Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.

Marcus Carlsson

January 11, 2010

Approximation of seismic image:

Original 512×512-image:
Reconstruction using 5130-wave packets.

The aim is to sparsely decompose (seismic) images into sums of "wave packets". E.g. this one:

Wave-packets:

different scales k

$\mathrm{k}=4$; different rotations v

The wave-packet decomposition algorithm; Review and flaws.

We begin with a function A to be decomposed:

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$: $\widehat{A}(\xi) \quad:$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain"; $\widehat{A}(\xi)$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain";
$B_{k, \nu}$:
$k=1$, $\nu=\mathrm{i}$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain";
$B_{k, \nu}$:
$k=1$, $\nu=\ldots$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain";
$B_{k, \nu}$:
$k=1$, $\nu=\ldots$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain";
$B_{k, \nu}$:
$k=2$,
$\nu=\mathrm{i}$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain"; $B_{k, \nu}:$
$k=2$,
$\nu=\ldots$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain"; $B_{k, \nu}:$
$k=2$,
$\nu=\ldots$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain";
$B_{k, \nu}$:
$k=3$,
$\nu=\mathrm{i}$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain";
3 Construct a partition of unity $\sum_{k, \nu} \phi_{k, \nu}^{2}=1$, where $\phi_{k, \nu}$ has support on the box $B_{k, \nu}$.

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain";
3 Construct a partition of unity $\sum_{k, \nu} \phi_{k, \nu}^{2}=1$, where $\phi_{k, \nu}$ has support on the box $B_{k, \nu}$.
4 For each index k, ν do:
4.1 a Fourier series expansion of $\phi_{k, \nu} \widehat{A}$ on the box $B_{k, \nu}$;

$$
\phi_{k, \nu} \widehat{A}(\xi)=\sum_{j \in \mathbb{Z}^{2}} a_{j,(k, \nu)} \mathrm{e}^{\mathrm{i}\left\langle\zeta \zeta_{j,(k, \nu)}, \xi\right\rangle}
$$

4.2 Throw away small coefficients $a_{j,(k, \nu)}$ to obtain

$$
\phi_{k, \nu} \widehat{A}(\xi) \approx \sum_{\text {Finite sum in } m} a_{j_{m},(k, \nu)} \mathrm{e}^{\mathrm{i}\left\langle\zeta_{j_{m},(k, \nu)}, \xi\right\rangle}
$$

1 Fourier transform $A(x)$ to get $\widehat{A}(\xi)$:
2 Dyadic parabolic partitioning of the " ξ-domain";
3 Construct a partition of unity $\sum_{k, \nu} \phi_{k, \nu}^{2}=1$, where $\phi_{k, \nu}$ has support on the box $B_{k, \nu}$.
4 For each index k, ν do:
4.1 a Fourier series expansion of $\phi_{k, \nu} \widehat{A}$ on the box $B_{k, \nu}$;

$$
\phi_{k, \nu} \widehat{A}(\xi)=\sum_{j \in \mathbb{Z}^{2}} a_{j,(k, \nu)} \mathrm{e}^{\mathrm{i}\left\langle\zeta_{j,(k, \nu)}, \xi\right\rangle}
$$

4.2 Throw away small coefficients $a_{j,(k, \nu)}$ to obtain

$$
\phi_{k, \nu} \widehat{A}(\xi) \approx \quad \sum \quad a_{j_{m},(k, \nu)} \mathrm{e}^{\mathrm{i}\left\langle\zeta_{j_{m},(k, \nu)}, \xi\right\rangle}
$$

Finite sum in m
5 Sum up all approximations to obtain

$$
\widehat{A}(\xi)=\sum_{k, \nu} \phi_{k, \nu}^{2} \widehat{A}(\xi) \approx \sum_{\text {All } k, \nu} \sum_{\text {Finite in } m} a_{j_{m},(k, \nu)} \phi_{k, \nu}(\xi) \mathrm{e}^{\mathrm{i}\left\langle\zeta_{j m,(k, \nu)}, \xi\right\rangle}
$$

The wave-packet algorithm continued

$4 \phi_{k, \nu} \widehat{A}(\xi) \approx \sum_{\text {Finite sum in } m} a_{j_{m},(k, \nu)} \mathrm{e}^{\mathrm{i}\left\langle\zeta_{j_{m},(k, \nu)}, \xi\right\rangle}$ (valid on $B_{k, \nu}$)
$5 \widehat{A}(\xi) \approx \sum_{k, \nu} \sum_{m} a_{j_{m},(k, \nu)} \underbrace{\phi_{k, \nu}(\xi) \mathrm{e}^{\left\langle\mathrm{i} \zeta_{j m,(k, \nu)}, \xi\right\rangle}}_{\widehat{\psi_{\gamma}} \text {-(the wave-packets) }}$ (valid in \mathbb{R}^{2})
$6 \mathcal{F}^{-1}\left(\phi_{k, \nu}(\xi) \mathrm{e}^{\mathrm{i}\left\langle\zeta_{j_{m},(k, \nu)}, \xi\right\rangle}\right)=\psi_{\gamma}$ are the wave-packets, (where γ is some index specifying "generation" k, direction ν and "Fourier exponent" ζ_{j}.) With k and ν fixed, different exponents ζ_{j} yield translations (in x) of a fixed wave-packet.
7 Applying \mathcal{F}^{-1} to 5 we obtain the wave-packet decomposition:

$$
A(x) \approx \sum_{\text {Finite in } \gamma} a_{\gamma} \psi_{\gamma}(x)
$$

Pictures and comments

\star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. different scales k

$\mathrm{k}=4$; different rotations v

Pictures and comments

\star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. \star For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$$
\begin{aligned}
& \mathrm{k}=1 \\
& \nu=\mathrm{i}
\end{aligned}
$$

Pictures and comments

\star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. \star For each direction ν the possible "centers" for the wave-packets lie on rotated grids.
$\mathrm{k}=1$, $\nu=\ldots$.

Pictures and comments

\star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. \star For each direction ν the possible "centers" for the wave-packets lie on rotated grids.
$\mathrm{k}=1$, $\nu=\ldots$

Pictures and comments

\star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. \star For each direction ν the possible "centers" for the wave-packets lie on rotated grids.
$k=2$,
$\nu=\mathrm{i}$

Pictures and comments

\star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. \star For each direction ν the possible "centers" for the wave-packets lie on rotated grids.
$k=2$, $\nu=\ldots$

Pictures and comments

\star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. \star For each direction ν the possible "centers" for the wave-packets lie on rotated grids.
$k=2$, $\nu=\ldots$

Pictures and comments

\star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. \star For each direction ν the possible "centers" for the wave-packets lie on rotated grids.
$k=3$,
$\nu=\mathrm{i}$

Method 1. Thresholding the Fourier coefficients.

Given function $A:[0,2 \pi] \rightarrow \mathbb{R}$ we wish to approximate it by a sum of exponential functions. Do:

1 Write $A(x)=\sum_{k=-\infty}^{\infty} a_{k} \mathrm{e}^{\mathrm{i} k x}$
2 Let $\epsilon>0$ be threshold level. Throw away all a_{k} 's such that $\left|a_{k}\right|<\epsilon$. Let $\left\{a_{k_{j}}\right\}_{j=1}^{n}$ be the

remaining ones.
3 Voilà; a "sparse" approximation remains:

Method 1. Thresholding the Fourier coefficients.

Given function $A:[0,2 \pi] \rightarrow \mathbb{R}$ we wish to approximate it by a sum of exponential functions. Do:

1 Write $A(x)=\sum_{k=-\infty}^{\infty} a_{k} \mathrm{e}^{\mathrm{i} k x}$
2 Let $\epsilon>0$ be threshold level. Throw away all a_{k} 's such that $\left|a_{k}\right|<\epsilon$. Let $\left\{a_{k_{j}}\right\}_{j=1}^{n}$ be the remaining ones.
3 Volia. a "spasece appoximation remains:

Method 1. Thresholding the Fourier coefficients.

Given function $A:[0,2 \pi] \rightarrow \mathbb{R}$ we wish to approximate it by a sum of exponential functions. Do:

1 Write $A(x)=\sum_{k=-\infty}^{\infty} a_{k} \mathrm{e}^{\mathrm{i} k x}$
2 Let $\epsilon>0$ be threshold level. Throw away all a_{k} 's such that $\left|a_{k}\right|<\epsilon$. Let $\left\{a_{k_{j}}\right\}_{j=1}^{n}$ be the remaining ones.
3 Voilà; a "sparse" approximation remains:

$$
A(x) \approx \sum_{j=1}^{n} a_{k_{j}} \mathrm{e}^{\mathrm{i} k_{j} x}
$$

Thresholding the Fourier coefficients. Example

Lets take $A(x)=\cos (x / 2)$. The fourier transform is

$$
\cos (x / 2)=\sum_{k=-\infty}^{\infty} \underbrace{\frac{-\mathrm{i} k}{\pi(k-1 / 2)(k+1 / 2)}}_{a_{k}} \mathrm{e}^{\mathrm{i} k x} .
$$

In this case, $\left|a_{k}\right| \sim 1 / k$ which decays very slowly. Hence either our approximation

$$
\cos (x / 2) \approx \sum_{k=-n}^{n} a_{k} \mathrm{e}^{\mathrm{i} k x}
$$

will be a bad approximation or not so sparse.

Need for improvement

Better idea: use $\mathrm{e}^{\mathrm{i} \zeta_{k} x}$ with arbitrary $\zeta_{k} \in \mathbb{R}$, as opposed to $\mathrm{e}^{\mathrm{i} k x}$ with $k \in \mathbb{N}$. For example, we would get

$$
A(x)=\cos (x / 2)=\frac{1}{2} \mathrm{e}^{\mathrm{i} \frac{1}{2} x}+\frac{1}{2} \mathrm{e}^{\mathrm{i}\left(-\frac{1}{2}\right) x}
$$

to be compared with $\cos (x / 2) \approx \sum_{k=-n}^{n} 2 \mathrm{i} \frac{k}{(k-1 / 2)(k+1 / 2)} \mathrm{e}^{\mathrm{i} k x}$.
But how to find suitable "nodes" $\zeta_{k} \in \mathbb{R}$ to approximate a given

Need for improvement

Better idea: use $\mathrm{e}^{\mathrm{i} \zeta_{k} x}$ with arbitrary $\zeta_{k} \in \mathbb{R}$, as opposed to $\mathrm{e}^{\mathrm{i} k x}$ with $k \in \mathbb{N}$. For example, we would get

$$
A(x)=\cos (x / 2)=\frac{1}{2} \mathrm{e}^{\mathrm{i} \frac{1}{2} x}+\frac{1}{2} \mathrm{e}^{\mathrm{i}\left(-\frac{1}{2}\right) x}
$$

to be compared with $\cos (x / 2) \approx \sum_{k=-n}^{n} 2 \mathrm{i} \frac{k}{(k-1 / 2)(k+1 / 2)} \mathrm{e}^{\mathrm{i} k x}$.
But how to find suitable "nodes" $\zeta_{k} \in \mathbb{R}$ to approximate a given function A?

Need for improvement

Better idea: use $\mathrm{e}^{\mathrm{i} \zeta_{k} x}$ with arbitrary $\zeta_{k} \in \mathbb{R}$, as opposed to $\mathrm{e}^{\mathrm{i} k x}$ with $k \in \mathbb{N}$. For example, we would get

$$
A(x)=\cos (x / 2)=\frac{1}{2} \mathrm{e}^{\mathrm{i} \frac{1}{2} x}+\frac{1}{2} \mathrm{e}^{\mathrm{i}\left(-\frac{1}{2}\right) x}
$$

to be compared with $\cos (x / 2) \approx \sum_{k=-n}^{n} 2 \mathrm{i} \frac{k}{(k-1 / 2)(k+1 / 2)} \mathrm{e}^{\mathrm{i} k x}$.
But how to find suitable "nodes" $\zeta_{k} \in \mathbb{R}$ to approximate a given function A?

Overview of other approximation methods

1 Matching pursuit
$2 \|^{1}$-optimization

Overview of other approximation methods

1 Matching pursuit
$2 \|^{1}$-optimization

Overview of other approximation methods

1 Matching pursuit
$2 /^{1}$-optimization
Common feature of $1 \& 2$: Both need large dictionaries \mathcal{D}.
E.g. $\mathcal{D}=\left\{\mathrm{e}^{\mathrm{i} \frac{k}{1000} \times}\right\}_{k=-\infty}^{\infty}$.

Overview of other approximation methods

1 Matching pursuit
$2 /^{1}$-optimization
3 Toeplitz matrix approach. By Beylkin and Monzón based on old results by Carathóeodory.

Overview of other approximation methods

1 Matching pursuit
$2 I^{1}$-optimization
3 Toeplitz matrix approach. By Beylkin and Monzón based on old results by Carathóeodory.
4 Hankel matrix approach. (The AAK-algorithm). By Beylkin and Monzón based on results by Adamyan, Arov and Krein.

Overview of other approximation methods

1 Matching pursuit
$2 I^{1}$-optimization
3 Toeplitz matrix approach. By Beylkin and Monzón based on old results by Carathóeodory.
4 Hankel matrix approach. (The AAK-algorithm). By Beylkin and Monzón based on results by Adamyan, Arov and Krein. 3 yields approximations

$$
A(x) \approx \sum_{k=1}^{n} a_{k} \mathrm{e}^{\mathrm{i} \zeta_{k}}
$$

where $\zeta_{k} \in \mathbb{R}$ is "chosen" by A. 4 is similar but produces $\zeta_{k} \in \mathbb{C}$

The $1-d$ AAK-theorem.

$\Gamma_{A}: L^{2}\left(\mathbb{R}^{+}\right) \rightarrow L^{2}\left(\mathbb{R}^{+}\right)$is given by

$$
\Gamma_{A}(F)=\int_{\mathbb{R}^{+}} A(x+y) F(y) d y
$$

u_{n} / σ_{n} are singular vectors/values to $\Gamma_{A} \cdot \check{u}_{n}(\zeta)=\int_{\mathbb{R}^{+}} u_{n}(x) e^{i \times \zeta}$.
Theorem
(AAK) Assume that $\sigma_{n-1}>\sigma_{n}>\sigma_{n+1}$. Then ǔn has exactly n zeroes $\zeta_{1}, \ldots, \zeta_{n} \in \mathbb{C}^{+}$, (counted with multiplicity). Moreover, there are coefficients $c_{1}, \ldots, c_{n} \in \mathbb{C}$ such that

$$
\| \Gamma_{A-\sum_{k=1}^{n} c_{k} \mathrm{e}^{\mathrm{i} \xi_{k} x} \|}=\sigma_{n}
$$

The 1 - d AAK-theorem.

$\Gamma_{A}: L^{2}\left(\mathbb{R}^{+}\right) \rightarrow L^{2}\left(\mathbb{R}^{+}\right)$is given by

$$
\Gamma_{A}(F)=\int_{\mathbb{R}^{+}} A(x+y) F(y) d y
$$

u_{n} / σ_{n} are singular vectors/values to $\Gamma_{A} . \check{u}_{n}(\zeta)=\int_{\mathbb{R}^{+}} u_{n}(x) e^{i \times \zeta}$.
Theorem
(AAK) Assume that $\sigma_{n-1}>\sigma_{n}>\sigma_{n+1}$. Then ǔn has exactly n zeroes $\zeta_{1}, \ldots, \zeta_{n} \in \mathbb{C}^{+}$, (counted with multiplicity). Moreover, there are coefficients $c_{1}, \ldots, c_{n} \in \mathbb{C}$ such that
(Kronecker) $\operatorname{Rank}\left(\Gamma_{A}\right)=1$ iff $a=e^{\zeta x}$ for some $\zeta \in \mathbb{C}^{+}$

The 1 - d AAK-theorem.

$\Gamma_{A}: L^{2}\left(\mathbb{R}^{+}\right) \rightarrow L^{2}\left(\mathbb{R}^{+}\right)$is given by

$$
\Gamma_{A}(F)=\int_{\mathbb{R}^{+}} A(x+y) F(y) d y
$$

u_{n} / σ_{n} are singular vectors/values to $\Gamma_{A} . \check{u}_{n}(\zeta)=\int_{\mathbb{R}^{+}} u_{n}(x) e^{i x \zeta}$.
Theorem
(AAK) Assume that $\sigma_{n-1}>\sigma_{n}>\sigma_{n+1}$. Then ǔn has exactly n zeroes $\zeta_{1}, \ldots, \zeta_{n} \in \mathbb{C}^{+}$, (counted with multiplicity). Moreover, there are coefficients $c_{1}, \ldots, c_{n} \in \mathbb{C}$ such that

$$
\| \Gamma_{A-\sum_{k=1}^{n} c_{k} \mathrm{e}^{\mathrm{i} \zeta_{k^{x}}} \|=\sigma_{n}, ~}
$$

(Kronecker) $\operatorname{Rank}\left(\Gamma_{A}\right)=1$ iff $a=e^{\zeta x}$ for some $\zeta \in \mathbb{C}^{+}$
Note

$$
\sigma_{n}=\inf \left\{\left\|\Gamma_{a}-K\right\|: \operatorname{Rank}(K)=n\right\} .
$$

Outline of the algorithm

1 Sample the function A with interval $1 / N,(N \in \mathbb{N})$, to get vector $\mathcal{S}_{N} A=a$:

$$
\mathcal{S}_{N} A=\left(a_{0}, a_{1}, \ldots, a_{M}, 0,0,0, \ldots\right)=\left(\frac{1}{N} A\left(\frac{k}{N}\right)\right)_{k=0}^{\infty}
$$

Outline of the algorithm

1 Sample the function A with interval $1 / N,(N \in \mathbb{N})$, to get vector $\mathcal{S}_{N} A=a$:

$$
\mathcal{S}_{N} A=\left(a_{0}, a_{1}, \ldots, a_{M}, 0,0,0, \ldots\right)=\left(\frac{1}{N} A\left(\frac{k}{N}\right)\right)_{k=0}^{\infty}
$$

2 Form the finite Hankel matrix

$$
\Gamma_{a}=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{M} \\
a_{1} & a_{2} & \cdot & \ldots & 0 \\
a_{2} & \cdot & \cdot & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{M} & 0 & 0 & \ldots & 0
\end{array}\right)
$$

3 Let $\sigma_{0} \geq \sigma_{1} \geq \ldots \geq \sigma_{M}$ be its singular values and u_{0}, \ldots, u_{M} the singular vectors.
(1. Sample $A \mapsto a \longrightarrow, 2$. Hankel matrix $\Gamma_{a}, \longrightarrow$
3. Sing. value's $\sigma_{k} \&$ sing. vector's u_{k})

4 Take σ_{n} to be the first value under the desired accuracy ϵ. Put $\breve{u}_{n}(z)=\sum_{m=0}^{M} u_{n}(m) z^{m}$.

Theorem
(AAK) Assume that $\sigma_{n-1}>\sigma_{n}>\sigma_{n+1}$. Then $\check{u}_{n}\left(\mathrm{e}^{\frac{i}{N} \zeta}\right)$ has exactly
(1. Sample $A \mapsto a \longrightarrow$, 2. Hankel matrix $\Gamma_{a}, \longrightarrow$
3. Sing. value's $\sigma_{k} \&$ sing. vector's u_{k})

$$
\begin{aligned}
& 4 \sigma_{n}<\epsilon<\sigma_{n-1} \\
& \\
& \quad \check{u}_{n}(z)=\sum_{m=0}^{M} u_{n}(m) z^{m} .
\end{aligned}
$$

Theorem
(AAK) Assume that $\sigma_{n-1}>\sigma_{n}>\sigma_{n+1}$. Then ǔn $\left(\mathrm{e}^{\frac{i}{N} \zeta}\right)$ has exactly n zeroes $\zeta_{1}, \ldots, \zeta_{n} \in \mathbb{C}^{+}$, (counted with multiplicity). Moreover, there are coefficients $c_{1}, \ldots, c_{n} \in \mathbb{C}$ such that, with

$$
A_{a p}(x)=\sum_{k=1}^{n} c_{k} \mathrm{e}^{\mathrm{i} \zeta_{k} x}
$$

we have

$$
\left\|\Gamma_{\mathcal{S}_{N}\left(A-A_{a p}\right)}\right\|=\sigma_{n}
$$

5 Compute the $\zeta_{1}, \ldots, \zeta_{n}$'s and c_{1}, \ldots, c_{n} 's; Then

$$
A_{a p}(x)=\sum_{k=1}^{n} c_{k} \mathrm{e}^{\mathrm{i} \zeta_{k} x}
$$

satisfies $\left\|\Gamma_{\mathcal{S}_{N}\left(A-A_{a p}\right)}\right\|=\sigma_{n} \leq \epsilon$.

5 Compute the $\zeta_{1}, \ldots, \zeta_{n}$'s and c_{1}, \ldots, c_{n} 's; Then

$$
A_{a p}(x)=\sum_{k=1}^{n} c_{k} \mathrm{e}^{\mathrm{i} \zeta_{k} x}
$$

satisfies $\left\|\Gamma_{\mathcal{S}_{N}\left(A-A_{a p}\right)}\right\|=\sigma_{n} \leq \epsilon$.

Examples

$\mathrm{n}=3:$

Examples

$\mathrm{n}=7$:

Examples

$$
\mathrm{n}=11
$$

Examples

$$
\mathrm{n}=15
$$

Examples

$$
\mathrm{n}=19
$$

Examples

$\mathrm{n}=29$:

2-d Hankel operators

$\ln 1-d$,

$$
\left(\Gamma_{a} f\right)(k)=\sum_{j \geq 0} a_{k+j} f_{j}
$$

In $2-d$ we thus set

$$
\left(\Gamma_{a} f\right)\left(k_{1}, k_{2}\right)=\sum_{j_{1}, j_{2} \geq 0} a_{\left(k_{1}+j_{1}, k_{2}+j_{2}\right)} f_{\left(j_{1}, j_{2}\right)} .
$$

2-d Hankel operators

$\ln 1-d$,

$$
\left(\Gamma_{a} f\right)(k)=\sum_{j \geq 0} a_{k+j} f_{j}
$$

In $2-d$ we thus set

$$
\left(\Gamma_{a} f\right)\left(k_{1}, k_{2}\right)=\sum_{j_{1}, j_{2} \geq 0} a_{\left(k_{1}+j_{1}, k_{2}+j_{2}\right)} f_{\left(j_{1}, j_{2}\right)} .
$$

Bad news:

1 AAK-theorem for $2-d$ is unknown.
2 The Fourier transform of singular vectors u_{n} to a $2-d$ Hankel operator is

$$
\check{u}_{n}\left(z_{1}, z_{2}\right)=\sum u_{n}\left(k_{1}, k_{2}\right) z_{1}^{k_{1}} z_{2}^{k_{2}}
$$

2-d Hankel operators

$\ln 1-d$,

$$
\left(\Gamma_{a} f\right)(k)=\sum_{j \geq 0} a_{k+j} f_{j}
$$

In $2-d$ we thus set

$$
\left(\Gamma_{a} f\right)\left(k_{1}, k_{2}\right)=\sum_{j_{1}, j_{2} \geq 0} a_{\left(k_{1}+j_{1}, k_{2}+j_{2}\right)} f_{\left(j_{1}, j_{2}\right)}
$$

Good news:

For $A \in C\left([0,1]^{2}\right)$ put

$$
\mathcal{S}_{N}(A)=A\left(\frac{k_{1}}{N}, \frac{k_{2}}{N}\right), \quad 0 \leq k_{1}, k_{2} \leq N
$$

Then

$$
\operatorname{Rank} \Gamma_{\mathcal{S}_{N}(A)}=1 \Leftrightarrow A\left(x_{1}, x_{2}\right)=c \mathrm{e}^{\mathrm{i}\left(\zeta_{1} x_{1}+\zeta_{2} x_{2}\right)}, \quad c, \zeta_{1}, \zeta_{2} \in \mathbb{C}
$$

We wish to approximate the function A :
$\operatorname{Re} A$: Im A :

Using a fixed singular vector u_{n} to $\Gamma_{\mathcal{S}_{n}(A)}$, the algorithm yields way too many points $\left\{\left(\zeta_{1}^{k}, \zeta_{2}^{k}\right)\right\}_{k}$ such that $\mathrm{e}^{\mathrm{i}\left(\zeta_{1}^{k} x_{1}+\zeta_{2}^{k} x_{2}\right)}$ might be useful for approximating A. We solve

$$
A \approx \sum_{k} a_{k} \mathrm{e}^{\mathrm{i}\left(\zeta_{1}^{k} x_{1}+\zeta_{2}^{k} x_{2}\right)}
$$

using the least squares method.

For $n=36$, here is the result:

N (the number of significant nodes) versus n (the number of the singular vector u_{n}).

What about the approximation error as function of n ?
N (the number of significant nodes) versus n (the number of the singular vector u_{n}).

What about the approximation error as function of n ?

Stability with respect to noise:

Stability with respect to noise:

