radiative transfer model (Tarantola 1987). For the model,
we used the same data than in the numerical experiment section concerning the
direct problem. We used p = 300 observations and we initialized the algorithm
with a constant guess: w̄i = 0.5, 1 ≤ i ≤ n = 29. Moreover we set σ̃ = 5 × 10−4,
σ̟ = 0.1, and ∆

w̄
= 0.01.
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Available at http://tel.ccsd.cnrs.fr/documents/archives0/00/00/13/33/.

Titaud O., Reduction of computation in the numerical resolution of a second kind weakly
singular Fredholm equation, Integral Methods in Science and Engineering (Saint
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