An extremal eigenvalue problem for a two-phase conductor in ball

Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball.

WIPA 2010

Carlos Conca
Rajesh Mahadevan
León Sanz B.

January 4 - 8, Santiago de Chile
1 Introduction
 - The problem
 - Background Research

2 Existence
 - Direct Method
 - N dimensions: total symmetry case

3 Characterization
 - Conjecture
 - χ'_1: Derivation with respect to the domain
 - Numerical Experiments

4 Conclusions
1 Introduction
 - The problem
 - Background Research

2 Existence
 - Direct Method
 - N dimensions: total symmetry case

3 Characterization
 - Conjecture
 - χ_1': Derivation with respect to the domain
 - Numerical Experiments

4 Conclusions
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Existence</th>
<th>Characterization</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The problem</td>
<td>- Direct Method</td>
<td>- Conjecture</td>
<td></td>
</tr>
<tr>
<td>- Background Research</td>
<td>- N dimensions: total symmetry case</td>
<td>- λ'_1: Derivation with respect to the domain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Numerical Experiments</td>
<td></td>
</tr>
</tbody>
</table>
1 Introduction
 - The problem
 - Background Research

2 Existence
 - Direct Method
 - N dimensions: total symmetry case

3 Characterization
 - Conjecture
 - λ'_1: Derivation with respect to the domain
 - Numerical Experiments

4 Conclusions
1. Introduction
 - The problem
 - Background Research

2. Existence
 - Direct Method
 - N dimensions: total symmetry case

3. Characterization
 - Conjecture
 - χ'_1: Derivation with respect to the domain
 - Numerical Experiments

4. Conclusions
Introduction

- Let Ω be a bounded domain, $0 < \alpha < \beta$.
- $\omega \subset \Omega$ region where is placed the material β.

Spectrum problem

If $\nu := \alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}$, the spectral conductivity problem

$$
\begin{cases}
-\text{div} (\nu \nabla u) = \lambda u & \text{in } \Omega \\
u u = 0 & \text{on } \partial \Omega
\end{cases}
$$

has the first eigenvalue

$$
\lambda^1(\nu) = \inf_{u \in H^1_0(\Omega), u \neq 0} \frac{\int_{\Omega} \nu |\nabla u|^2}{\int_{\Omega} u^2}.
$$

(1)
The problem

Optimization Problem

- We fix the **quantity of material**, $|\omega| = m$.
- Admissible set:
 \[
 \mathcal{A} = \{ \nu \mid \nu = \alpha \chi_{\Omega \setminus \omega} + \beta \chi_{\omega}, \omega \text{ measurable, } |\omega| = m \}.
 \] (3)
- We are interested in studying
 \[
 \inf_{\nu \in \mathcal{A}} \lambda^1(\nu).
 \] (4)
Interesting Questions

- Is it possible to find a classical minimizer, i.e., which belongs to A?
- If it is possible, give characterizations.
The problem

Interesting Questions

- Is it possible to find a classical minimizer, i.e., which belongs to \mathcal{A}?
- If it is possible, give characterizations.
Interesting Questions

- Is it possible to find a classical minimizer, i.e., which belongs to \mathcal{A}?
- If it is possible, give characterizations.
Background Research

- **Krein (1955) [8]:** Unidimensional case. It exists a classical solution, completely characterized.

- **Alvino-Lions-Trombetti (1989) [2]:** In the N dimensional case, they proved the existence of a classical radially symmetrical solution in a ball.

- **Murat-Tartar (1970-80) [9]:** In general, the solutions of these kind of problems are coefficients with micro-structure or homogenized ones: The optimal materials have to be finely merged.

- **Cox-Lipton (1996) [5]:** They analyzed the relaxed problem for an optimal solution with micro-structure.
Background Research

- **Krein (1955) [8]:** Unidimensional case. It exists a classical solution, completely characterized.

- **Alvino-Lions-Trombetti (1989) [2]:** In the N dimensional case, they proved the existence of a classical radially symmetrical solution in a ball.

- **Murat-Tartar (1970-80) [9]:** In general, the solutions of these kind of problems are coefficients with micro-structure or homogenized ones: The optimal materials have to be finely merged.

- **Cox-Lipton (1996) [5]:** They analyzed the relaxed problem for a optimal solution with micro-structure.
Background Research

- **Krein (1955) [8]:** Unidimensional case. It exists a classical solution, completely characterized.

- **Alvino-Lions-Trombetti (1989) [2]:** In the N dimensional case, they proved the existence of a classical radially symmetrical solution in a ball.

- **Murat-Tartar (1970-80) [9]:** In general, the solutions of these kind of problems are coefficients with micro-structure or homogenized ones: The optimal materials have to be finely merged.

- **Cox-Lipton (1996) [5]:** They analyzed the relaxed problem for a optimal solution with micro-structure.
Background Research

- **Krein (1955) [8]**: Unidimensional case. It exists a classical solution, completely characterized.

- **Alvino-Lions-Trombetti (1989) [2]**: In the N dimensional case, they proved the existence of a classical radially symmetrical solution in a ball.

- **Murat-Tartar (1970-80) [9]**: In general, the solutions of these kind of problems are coefficients with micro-structure or homogenized ones: The optimal materials have to be finely merged.

- **Cox-Lipton (1996) [5]**: They analyzed the relaxed problem for a optimal solution with micro-structure.
1. **Introduction**
 - The problem
 - Background Research

2. **Existence**
 - Direct Method
 - N dimensions: total symmetry case

3. **Characterization**
 - Conjecture
 - λ'_1: Derivation with respect to the domain
 - Numerical Experiments

4. **Conclusions**
Direct Method of the Calculus of Variations

If we could find a topology in \mathcal{A} such that:

- $\{\nu \mid \lambda^1(\nu) \leq c\}$ were relatively compacts,
- and $\lambda^1(\nu)$ were l.s.c
- Then $\lambda^1(\nu)$ would reach the minimum in $\text{cl}(\mathcal{A})$
Direct Method

Direct Method of the Calculus of Variations

If we could find a topology in \mathcal{A} such that:

- $\{\nu \mid \lambda^1(\nu) \leq c\}$ were relatively compacts,
- and $\lambda^1(\nu)$ were l.s.c
- Then $\lambda^1(\nu)$ would reach the minimum in $cl(\mathcal{A})$
Direct Method

Weak-* Topology

- The feasible set \mathcal{A} is relatively compact for the weak-* topology in $L^\infty(\Omega)$.
- But $\lambda^1(\nu)$ is not l.s.c for this topology.
- If it were, we would have
 \[\int_{\Omega} \nu_n \nabla u_n \nabla v \rightarrow \int_{\Omega} \nu \nabla u \nabla v, \]
 For some $\nu_n \rightharpoonup \nu$ and $u_n \rightharpoonup u$, where u_n are the eigen-functions associated to ν_n. This statement, a priori, is not true.
It is not easy to find classical solutions in the general case. (Murat-Tartar, Homogenization theory)

If we had **complete symmetry**: → we could reduce it to a **one-dimensional** problem.

Alvino et. al. solved it. We gave a new proof: Could it work in other kind of domain symmetries.

In the proof we used symmetrization tools: **Schwarz rearrangements**.
N dimensions: total symmetry case

Schwarz rearrangement

- If $D \subseteq \Omega$, the *Schwarz rearrangement* D^* is the ball centered at the origin such that $|D| = |D^*|$.
- For $f : \Omega \rightarrow \mathbb{R}$, its rearrangements is given by

 $$f^*(x) = \sup \{ c \mid x \in \{ f \geq c \}^* \}.$$

- f^* is radially symmetrical.

Equi-measurability:

$$|\{ f \geq c \}| = |\{ f^* \geq c \}|.$$

$$\Rightarrow \int_{\Omega^*} (u^*)^2 = \int_{\Omega} u^2$$
How to diminish the eigenvalue?

\[
\frac{\int_{\Omega} \nu |\nabla u|^2}{\int_{\Omega} u^2} \geq \frac{\int_{\Omega} \tilde{\nu} |\nabla u^*|^2}{\int_{\Omega} (u^*)^2}.
\]

(5)

- \(\tilde{\nu}\) some “rearrangement”. Is it feasible?
- \(u^* \in H^1_0(\Omega)\)? ✓

If (5) is true and \(\tilde{\nu}\) feasible:

→ We reduce the problem to a one-dimensional.

Besides, we still have the topology problem.
How to diminish the eigenvalue?

\[
\frac{\int_{\Omega} \nu |\nabla u|^2}{\int_{\Omega} u^2} \geq \frac{\int_{\Omega} \tilde{\nu} |\nabla u^*|^2}{\int_{\Omega} (u^*)^2}.
\] (5)

- \(\tilde{\nu}\) some “rearrangement”. Is it feasible?
- \(u^* \in H^1_0(\Omega)\)? √

If (5) is true and \(\tilde{\nu}\) feasible:
- → We reduce the problem to a one-dimensional.
- Besides, we still have the topology problem.
Reformulation of \mathcal{A}

Feasible set $\mathcal{A} = \{\nu \mid (\nu^{-1})^* = (\theta^{-1})^*\}$.

- $\mathcal{A}^{-1} = \{\nu^{-1} \mid \nu \in \mathcal{A}\}$
- $\cl(\mathcal{A}^{-1})$ is convex and weak-* compact.
- Extreme points of $\cl(\mathcal{A}^-) = \mathcal{A}^{-1}$ [2].
And in fact, we have an inequality like (5):

Theorem (Conca-Mahadevan-Sanz [3], [2])

Let $\nu \in \mathcal{A}$ and $u \in H^1_0(\Omega)$. There exists $\tilde{\nu}^{-1} \in cl(\mathcal{A}^{-1})$ radially symmetrical such that

$$
\int_{\Omega} \tilde{\nu} |\nabla u^*|^2 \leq \int_{\Omega} \nu |\nabla u|^2,
$$

(6)

where u^* is the Schwarz rearrangement of u.
Topological properties:

- $\lambda^1(\nu)$ is continuous for ν radially symmetrical, with the weak-* convergence of ν^{-1}.
- \mathcal{A} is relatively compact for this topology.
- The minimizer $\tilde{\nu}$ is such that $\tilde{\nu}^{-1} \in cl(\mathcal{A}^{-1})$.

Classical solution in a Ball:

\[
\frac{1}{\lambda(\nu)} = J(\nu^{-1}) \quad \text{with } J(\cdot) \text{ convex.} \tag{7}
\]

- $\min_{\nu^{-1} \in cl(\mathcal{A}^{-1})} \lambda(\nu) \leftrightarrow \max_{\nu^{-1} \in cl(\mathcal{A}^{-1})} J(\nu^{-1})$
- The solution ν^{-1} is an extreme point: It lives in \mathcal{A}^{-1}.

The solution ν of our problem lives in \mathcal{A}.
Topology: weak-* convergence of ν^{-1}

- $\lambda^1(\nu)$ is continuous for ν radially symmetrical, with the weak-* convergence of the ν^{-1}.
- \mathcal{A} is relatively compact for this topology.
- The minimizer $\tilde{\nu}$ is such that $\tilde{\nu}^{-1} \in cl(\mathcal{A}^{-1})$.

Classical solution in a Ball

\[
\frac{1}{\lambda(\nu)} = J(\nu^{-1}) \quad \text{with } J(\cdot) \text{ convex.} \quad (7)
\]

- \[
\min_{\nu^{-1} \in cl(\mathcal{A}^{-1})} \lambda(\nu) \leftrightarrow \max_{\nu^{-1} \in cl(\mathcal{A}^{-1})} J(\nu^{-1})
\]
- The solution ν^{-1} is an extreme point: It lives in A^{-1}.

The solution ν of our problem lives in A.
1. Introduction
 - The problem
 - Background Research

2. Existence
 - Direct Method
 - N dimensions: total symmetry case

3. Characterization
 - Conjecture
 - λ'_1: Derivation with respect to the domain
 - Numerical Experiments

4. Conclusions
Conjecture

- Domain: Ball in \mathbb{R}^N
- $\lambda^1(\nu)$ is minimized in a classical radially symmetric configuration.

Conjecture

Optimal Solution: Distribute the material β in the center.
We proceed with the tools of derivation with respect to the domain: They measure the variations in values that change when the domain is being perturbed.

The set of admissible domains doesn’t have an vectorial space structure.

If \(\omega \) is a region,

\[
\theta : \mathbb{R}^N \rightarrow \mathbb{R}^N,
\]

\[
\omega_t = (Id + t\theta)(\omega),
\]

If \(u = u(\omega) \Rightarrow u_t := u(\omega_t) \)
Derivation with respect to the domain

- We proceed with the tools of derivation with respect to the domain: They measure the variations in values that change when the domain is being perturbed.
- The set of admissible domains doesn’t have an vectorial space structure.

- If \(\omega \) is a region,
- \(\theta : \mathbb{R}^N \to \mathbb{R}^N \),
- \(\omega_t = (Id + t\theta)(\omega) \),
- If \(u = u(\omega) \Rightarrow u_t := u(\omega_t) \)
We proceed with the tools of derivation with respect to the domain: They measure the variations in values that change when the domain is being perturbed.

The set of admissible domains doesn’t have an vectorial space structure.

- If \(\omega \) is a region,
- \(\theta : \mathbb{R}^N \rightarrow \mathbb{R}^N \),
- \(\omega_t = (Id + t\theta)(\omega) \),
- If \(u = u(\omega) \Rightarrow u_t := u(\omega_t) \)
Derivation with respect to the domain

- We proceed with the tools of derivation with respect to the domain: They measure the variations in values that change when the domain is being perturbed.

- The set of admissible domains doesn’t have an vectorial space structure.

If ω is a region,

- $\theta : \mathbb{R}^N \rightarrow \mathbb{R}^N$,

- $\omega_t = (Id + t\theta)(\omega)$,

- If $u = u(\omega) \Rightarrow u_t := u(\omega_t)$
Derivation with respect to the domain

- We proceed with the tools of derivation with respect to the domain: They measure the variations in values that change when the domain is being perturbed.
- The set of admissible domains doesn’t have an vectorial space structure.

- If ω is a region,
- $\theta : \mathbb{R}^N \longrightarrow \mathbb{R}^N$,
- $\omega_t = (\text{Id} + t\theta)(\omega),$
- If $u = u(\omega) \Rightarrow u_t := u(\omega_t)$
Derivation with respect to the domain

- We proceed with the tools of derivation with respect to the domain: They measure the variations in values that change when the domain is being perturbed.
- The set of admissible domains doesn’t have an vectorial space structure.

If ω is a region,

- $\theta : \mathbb{R}^N \rightarrow \mathbb{R}^N$,
- $\omega_t = (Id + t\theta)(\omega)$,
- If $u = u(\omega) \Rightarrow u_t := u(\omega_t)$
Derivation with respect to the domain

- We proceed with the tools of derivation with respect to the domain: They measure the variations in values that change when the domain is being perturbed.
- The set of admissible domains doesn’t have an vectorial space structure.

If \(\omega \) is a region,
\[\theta : \mathbb{R}^N \rightarrow \mathbb{R}^N, \]
\[\omega_t = (Id + t\theta)(\omega), \]
If \(u = u(\omega) \) \(\Rightarrow u_t := u(\omega_t) \)
Formulas

- **Total Derivative:**
 \[\dot{u} = \lim_{t \to 0} \frac{u_t \circ (Id + t\theta) - u}{t}. \quad (8) \]

- **Local Derivative:**
 \[u' = \lim_{t \to 0} \frac{u_t - u}{t}. \quad (9) \]

- **Relation:**
 \[u' = \dot{u} - \theta \cdot \nabla u. \quad (10) \]
Formulas

- **Total Derivative:**

\[\dot{u} = \lim_{t \to 0} \frac{u_t \circ (Id + t\theta) - u}{t}. \]

- **Local Derivative:**

\[u' = \lim_{t \to 0} \frac{u_t - u}{t}. \]

- **Relation:**

\[u' = \dot{u} - \theta \cdot \nabla u. \]
Formulas

- **Total Derivative:**
 \[
 \dot{u} = \lim_{t \to 0} \frac{u_t \circ (Id + t\theta) - u}{t}.
 \] (8)

- **Local Derivative:**
 \[
 u' = \lim_{t \to 0} \frac{u_t - u}{t}.
 \] (9)

- **Relation:**
 \[
 u' = \dot{u} - \theta \cdot \nabla u.
 \] (10)
Formulas

- **Total Derivative:**
 \[
 \dot{u} = \lim_{t \to 0} \frac{u_t \circ (Id + t\theta) - u}{t}. \tag{8}
 \]

- **Local Derivative:**
 \[
 u' = \lim_{t \to 0} \frac{u_t - u}{t}. \tag{9}
 \]

- **Relation:**
 \[
 u' = \dot{u} - \theta \cdot \nabla u. \tag{10}
 \]
Perturbed problem

- ν_0, ω_0: initial material distribution.
- (λ_0^1, u_0): eigen-pair of the non perturbed problem.
- $\nu_t = \alpha \chi_{\Omega \setminus \omega_t} + \beta \chi_{\omega_t}$: material distribution.

Spectral perturbed problem:

\[
\begin{aligned}
-\text{div} (\nu_t \nabla u_t) &= \lambda_t^1 u_t &\text{in} &\Omega \\
 u_t &= 0 &\text{on} &\partial\Omega
\end{aligned}
\]

(λ_t^1, u_t): first eigen-pair of the perturbed problem.
Perturbed problem

- ν_0, ω_0: initial material distribution.
- (λ^1_0, u_0): eigen-pair of the non perturbed problem.
- $\nu_t = \alpha \chi_{\Omega \setminus \omega_t} + \beta \chi_{\omega_t}$: material distribution.
- Spectral perturbed problem:

$$
\begin{cases}
- \text{div} (\nu_t \nabla u_t) = \lambda^1_t u_t & \text{in} \quad \Omega \\
\quad u_t = 0 & \text{on} \quad \partial \Omega
\end{cases}
$$

(λ^1_t, u_t): first eigen-pair of the perturbed problem.
Existence and Formula for $\lambda'_1(\omega_0; \theta)$

Theorem (Conca, Mahadevan, Sanz [4])

- $\lambda'_1(\omega_0; \theta)$ exists.

$$\lambda'_1(\omega_0; \theta) = \int_{\partial \omega_0} \left[\nu_0 |\nabla u_0|^2 \right] \theta \cdot ndS + 2 \int_{\partial \omega_0} \left[\theta \cdot \nabla u_0 \right] \nu_0 \nabla u_0 \cdot ndS,$$

where $[f]$ denotes the jump of f.

In the proof of existence: Implicit Function Theorem.
Existence and Formula for $\lambda'_1(\omega_0; \theta)$

Theorem (Conca, Mahadevan, Sanz [4])

- $\lambda'_1(\omega_0; \theta)$ **exists**.

$$
\lambda'_1(\omega_0; \theta) = \int_{\partial\omega_0} [\nu_0 |\nabla u_0|^2] \theta \cdot ndS + 2 \int_{\partial\omega_0} [\theta \cdot \nabla u_0] \nu_0 \nabla u_0 \cdot ndS,
$$

where $[f]$ denotes the jump of f.

In the proof of existence: Implicit Function Theorem.
Existence and Formula for $\lambda'_1(\omega_0; \theta)$

Theorem (Conca, Mahadevan, Sanz [4])

- $\lambda'_1(\omega_0; \theta)$ exists.

\[
\lambda'_1(\omega_0; \theta) = \int_{\partial \omega_0} [\nu_0 |\nabla u_0|^2] \theta \cdot ndS + 2 \int_{\partial \omega_0} [\theta \cdot \nabla u_0] \nu_0 \nabla u_0 \cdot ndS, \tag{12}
\]

where $[f]$ denotes the jump of f.

In the proof of existence: Implicit Function Theorem.
Existence and Formula for $\lambda_1'(\omega_0; \theta)$

Theorem (Conca, Mahadevan, Sanz [4])

- $\lambda_1'(\omega_0; \theta)$ exists.

\[
\lambda_1'(\omega_0; \theta) = \int_{\partial \omega_0} \left[\nu_0 \left| \nabla u_0 \right|^2 \right] \theta \cdot ndS + 2 \int_{\partial \omega_0} \left[\theta \cdot \nabla u_0 \right] \nu_0 \nabla u_0 \cdot ndS,
\]

where $[f]$ denotes the jump of f.

In the proof of existence: **Implicit Function Theorem.**
Existence Scheme $\lambda'_1(\omega_0; \theta)$

We have seen:

\[
\begin{cases}
-\text{div}(\nu(\omega_t)\nabla u_t) = \lambda^1_t u_t & \text{in } \partial\Omega \\
u_t = 0 & \text{on } \partial\partial\Omega \\
y \omega_t = (Id + t\theta)(\omega) = \Phi_t(\omega)
\end{cases}
\]

smooth and invertible for t small enough. Change of variables:

\[
\begin{cases}
-\text{div}(\nu(\omega_t) \circ \Phi_t) A_t \nabla (u_t \circ \Phi_t) = \lambda^1_t (u_t \circ \Phi_t) J(\Phi_t) & \text{in } \Omega \\
u_t \circ \Phi_t = 0 & \text{on } \partial\Omega
\end{cases}
\]

where $A_t = D\Phi_t^{-1}(D\Phi_t^{-1})^T J(\Phi_t)$

We have $\nu(\omega_t) \circ \Phi_t = \nu_0 \quad \forall \ t$. The normalization constraint can be written in the form

\[
\int_{\Omega} |u_t \circ \Phi_t|^2 J(\Phi_t) dx = 1
\]
λ'_t: Derivation with respect to the domain

- (λ^1_t, u_t) is a normalized eigen-pair $\Leftrightarrow (\lambda^1_t, u_t \circ \Phi_t)$ satisfies the former equations.

- If $(\lambda^1_t, u_t \circ \Phi_t)$ is a smooth zeros curve of the function F around $(0, \lambda^1_0, u_0)$, where

$$F(t, \lambda, v) = \left(-\text{div} (\nu A_t \nabla v) - \lambda v, \int_{\Omega} |v|^2 J(\Phi_t) dx - 1 \right)$$

$\Rightarrow (\lambda'_t(\omega; \theta), \dot{u})$ exists in $\mathbb{R} \times H^1(\Omega)$

- IFT \Rightarrow The smooth curve exists.

We verify the IFT hypothesis:

- $F : \mathbb{R} \times \mathbb{R} \times H^1_0(\Omega) \longrightarrow \mathbb{R}$ is differentiable.

- $F_{\lambda,v}(0, \lambda^1(\omega), u_0) : \mathbb{R} \times H^1_0(\Omega) \longrightarrow H^{-1} \times \mathbb{R}$ in invertible with continuous inverse.
\(\lambda'_1 \): Derivation with respect to the domain

- \((\lambda^1_t, u_t)\) is a normalized eigen-pair \(\Leftrightarrow (\lambda^1_t, u_t \circ \Phi_t)\) satisfies the former equations.

- If \((\lambda^1_t, u_t \circ \Phi_t)\) is a smooth zeros curve of the function \(F\) around \((0, \lambda^1_0, u_0)\), where
 \[
 F(t, \lambda, v) = \left(-\text{div}(\nu A_t \nabla v) - \lambda v, \int_\Omega |v|^2 J(\Phi_t)dx - 1\right)
 \]
 \(\Rightarrow (\lambda'_1(\omega; \theta), \dot{u})\) exists in \(\mathbb{R} \times \mathcal{H}^1(\Omega)\)

- IFT \(\Rightarrow\) The smooth curve exists.

We verify the IFT hypothesis:

- \(F : \mathbb{R} \times \mathbb{R} \times H^1_0(\Omega) \longrightarrow \mathbb{R}\) is differentiable.

- \(F_{\lambda,v}(0, \lambda^1(\omega), u_0) : \mathbb{R} \times H^1_0(\Omega) \longrightarrow \mathcal{H}^{-1} \times \mathbb{R}\) in invertible with continuous inverse.
λ_1': Derivation with respect to the domain

$\lambda_1'(\omega; \theta)$ Contribution: Its sign

- To indicate descent directions of λ^1.
- To reinforce the conjecture in a numerical way.
- To provide future descent algorithms for other type of geometries.
Numerical Experiments

Experiments in the plane \mathbb{R}^2

- Concentric Rings
- Displaced Discs
- Concentric Squares
Experiments in the plane \mathbb{R}^2

- Concentric Rings
- Displaced Discs
- Concentric Squares
Numerical Experiments

Experiments in the plane \mathbb{R}^2

- Concentric Rings
- Displaced Discs
- Concentric Squares
Experiments in the plane \mathbb{R}^2

- Concentric Rings
- Displaced Discs
- Concentric Squares
Numerical Experiments

Matlab and Freefem

Anillos Concéntricos
- First EigenValue Vs Internal Radius. (Concentric Rings)
- \(a = 1 \)
- \(b = 200 \)
- Proportion of \(b = 0.5 \)
- Number of Samples = 50

Discos Desplazados
- First EigenValue Vs Displacement of the Center
- \(a = 1 \)
- \(b = 200 \)
- Proportion of \(b = 0.9 \)
- Number of Samples = 100

Cuadrados Concéntricos
- First EigenValue Vs Internal Radius. (Concentric Squares)
- \(a = 1 \)
- \(b = 200 \)
- Proportion of \(b = 0.5 \)
- Number of Samples = 100
1 Introduction
 • The problem
 • Background Research

2 Existence
 • Direct Method
 • N dimensions: total symmetry case

3 Characterization
 • Conjecture
 • λ'_1: Derivation with respect to the domain
 • Numerical Experiments

4 Conclusions
Conclusions and projections

- We gave a new proof for a classical radially symmetrical solution.
- We expect to understand the problem in domains with less symmetries, such as the case of squares and stars.
- The conjecture: It is optimal to distribute β in the center of the ball.
- We gave arguments and evidence:
 - Derivative with respect to the domain of the first eigenvalue.
 - Numerical experiments in the plane.
- We expect to provide a deeper view in the analysis of the $\lambda'_1(\omega; \theta)$
Conclusions and projections

- We gave a new proof for a classical radially symmetrical solution.
- We expect to understand the problem in domains with less symmetries, such as the case of squares and stars.
- The conjecture: It is optimal to distribute β in the center of the ball.
- We gave arguments and evidence:
 - Derivative with respect to the domain of the first eigenvalue.
 - Numerical experiments in the plane.
- We expect to provide a deeper view in the analysis of the $\lambda'_1(\omega; \theta)$.

Conclusions and projections

- We gave a new proof for a classical radially symmetrical solution.
- → We expect to understand the problem in domains with less symmetries, such as the case of squares and stars.
- The conjecture: It is optimal to distribute β in the center of the ball.
- We gave arguments and evidence:
 - Derivative with respect to the domain of the first eigenvalue.
 - Numerical experiments in the plane.
- We expect to provide a deeper view in the analysis of the $\lambda_1'(\omega; \theta)$
References

Thanks!