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Approximation of seismic image:

Original 512× 512-image:
Reconstruction using 5130-wave
packets.
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The aim is to
sparsely decom-
pose (seismic)
images into sums
of ”wave pack-
ets”. E.g. this
one:
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Wave-packets:
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The wave-packet decomposition algorithm; Review and
flaws.

We begin with a function A to be decomposed:
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1 Fourier transform A(x) to get Â(ξ) :

2 Dyadic parabolic partitioning of the ”ξ−domain”;

Â(ξ) :

3 Construct a partition of unity
∑

k,ν φ
2
k,ν = 1, where φk,ν has

support on the box Bk,ν .
4 For each index k , ν do:

4.1 a Fourier series expansion of φk,νÂ on the box Bk,ν ;

φk,νÂ(ξ) =
∑
j∈Z2

aj,(k,ν)ei〈ζj,(k,ν),ξ〉

4.2 Throw away small coefficients aj,(k,ν) to obtain

φk,νÂ(ξ) ≈
∑

Finite sum in m

ajm,(k,ν)ei〈ζjm,(k,ν),ξ〉

5 Sum up all approximations to obtain

Â(ξ) =
∑
k,ν

φ2
k,νÂ(ξ) ≈

∑
All k,ν

∑
Finite in m

ajm,(k,ν)φk,ν(ξ) ei〈ζjm,(k,ν),ξ〉
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2 Dyadic parabolic partitioning of the ”ξ−domain”;

Bk,ν :
k = 1,
ν = i
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φk,νÂ(ξ) =
∑
j∈Z2

aj,(k,ν)ei〈ζj,(k,ν),ξ〉

4.2 Throw away small coefficients aj,(k,ν) to obtain

φk,νÂ(ξ) ≈
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1 Fourier transform A(x) to get Â(ξ) :
2 Dyadic parabolic partitioning of the ”ξ−domain”;

Bk,ν :
k = 2,
ν = i

3 Construct a partition of unity
∑
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φk,νÂ(ξ) =
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φk,νÂ(ξ) ≈
∑

Finite sum in m

ajm,(k,ν)ei〈ζjm,(k,ν),ξ〉

5 Sum up all approximations to obtain
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1 Fourier transform A(x) to get Â(ξ) :
2 Dyadic parabolic partitioning of the ”ξ−domain”;

Bk,ν :
k = 3,
ν = i

3 Construct a partition of unity
∑

k,ν φ
2
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support on the box Bk,ν .
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k,νÂ(ξ) ≈

∑
All k,ν

∑
Finite in m

ajm,(k,ν)φk,ν(ξ) ei〈ζjm,(k,ν),ξ〉

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.



1 Fourier transform A(x) to get Â(ξ) :
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Â(ξ) =
∑
k,ν

φ2
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The wave-packet algorithm continued

4 φk,νÂ(ξ) ≈
∑

Finite sum in m ajm,(k,ν)e
i〈ζjm,(k,ν),ξ〉 (valid on Bk,ν)

5 Â(ξ) ≈
∑

k,ν

∑
m ajm,(k,ν) φk,ν(ξ)e〈iζjm,(k,ν),ξ〉︸ ︷︷ ︸

ψ̂γ−(the wave-packets)

(valid in R2)

6 F−1(φk,ν(ξ)ei〈ζjm,(k,ν),ξ〉) = ψγ are the wave-packets, (where γ
is some index specifying ”generation” k, direction ν and
”Fourier exponent” ζj .) With k and ν fixed, different
exponents ζj yield translations (in x) of a fixed wave-packet.

7 Applying F−1 to 5 we obtain the wave-packet decomposition:

A(x) ≈
∑

Finite in γ

aγψγ(x)
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Pictures and comments

F For each generation k there is a ”mother wave-packet”. All
other wave-packets are rotations and translations of this one.
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Pictures and comments

F For each generation k there is a ”mother wave-packet”. All
other wave-packets are rotations and translations of this one.
F For each direction ν
the possible ”centers”
for the wave-packets lie
on rotated grids.

k=1,
ν = i

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.



Pictures and comments

F For each generation k there is a ”mother wave-packet”. All
other wave-packets are rotations and translations of this one.
F For each direction ν
the possible ”centers”
for the wave-packets lie
on rotated grids.

k=1,
ν = . . .

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.



Pictures and comments

F For each generation k there is a ”mother wave-packet”. All
other wave-packets are rotations and translations of this one.
F For each direction ν
the possible ”centers”
for the wave-packets lie
on rotated grids.

k=1,
ν = . . .

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.



Pictures and comments

F For each generation k there is a ”mother wave-packet”. All
other wave-packets are rotations and translations of this one.
F For each direction ν
the possible ”centers”
for the wave-packets lie
on rotated grids.

k=2,
ν = i
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Pictures and comments

F For each generation k there is a ”mother wave-packet”. All
other wave-packets are rotations and translations of this one.
F For each direction ν
the possible ”centers”
for the wave-packets lie
on rotated grids.

k=2,
ν = . . .
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Pictures and comments

F For each generation k there is a ”mother wave-packet”. All
other wave-packets are rotations and translations of this one.
F For each direction ν
the possible ”centers”
for the wave-packets lie
on rotated grids.

k=2,
ν = . . .
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Pictures and comments

F For each generation k there is a ”mother wave-packet”. All
other wave-packets are rotations and translations of this one.
F For each direction ν
the possible ”centers”
for the wave-packets lie
on rotated grids.

k=3,
ν = i
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Method 1. Thresholding the Fourier coefficients.

Given function A : [0, 2π] → R we
wish to approximate it by a sum of
exponential functions. Do:

1 Write A(x) =
∑∞

k=−∞ akeikx

2 Let ε > 0 be threshold level.
Throw away all ak ’s such that
|ak | < ε. Let {akj

}nj=1 be the
remaining ones.

3 Voilà; a ”sparse” approximation
remains:

A(x) ≈
n∑

j=1

akj
eikjx
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Thresholding the Fourier coefficients. Example

Lets take A(x) = cos(x/2). The fourier transform
is

cos(x/2) =
∞∑

k=−∞

−ik
π(k − 1/2)(k + 1/2)︸ ︷︷ ︸

ak

eikx .

In this case, |ak | ∼ 1/k which decays very slowly.
Hence either our approximation

cos(x/2) ≈
n∑

k=−n

akeikx

will be a bad approximation or not so sparse.
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Need for improvement

Better idea: use eiζkx with arbitrary ζk ∈ R, as opposed to eikx

with k ∈ N. For example, we would get

A(x) = cos(x/2) =
1

2
ei 1

2
x +

1

2
ei(− 1

2
)x ,

to be compared with cos(x/2) ≈
∑n

k=−n 2i k
(k−1/2)(k+1/2)e

ikx .

But how to find suitable ”nodes” ζk ∈ R to approximate a given
function A?

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.



Need for improvement

Better idea: use eiζkx with arbitrary ζk ∈ R, as opposed to eikx

with k ∈ N. For example, we would get

A(x) = cos(x/2) =
1

2
ei 1

2
x +

1

2
ei(− 1

2
)x ,

to be compared with cos(x/2) ≈
∑n

k=−n 2i k
(k−1/2)(k+1/2)e

ikx .

But how to find suitable ”nodes” ζk ∈ R to approximate a given
function A?

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.



Need for improvement

Better idea: use eiζkx with arbitrary ζk ∈ R, as opposed to eikx

with k ∈ N. For example, we would get

A(x) = cos(x/2) =
1

2
ei 1

2
x +

1

2
ei(− 1

2
)x ,

to be compared with cos(x/2) ≈
∑n

k=−n 2i k
(k−1/2)(k+1/2)e

ikx .

But how to find suitable ”nodes” ζk ∈ R to approximate a given
function A?

Marcus Carlsson Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.



Overview of other approximation methods

1 Matching pursuit

2 l1-optimization
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Overview of other approximation methods

1 Matching pursuit

2 l1-optimization
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Overview of other approximation methods

1 Matching pursuit

2 l1-optimization
Common feature of 1 & 2: Both need large dictionaries D.

E.g. D = {ei k
1000

x}∞k=−∞.
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Overview of other approximation methods

1 Matching pursuit

2 l1-optimization

3 Toeplitz matrix approach. By Beylkin and Monzón based on
old results by Carathóeodory.
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Overview of other approximation methods

1 Matching pursuit

2 l1-optimization

3 Toeplitz matrix approach. By Beylkin and Monzón based on
old results by Carathóeodory.

4 Hankel matrix approach. (The AAK-algorithm). By Beylkin
and Monzón based on results by Adamyan, Arov and Krein.
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Overview of other approximation methods

1 Matching pursuit

2 l1-optimization

3 Toeplitz matrix approach. By Beylkin and Monzón based on
old results by Carathóeodory.

4 Hankel matrix approach. (The AAK-algorithm). By Beylkin
and Monzón based on results by Adamyan, Arov and Krein.
3 yields approximations

A(x) ≈
n∑

k=1

akeiζk

where ζk ∈ R is ”chosen” by A.
4 is similar but produces ζk ∈ C
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The 1− d AAK-theorem.

ΓA : L2(R+)→ L2(R+) is given by

ΓA(F ) =

∫
R+

A(x + y)F (y)dy

un/σn are singular vectors/values to ΓA. ǔn(ζ) =
∫

R+ un(x)e ixζ .

Theorem
(AAK) Assume that σn−1 > σn > σn+1. Then ǔn has exactly n
zeroes ζ1, . . . , ζn ∈ C+, (counted with multiplicity). Moreover,
there are coefficients c1, . . . , cn ∈ C such that

‖ΓA−
∑n

k=1 ckeiζk x‖ = σn
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ΓA : L2(R+)→ L2(R+) is given by

ΓA(F ) =

∫
R+

A(x + y)F (y)dy

un/σn are singular vectors/values to ΓA. ǔn(ζ) =
∫

R+ un(x)e ixζ .

Theorem
(AAK) Assume that σn−1 > σn > σn+1. Then ǔn has exactly n
zeroes ζ1, . . . , ζn ∈ C+, (counted with multiplicity). Moreover,
there are coefficients c1, . . . , cn ∈ C such that

‖ΓA−
∑n

k=1 ckeiζk x‖ = σn

(Kronecker) Rank(ΓA) = 1 iff a = eζx for some ζ ∈ C+
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The 1− d AAK-theorem.

ΓA : L2(R+)→ L2(R+) is given by

ΓA(F ) =

∫
R+

A(x + y)F (y)dy

un/σn are singular vectors/values to ΓA. ǔn(ζ) =
∫

R+ un(x)e ixζ .

Theorem
(AAK) Assume that σn−1 > σn > σn+1. Then ǔn has exactly n
zeroes ζ1, . . . , ζn ∈ C+, (counted with multiplicity). Moreover,
there are coefficients c1, . . . , cn ∈ C such that

‖ΓA−
∑n

k=1 ckeiζk x‖ = σn

(Kronecker) Rank(ΓA) = 1 iff a = eζx for some ζ ∈ C+

Note
σn = inf{‖Γa − K‖ : Rank(K ) = n}.
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Outline of the algorithm

1 Sample the function A with interval 1/N, (N ∈ N), to get
vector SNA = a:

SNA = (a0, a1, . . . , aM , 0, 0, 0, . . .) =

(
1

N
A

(
k

N

))∞
k=0

.
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Outline of the algorithm

1 Sample the function A with interval 1/N, (N ∈ N), to get
vector SNA = a:

SNA = (a0, a1, . . . , aM , 0, 0, 0, . . .) =

(
1

N
A

(
k

N

))∞
k=0

.

2 Form the finite Hankel matrix

Γa =


a0 a1 a2 . . . aM

a1 a2 · . . . 0
a2 · · . . . 0
...

...
...

. . .
...

aM 0 0 . . . 0


3 Let σ0 ≥ σ1 ≥ . . . ≥ σM be its singular values and u0, . . . , uM

the singular vectors.
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(1. Sample A 7→ a −→, 2. Hankel matrix Γa,−→
3. Sing. value’s σk & sing. vector’s uk)

4 Take σn to be the first value under the desired accuracy ε.
Put ǔn(z) =

∑M
m=0 un(m)zm.

Theorem
(AAK) Assume that σn−1 > σn > σn+1. Then ǔn(e

i
N
ζ) has exactly

n zeroes ζ1, . . . , ζn ∈ C+, (counted with multiplicity). Moreover,
there are coefficients c1, . . . , cn ∈ C such that, with

Aap(x) =
n∑

k=1

ckeiζkx ,

we have
‖ΓSN(A−Aap)‖ = σn
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(1. Sample A 7→ a −→, 2. Hankel matrix Γa,−→
3. Sing. value’s σk & sing. vector’s uk)

4 σn < ε < σn−1

ǔn(z) =
∑M

m=0 un(m)zm.

Theorem
(AAK) Assume that σn−1 > σn > σn+1. Then ǔn(e

i
N
ζ) has exactly

n zeroes ζ1, . . . , ζn ∈ C+, (counted with multiplicity). Moreover,
there are coefficients c1, . . . , cn ∈ C such that, with

Aap(x) =
n∑

k=1

ckeiζkx ,

we have
‖ΓSN(A−Aap)‖ = σn
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5 Compute the ζ1, . . . , ζn’s and c1, . . . , cn’s; Then

Aap(x) =
n∑

k=1

ckeiζkx

satisfies ‖ΓSN(A−Aap)‖ = σn ≤ ε.
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5 Compute the ζ1, . . . , ζn’s and c1, . . . , cn’s; Then

Aap(x) =
n∑

k=1

ckeiζkx

satisfies ‖ΓSN(A−Aap)‖ = σn ≤ ε.
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Examples

n=3:
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Examples

n=7:
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Examples

n=11:
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Examples

n=15:
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Examples

n=19:
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Examples

n=29:
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2-d Hankel operators

In 1− d ,
(Γaf )(k) =

∑
j≥0

ak+j fj .

In 2− d we thus set

(Γaf )(k1, k2) =
∑

j1,j2≥0

a(k1+j1,k2+j2)f(j1,j2).
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2-d Hankel operators

In 1− d ,
(Γaf )(k) =

∑
j≥0

ak+j fj .

In 2− d we thus set

(Γaf )(k1, k2) =
∑

j1,j2≥0

a(k1+j1,k2+j2)f(j1,j2).

Bad news:

1 AAK-theorem for 2− d is unknown.

2 The Fourier transform of singular vectors un to a 2− d Hankel
operator is

ǔn(z1, z2) =
∑

un(k1, k2)zk1
1 zk2

2
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2-d Hankel operators

In 1− d ,
(Γaf )(k) =

∑
j≥0

ak+j fj .

In 2− d we thus set

(Γaf )(k1, k2) =
∑

j1,j2≥0

a(k1+j1,k2+j2)f(j1,j2).

Good news:
For A ∈ C ([0, 1]2) put

SN(A) = A

(
k1

N
,

k2

N

)
, 0 ≤ k1, k2 ≤ N.

Then

RankΓSN(A) = 1⇔ A(x1, x2) = cei(ζ1x1+ζ2x2), c , ζ1, ζ2 ∈ C.
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We wish to approximate the function A :
Re A: Im A:

Using a fixed singular vector un to ΓSn(A), the algorithm yields way

too many points {(ζk
1 , ζ

k
2 )}k such that ei(ζk

1 x1+ζk
2 x2) might be useful

for approximating A. We solve

A ≈
∑
k

akei(ζk
1 x1+ζk

2 x2)

using the least squares method.
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For n = 36, here is the result:
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N (the number of significant nodes) versus n (the number of the
singular vector un).

What about the approximation error as function of n?
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N (the number of significant nodes) versus n (the number of the
singular vector un).

What about the approximation error as function of n?
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Stability with respect to noise:
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Stability with respect to noise:
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