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Approximation of seismic image:

Original 512 x 512-image

Reconstruction using 5130-wave
packets.
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The aim is to
sparsely decom-
pose (seismic)
images into sums
of "wave pack-
ets". E.g. this
one:
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Wave-packets:

different scales k

k=4; different rotations v
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The wave-packet decomposition algorithm; Review and

flaws.

We begin with a function A to be decomposed:
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1 Fourier transform A(x) to get 2\(5) :
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1 Fourier transform A(x) to get 2\(5) :
2 Dyadic parabolic partitioning of the "{—domain”;

A(€)
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1 Fourier transform A(x) to get 2\(5) :
2 Dyadic parabolic partitioning of the "¢—domain”;

Bk’,,:
k=1,
V=i
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1 Fourier transform A(x) to get 2\(5) :
2 Dyadic parabolic partitioning of the "¢—domain”;
Bk’,, .
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1 Fourier transform A(x) to get 2\(5) :
2 Dyadic parabolic partitioning of the "¢—domain”;
Bk’,, .
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1 Fourier transform A(x) to get 2\(5) :
2 Dyadic parabolic partitioning of the "¢—domain”;
Bk’,, .

v=i

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions



1 Fourier transform A(x) to get 2\(5) :
2 Dyadic parabolic partitioning of the "¢—domain”;
Bk’,, .

V—=...
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1 Fourier transform A(x) to get 2\(5) :
2 Dyadic parabolic partitioning of the "¢—domain”;
Bk’,, .

V—=...
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1 Fourier transform A(x) to get 2\(5) :
2 Dyadic parabolic partitioning of the "¢—domain”;
Bk’,, .

v=i
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1 Fourier transform A(x) to get A(¢) :

2 Dyadic parabolic partitioning of the "{—domain”;

3 Construct a partition of unity Zk’y iw =1, where ¢, has
support on the box By ,.

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions



1 Fourier transform A(x) to get A(¢) :

2 Dyadic parabolic partitioning of the "{—domain”;

3 Construct a partition of unity Zk’y iw =1, where ¢, has
support on the box By ,.

4 For each index k, v do:
4.1 a Fourier series expansion of ¢, A on the box By ,;

¢k7VA(E) = Z aj’(kvy)ei<<j,(k,u)1£>
jer?
4.2 Throw away small coefficients aj (, ) to obtain

¢k7l/2\(5) ~ Z aj,,,,(k,u)ei“jm’(k"y)7£>

Finite sum in m

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions



1 Fourier transform A(x) to get A(¢) :

2 Dyadic parabolic partitioning of the "{—domain”;

3 Construct a partition of unity Zk’y iw =1, where ¢, has
support on the box By ,.

4 For each index k, v do:
4.1 a Fourier series expansion of (bk,l,z on the box By ,;

¢k,I/A(E) = Z aj’(kvy)ei<<je(k,u)1£>
jez?
4.2 Throw away small coefficients aj (, ) to obtain
S AC)~ Y a, (ke )
Finite sum in m
5 Sum up all approximations to obtain

2(5) = Z qb%(,z/’a(g) ~ Z Z ajm(k’,,)qﬁk’,/(f) ei<<fm,(k,u)7§>
kv

All k,v Finite in m
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The wave-packet algorithm continued

4 ¢k7V’a(£) ZFlnlte sum in m 9jm, (k)€ HGim(r 8) (Valld on Bk,V)
5 A€~ Yhy om Bimkr)  Phow (5) WG k1 €) (valid in R?)

1/).Y (the wave-packets)
6 FHpp(€)eCimtn €)Y = 4 are the wave-packets, (where ~
is some index specifying " generation” k, direction v and

" Fourier exponent” (;.) With k and v fixed, different
exponents (; yield translations (in x) of a fixed wave-packet.

7 Applying F~1 to 5 we obtain the wave-packet decomposition:

AN~ Y ay(x)

Finite in ~
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Pictures and comments

% For each generation k there is a " mother wave-packet”. All
other wave-packets are rotations and translations of this one.
different scales k

k=4; different rotations v

M0 D N

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions



Pictures and comments

% For each generation k there is a " mother wave-packet”. All
other wave-packets are rotations and translations of this one.
% For each direction v
the possible "centers”
for the wave-packets lie
on rotated grids.

k=1,

v=1

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions



Pictures and comments

% For each generation k there is a " mother wave-packet”. All
other wave-packets are rotations and translations of this one.
% For each direction v |g
the possible "centers” |
for the wave-packets lie
on rotated grids.

k=1,
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Pictures and comments

% For each generation k there is a " mother wave-packet”. All
other wave-packets are rotations and translations of this one.
% For each direction v '
the possible "centers” |
for the wave-packets lie
on rotated grids.

k=1,
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Pictures and comments

% For each generation k there is a " mother wave-packet”. All
other wave-packets are rotations and translations of this one.
% For each direction v
the possible "centers”
for the wave-packets lie
on rotated grids.

k=2,

v=1
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Pictures and comments

% For each generation k there is a " mother wave-packet”. All
other wave-packets are rotations and translations of this one.

% For each direction v § :
the possible "centers”
for the wave-packets lie §
on rotated grids.

k=2,
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Pictures and comments

% For each generation k there is a " mother wave-packet”. All
other wave-packets are rotations and translations of this one.

% For each direction v
the possible "centers’ |
for the wave-packets lie &
on rotated grids.

k=2,
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Pictures and comments

% For each generation k there is a " mother wave-packet”. All
other wave-packets are rotations and translations of this one.
% For each direction v
the possible "centers”
for the wave-packets lie
on rotated grids.

k=3,

v=1
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Method 1. Thresholding the Fourier coefficients.

Given function A : [0,27] — R we

wish to approximate it by a sum of . AX) I .

exponential functions. Do: o koA N M‘ |
) A I MY
; _ "0 ikx WL O (L T L
1 Write A(X) - Zszoo age ‘u‘y i ‘(“h“ ‘\0“‘\1"“\\‘\,"& c‘h‘ H‘r‘w \‘P‘ ,“M X
AT “"‘H\‘“\‘
05 L | I I TR
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P
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Method 1. Thresholding the Fourier coefficients.

Given function A : [0,27] — R we

wish to approximate it by a sum of : AKX) | L
exponential functions. Do: AL A ol i M‘ {
H H‘ I A “"\ ““" f\ ' c“\ | \'m“\““‘r "\‘\
1 Write A(x) = %% agel e X
L IR A P T A R
2 Let € > 0 be threshold level. £ TEE TN
Throw away all ax's such that | R

|lak| < e. Let {ax}7_; be the
remaining ones.
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Method 1. Thresholding the Fourier coefficients.

Given function A : [0,27] — R we
wish to approximate it by a sum of . AKX)
exponential functions. Do: s

05
|

‘ N
Vo
PA

Wil |
1 Write A(x) = Y32 ake®™ S e
2 Let € > 0 be threshold level. S 7 \‘ I TN
Throw away all ax's such that
|lak| < e. Let {ax}7_; be the
remaining ones.

[N
\U\ | “"
[

|
I

3 Voila; a "sparse” approximation :
remains: “r\

Al ~ 3 aie™” IRVERYERVERY
=1 U
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Thresholding the Fourier coefficients. Example

Lets take A(x) = cos(x/2). The fourier transform
is

o0 .k "
cos(x/2) = Z *k=1/2) (k+1/2)ek‘

ak Ho 2

In this case, |ax| ~ 1/k which decays very slowly.
Hence either our approximation
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Need for improvement

Better idea: use e'** with arbitrary ¢, € R, as opposed to e'**
with k € N. For example, we would get

A(x):cos(x/2):; +2e 2)x,

ikx

to be compared with cos(x/2) ~ > }_ Zime
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Need for improvement

Better idea: use e'** with arbitrary ¢, € R, as opposed to e'**
with k € N. For example, we would get

1
A(x) = cos(x/2) = Sel2 + 2e —2)x,
to be compared with cos(x/2) ~ > }_ 2imei’“.

But how to find suitable "nodes” (x € R to approximate a given
function A?
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Need for improvement

Better idea: use e'** with arbitrary ¢, € R, as opposed to e'**
with k € N. For example, we would get

1
A(x) = cos(x/2) = Sel2 + 2e —2)x,
to be compared with cos(x/2) ~ > }_ 2imei’“.

But how to find suitable "nodes” (x € R to approximate a given
function A?
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Overview of other approximation methods

1 Matching pursuit

2 ['-optimization
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Overview of other approximation methods

1 Matching pursuit

2 ['-optimization
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Overview of other approximation methods

1 Matching pursuit

2 ['-optimization
Common feature of 1 & 2: Both need large dictionaries D.
Eg D= {emn*}
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Overview of other approximation methods

1 Matching pursuit

2 ['-optimization

3 Toeplitz matrix approach. By Beylkin and Monzdn based on
old results by Carathéeodory.
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Overview of other approximation methods

1 Matching pursuit

2 ['-optimization

3 Toeplitz matrix approach. By Beylkin and Monzon based on
old results by Carathéeodory.

4 Hankel matrix approach. (The AAK-algorithm). By Beylkin
and Monzén based on results by Adamyan, Arov and Krein.
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Overview of other approximation methods

1 Matching pursuit

2 ['-optimization

3 Toeplitz matrix approach. By Beylkin and Monzon based on
old results by Carathéeodory.

4 Hankel matrix approach. (The AAK-algorithm). By Beylkin
and Monzén based on results by Adamyan, Arov and Krein.
3 yields approximations

where (x € R is "chosen” by A.
4 is similar but produces (, € C
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The 1 — d AAK-theorem.

Fa: L2(RT) — L2(RT) is given by
AP = [ A+ y)F()dy

un/on are singular vectors/values to Ta. 0p(¢) = [g+ un(x)e™S.

Theorem

(AAK) Assume that o1 > 04 > 1. Then Oy, has exactly n
zeroes (1,...,(, € CT, (counted with multiplicity). Moreover,
there are coefficients c1, ..., c, € C such that

” rA—ZZ:l ckeiCkX H = On
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The 1 — d AAK-theorem.

Fa: L2(RT) — L2(RT) is given by
AP = [ A+ y)F()dy

un/on are singular vectors/values to Ta. 0p(¢) = [g+ un(x)e™C.

Theorem

(AAK) Assume that op,—1 > 0 > 0nt1. Then Oy, has exactly n
zeroes (1,...,(n € CT, (counted with multiplicity). Moreover,
there are coefficients c1, ..., c, € C such that

” rA—ZZ:l ckeigkx H = On

(Kronecker) Rank(l'4) = 1 iff a = e%* for some ¢ € C*+
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The 1 — d AAK-theorem.

Fa:L2(RT) — L2(RT) is given by
a(F) = [ A+ y)F()dy

un/on are singular vectors/values to Fa. tp(¢) = [p+ un(x)e™.
Theorem

(AAK) Assume that op,—1 > 04 > 0nt1. Then Oy, has exactly n
zeroes (1,...,(n € CT, (counted with multiplicity). Moreover,
there are coefficients c1, ..., c, € C such that

” rA—ZZ:l ckeigk)< H = On
(Kronecker) Rank(I4) = 1 iff a = e%* for some ¢ € C*

Note
on = inf{||l; — K| : Rank(K) = n}.
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Outline of the algorithm

1 Sample the function A with interval 1/N, (N € N), to get
vector SyA = a:

1 k ©©
SNA:(30731,-..,3[\/[,0,0,0,,,,): NA N

k=0 '
, 0.005 .
gl * \ ,ﬂf I‘=‘ :.""‘-_ AN | ) & W,
'f\ | E“J - -0.005:
| 001
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Outline of the algorithm

1 Sample the function A with interval 1/N, (N € N), to get
vector SyA = a:

1 k >
SNA_(30731,...,3[\470,0,0,,,,)—(NA<N>> .
k=0

2 Form the finite Hankel matrix

a 41 a2 ... amu

a1 a» 0
ra = az : 0

ay 0 O 0

3 Let o9 > 01 > ... > o be its singular values and wug, ..., upy
the singular vectors.
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(1. Sample A — a —, 2. Hankel matrix ;, —
3. Sing. value's o & sing. vector's uy)

4 Take o, to be the first value under the desired accuracy e.

Put un(z) = Z,A::O up(m)z™

o1al "~ ©1
012
o1t o,
0.08-
0,06
0.041 n=16
8002— . s
% 5 10 15 2‘02540
Theorem

(AAK) Assume that a,, 1> 0, > a,,+1 Then u,,(eNC) has exact/y
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(1. Sample A — a —, 2. Hankel matrix ;, —
3. Sing. value's o & sing. vector's uy)

4 op<e<op_1
n(2) = Yo tn(m)z™.

Theorem A
(AAK) Assume that 0,1 > 0 > 0pt1. Then u”,,(eNC) has exactly
n zeroes (1, . ..,(y, € CT, (counted with multiplicity). Moreover,
there are coefficients cy, ..., c, € C such that, with
n
Aap(x) = Z Cre' kX,
k=1
we have

ITsn(a—amll = an
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5 Compute the (1,...,(,'s and c1,...,¢c,'s; Then
n .
Aap(x) = Z crelR
k=1

satisfies ||[I'sy(a—a,,)|l = on < e

Aw[x] forn=16

Iy
L M e
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5 Compute the (1,...,(,'s and c1,...,¢c,'s; Then
n .
Aap(x) = Z crelR
k=1

satisfies ||[I'sy(a—a,,)|l = on < e

Am(x] forn=16

Fourier series with 16 terms

(
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Examples

L L L L L L
20 40 60 80 100 120 140 160 180 200 220
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Examples

L L L L L L
20 40 60 80 100 120 140 160 180 200 220
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Examples

n=11:

15 —_— —_— —
i+ ]
05 1
0 VRSN

0.5 1

¥

At i
15 o ; :

L L L L L
20 40 60 80 100 120 140 160 180 200 220
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Examples

n=15:

L L L
100 120 140

L L L L
160 180 200 220
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Examples

n=19:

L L L L L L
20 40 60 80 100 120 140 160 180 200 220
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Examples

n=29:

/\ f\. M L i

L L L L L L L
40 60 80 100 120 140 160 180 200 220
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2-d Hankel operators

Inl-—d,
(FaF)(k) = akyjf.

Jj>0
In 2 — d we thus set

(Faf) ki k2) = ) a(i ko) )

J1,j22>0
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2-d Hankel operators

Inl-—d,
k)= akifi

Jj>0
In 2 — d we thus set
(Faf) (ki ka) = D ajikosin) fins):
J1:.2>0

Bad news:
1 AAK-theorem for 2 — d is unknown.
2 The Fourier transform of singular vectors u, to a 2 — d Hankel
operator is

Un(z1,22) = Z un(ki, k2)z1 zé(z
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2-d Hankel operators

Inl-—d,
(FaF)(K) =D asjfy.

j>0

In 2 — d we thus set

(Taf)(ki, ko) = Z ka1, ko-+i) )
J1:2>0

Good news:

For A € C([0,1]?) put

ki ko
SuA) =AY o<k k<N
W =4 () o<k

Then

Rankl s, (a) = 1 & A(x1, xp) = cel(@at2) ¢ ¢ ¢ e C.
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We wish to approximate the function A :
Re A: Im A:

I |
"
H

Using a fixed singular vector up to I's,(4), the algorithm yields way

too many points {(¢¥, ¢5)}k such that el(G+¢%) might be useful
for approximating A. We solve

A~ Z akei(CfX1+C§X2)
k

using the least squares method.
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For n = 36, here is the result:

K T T T T T T T T T

—4 4

—6 4

10 g

1z 4 _ ] : _
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N (the number of significant nodes) versus n (the number of the
singular vector uy,).
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N (the number of significant nodes) versus n (the number of the
singular vector uy,).

110 T T

100

a0

&n

70

80

50

40

20

20

L I
20 40 &0 & 100 1z0

What about the approximation error as function of n?
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Stability with respect to noise:
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Stability with respect to noise:
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