Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.

Marcus Carlsson

January 11, 2010
Approximation of seismic image:

Original 512×512-image:

Reconstruction using 5130-wave packets.
The aim is to sparsely decompose (seismic) images into sums of "wave packets". E.g. this one:
Wave-packets:

different scales k

$k=4$; **different rotations** ν
We begin with a function A to be decomposed:

\[A(x) \]
1 Fourier transform $A(x)$ to get $\hat{A}(\xi)$:

$\hat{A}(\xi)$:
1 Fourier transform $A(x)$ to get $\hat{A}(\xi)$:

2 Dyadic parabolic partitioning of the "ξ–domain"; $\hat{A}(\xi)$:

Marcus Carlsson
Sparse nonlinear approximation of functions in two dimensions
1 Fourier transform $A(x)$ to get $\hat{A}(\xi)$:
2 Dyadic parabolic partitioning of the "ξ–domain";

$B_{k,\nu}$:
$k = 1,$
$\nu = i$
1 Fourier transform $A(x)$ to get $\hat{A}(\xi)$:
2 Dyadic parabolic partitioning of the "ξ—domain”;

$B_{k,\nu}$:

$k = 1$,
$\nu = \ldots$
1 Fourier transform \(A(x) \) to get \(\hat{A}(\xi) \):
2 Dyadic parabolic partitioning of the "\(\xi \)-domain";

\[B_{k,\nu} : \]
\[k = 1, \]
\[\nu = \ldots \]
1. Fourier transform $A(x)$ to get $\hat{A}(\xi)$:

2. Dyadic parabolic partitioning of the "\(\xi\)-domain";

$$B_{k,\nu}:$$

- $k = 2$,
- $\nu = i$
1 Fourier transform $A(x)$ to get $\hat{A}(\xi)$:
2 Dyadic parabolic partitioning of the "\(\xi\)-domain";

$B_{k,\nu}$:
- $k = 2$,
- $\nu = \ldots$
1 Fourier transform \(A(x) \) to get \(\hat{A}(\xi) \):
2 Dyadic parabolic partitioning of the "\(\xi \)-domain";
 \(B_{k,\nu} : \)
 \(k = 2, \)
 \(\nu = \ldots \)
1 Fourier transform $A(x)$ to get $\hat{A}(\xi)$:
2 Dyadic parabolic partitioning of the "ξ—domain";

$B_{k,\nu}$:

- $k = 3$,
- $\nu = i$
1 Fourier transform $A(x)$ to get $\hat{A}(\xi)$:

2 Dyadic parabolic partitioning of the "ξ–domain";

3 Construct a partition of unity $\sum_{k,\nu} \phi_{k,\nu}^2 = 1$, where $\phi_{k,\nu}$ has support on the box $B_{k,\nu}$.
1 Fourier transform \(A(x) \) to get \(\hat{A}(\xi) \):
2 Dyadic parabolic partitioning of the "\(\xi \)–domain";
3 Construct a partition of unity \(\sum_{k,\nu} \phi_{k,\nu}^2 = 1 \), where \(\phi_{k,\nu} \) has support on the box \(B_{k,\nu} \).
4 For each index \(k, \nu \) do:
 4.1 a Fourier series expansion of \(\phi_{k,\nu} \hat{A} \) on the box \(B_{k,\nu} \);
 \[
 \phi_{k,\nu} \hat{A}(\xi) = \sum_{j \in \mathbb{Z}^2} a_{j,(k,\nu)} e^{i\langle \xi_j,(k,\nu),\xi \rangle}
 \]
 4.2 Throw away small coefficients \(a_{j,(k,\nu)} \) to obtain
 \[
 \phi_{k,\nu} \hat{A}(\xi) \approx \sum_{\text{Finite sum in } m} a_{j_m,(k,\nu)} e^{i\langle \xi_{j_m}(k,\nu),\xi \rangle}
 \]
1 Fourier transform $A(x)$ to get $\hat{A}(\xi)$:

2 Dyadic parabolic partitioning of the "ξ–domain";

3 Construct a partition of unity $\sum_{k,\nu} \phi_{k,\nu}^2 = 1$, where $\phi_{k,\nu}$ has support on the box $B_{k,\nu}$.

4 For each index k, ν do:
 4.1 a Fourier series expansion of $\phi_{k,\nu} \hat{A}$ on the box $B_{k,\nu}$:

 $\phi_{k,\nu} \hat{A}(\xi) = \sum_{j \in \mathbb{Z}^2} a_{j,(k,\nu)} e^{i \langle \zeta_j,(k,\nu),\xi \rangle}$

 4.2 Throw away small coefficients $a_{j,(k,\nu)}$ to obtain

 $\phi_{k,\nu} \hat{A}(\xi) \approx \sum_{\text{Finite sum in } m} a_{j_m,(k,\nu)} e^{i \langle \zeta_{j_m,(k,\nu)},\xi \rangle}$

5 Sum up all approximations to obtain

$\hat{A}(\xi) = \sum_{k,\nu} \phi_{k,\nu}^2 \hat{A}(\xi) \approx \sum_{\text{All } k,\nu} \sum_{\text{Finite in } m} a_{j_m,(k,\nu)} \phi_{k,\nu}(\xi) e^{i \langle \zeta_{j_m,(k,\nu)},\xi \rangle}$
4 \(\phi_{k,\nu} \hat{A}(\xi) \approx \sum_{\text{Finite sum in } m} a_{jm,(k,\nu)} e^{i\langle \zeta_{jm,(k,\nu)},\xi \rangle} \) (valid on \(B_{k,\nu} \))

5 \(\hat{A}(\xi) \approx \sum_{k,\nu} \sum_{m} a_{jm,(k,\nu)} \phi_{k,\nu}(\xi) e^{i\langle \zeta_{jm,(k,\nu)},\xi \rangle} \) (valid in \(\mathbb{R}^2 \))

6 \(\mathcal{F}^{-1}(\phi_{k,\nu}(\xi) e^{i\langle \zeta_{jm,(k,\nu)},\xi \rangle}) = \psi_\gamma \) are the wave-packets, (where \(\gamma \) is some index specifying ”generation” \(k \), direction \(\nu \) and ”Fourier exponent” \(\zeta_j \).) With \(k \) and \(\nu \) fixed, different exponents \(\zeta_j \) yield translations (in \(x \)) of a fixed wave-packet.

7 Applying \(\mathcal{F}^{-1} \) to 5 we obtain the wave-packet decomposition:

\[
A(x) \approx \sum_{\text{Finite in } \gamma} a_\gamma \psi_\gamma(x)
\]
For each generation k there is a ”mother wave-packet”. All other wave-packets are rotations and translations of this one.

Different scales k

$k=4$; different rotations ν
★ For each generation k there is a ”mother wave-packet”. All other wave-packets are rotations and translations of this one.

★ For each direction ν the possible ”centers” for the wave-packets lie on rotated grids.

$k=1,$
$\nu = i$
For each generation k there is a ”mother wave-packet”. All other wave-packets are rotations and translations of this one.

For each direction ν the possible ”centers” for the wave-packets lie on rotated grids.

$k=1,$
$\nu = \ldots$
For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.

For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$k=1,$
$\nu = \ldots$
★ For each generation k there is a ”mother wave-packet”. All other wave-packets are rotations and translations of this one.

★ For each direction ν the possible ”centers” for the wave-packets lie on rotated grids.

$k=2$, $\nu = i$
★ For each generation k there is a ”mother wave-packet”. All other wave-packets are rotations and translations of this one.
★ For each direction ν the possible ”centers” for the wave-packets lie on rotated grids.

$k=2,$
$\nu = \ldots$
For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.

For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$k=2,
\nu = \ldots$
★ For each generation k there is a ”mother wave-packet”. All other wave-packets are rotations and translations of this one.
★ For each direction ν the possible ”centers” for the wave-packets lie on rotated grids.

$k=3,$
$\nu = i$
Method 1. Thresholding the Fourier coefficients.

Given function $A : [0, 2\pi] \rightarrow \mathbb{R}$ we wish to approximate it by a sum of exponential functions. Do:

1. Write $A(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$

2. Let $\epsilon > 0$ be threshold level. Throw away all a_k's such that $|a_k| < \epsilon$. Let $\{a_{kj}\}_{j=1}^{n}$ be the remaining ones.

3. Voilà; a "sparse" approximation remains:

$$A(x) \approx \sum_{j=1}^{n} a_{kj} e^{ik_j x}$$
Method 1. Thresholding the Fourier coefficients.

Given function $A : [0, 2\pi] \rightarrow \mathbb{R}$ we wish to approximate it by a sum of exponential functions. Do:

1. Write $A(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$

2. Let $\epsilon > 0$ be threshold level. Throw away all a_k's such that $|a_k| < \epsilon$. Let $\{a_{kj}\}_{j=1}^{n}$ be the remaining ones.

3. Voilà; a "sparse" approximation remains:

$$A(x) \approx \sum_{j=1}^{n} a_{kj} e^{ik_j x}$$
Method 1. Thresholding the Fourier coefficients.

Given function \(A : [0, 2\pi] \rightarrow \mathbb{R} \) we wish to approximate it by a sum of exponential functions. Do:

1. Write \(A(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx} \)

2. Let \(\epsilon > 0 \) be threshold level. Throw away all \(a_k \)'s such that \(|a_k| < \epsilon \). Let \(\{a_k\}_{j=1}^{n} \) be the remaining ones.

3. Voilà; a "sparse" approximation remains:

\[
A(x) \approx \sum_{j=1}^{n} a_{kj} e^{ik_j x}
\]
Thresholding the Fourier coefficients. Example

Let's take $A(x) = \cos(x/2)$. The Fourier transform is

$$\cos(x/2) = \sum_{k=-\infty}^{\infty} \frac{-ik}{\pi(k - 1/2)(k + 1/2)} e^{ikx}. \quad a_k$$

In this case, $|a_k| \sim 1/k$ which decays very slowly. Hence either our approximation

$$\cos(x/2) \approx \sum_{k=-n}^{n} a_k e^{ikx}$$

will be a bad approximation or not so sparse.
Need for improvement

Better idea: use $e^{i\zeta_k x}$ with arbitrary $\zeta_k \in \mathbb{R}$, as opposed to e^{ikx} with $k \in \mathbb{N}$. For example, we would get

$$A(x) = \cos(x/2) = \frac{1}{2}e^{i\frac{1}{2}x} + \frac{1}{2}e^{i(-\frac{1}{2})x},$$

to be compared with $\cos(x/2) \approx \sum_{k=-n}^{n} 2i\frac{k}{(k-1/2)(k+1/2)}e^{ikx}$.

But how to find suitable "nodes" $\zeta_k \in \mathbb{R}$ to approximate a given function A?
Better idea: use $e^{i\zeta_k x}$ with arbitrary $\zeta_k \in \mathbb{R}$, as opposed to e^{ikx} with $k \in \mathbb{N}$. For example, we would get

$$A(x) = \cos(x/2) = \frac{1}{2}e^{i\frac{1}{2}x} + \frac{1}{2}e^{i(-\frac{1}{2})x},$$

to be compared with $\cos(x/2) \approx \sum_{k=-n}^{n} 2i \frac{k}{(k-1/2)(k+1/2)} e^{ikx}$.

But how to find suitable "nodes" $\zeta_k \in \mathbb{R}$ to approximate a given function A?
Better idea: use $e^{i \zeta_k x}$ with arbitrary $\zeta_k \in \mathbb{R}$, as opposed to e^{ikx} with $k \in \mathbb{N}$. For example, we would get

$$A(x) = \cos(x/2) = \frac{1}{2} e^{i \frac{1}{2} x} + \frac{1}{2} e^{i(-\frac{1}{2})x},$$

to be compared with $\cos(x/2) \approx \sum_{k=-n}^{n} 2i \frac{k}{(k-1/2)(k+1/2)} e^{ikx}$.

But how to find suitable "nodes" $\zeta_k \in \mathbb{R}$ to approximate a given function A?
Overview of other approximation methods

1. Matching pursuit
2. l^1-optimization
Overview of other approximation methods

1 Matching pursuit
2 l^1-optimization
Overview of other approximation methods

1 Matching pursuit

2 l^1-optimization

Common feature of 1 & 2: Both need large dictionaries \mathcal{D}.

E.g. $\mathcal{D} = \{e^{i \frac{k}{1000} x}\}_{k=-\infty}^{\infty}$.
Overview of other approximation methods

1. Matching pursuit
2. l^1-optimization
3. Toeplitz matrix approach. *By Beylkin and Monzón based on old results by Carathéodory.*
Overview of other approximation methods

1. Matching pursuit
2. l^1-optimization
3. Toeplitz matrix approach. *By Beylkin and Monzón based on old results by Carathéodory.*
Overview of other approximation methods

1 Matching pursuit
2 l^1-optimization
3 Toeplitz matrix approach. By Beylkin and Monzón based on old results by Carathéodory.
4 Hankel matrix approach. (The AAK-algorithm). By Beylkin and Monzón based on results by Adamyan, Arov and Krein.

3 yields approximations

\[A(x) \approx \sum_{k=1}^{n} a_k e^{i\zeta_k} \]

where $\zeta_k \in \mathbb{R}$ is ”chosen” by A.

4 is similar but produces $\zeta_k \in \mathbb{C}$
The 1 − d AAK-theorem.

\(\Gamma_A : L^2(\mathbb{R}^+) \to L^2(\mathbb{R}^+) \) is given by

\[
\Gamma_A(F) = \int_{\mathbb{R}^+} A(x + y)F(y)dy
\]

\(u_n/\sigma_n \) are singular vectors/values to \(\Gamma_A \). \(\check{u}_n(\zeta) = \int_{\mathbb{R}^+} u_n(x)e^{ix\zeta} \).

Theorem

(AAK) Assume that \(\sigma_{n-1} > \sigma_n > \sigma_{n+1} \). Then \(\check{u}_n \) has exactly \(n \) zeroes \(\zeta_1, \ldots, \zeta_n \in \mathbb{C}^+ \), (counted with multiplicity). Moreover, there are coefficients \(c_1, \ldots, c_n \in \mathbb{C} \) such that

\[
\| \Gamma_A - \sum_{k=1}^n c_k e^{i\zeta_k x} \| = \sigma_n
\]
The $1 - d$ AAK-theorem.

\(\Gamma_A : L^2(\mathbb{R}^+) \rightarrow L^2(\mathbb{R}^+) \) is given by

\[
\Gamma_A(F) = \int_{\mathbb{R}^+} A(x + y)F(y)dy
\]

\(u_n/\sigma_n \) are singular vectors/values to \(\Gamma_A \). \(\check{u}_n(\zeta) = \int_{\mathbb{R}^+} u_n(x)e^{ix\zeta} \).

Theorem

(AAK) Assume that \(\sigma_{n-1} > \sigma_n > \sigma_{n+1} \). Then \(\check{u}_n \) has exactly \(n \) zeroes \(\zeta_1, \ldots, \zeta_n \in \mathbb{C}^+ \), \((\text{counted with multiplicity}) \). Moreover, there are coefficients \(c_1, \ldots, c_n \in \mathbb{C} \) such that

\[
\| \Gamma_A - \sum_{k=1}^n c_k e^{i\zeta_k x} \| = \sigma_n
\]

(Kronecker) \(\text{Rank}(\Gamma_A) = 1 \) iff \(a = e^{i\zeta x} \) for some \(\zeta \in \mathbb{C}^+ \)
The 1 − d AAK-theorem.

Γ_A : L^2(\mathbb{R}^+) → L^2(\mathbb{R}^+) is given by

\[Γ_A(F) = \int_{\mathbb{R}^+} A(x + y)F(y)dy \]

u_n/σ_n are singular vectors/values to Γ_A. ˇu_n(ζ) = \int_{\mathbb{R}^+} u_n(x)e^{ixζ}.

Theorem

(AAK) Assume that σ_{n-1} > σ_n > σ_{n+1}. Then ˇu_n has exactly n zeroes ζ_1, . . . , ζ_n ∈ \mathbb{C}^+, (counted with multiplicity). Moreover, there are coefficients c_1, . . . , c_n ∈ \mathbb{C} such that

\[\|Γ_A - \sum_{k=1}^n c_k e^{iζ_k x}\| = σ_n \]

(Kronecker) Rank(Γ_A) = 1 iff a = e^{ζx} for some ζ ∈ \mathbb{C}^+

Note

σ_n = \inf\{\|Γ_a - K\| : \text{Rank}(K) = n\}.
Outline of the algorithm

1. Sample the function A with interval $1/N$, ($N \in \mathbb{N}$), to get vector $S_N A = a$:

$$S_N A = (a_0, a_1, \ldots, a_M, 0, 0, 0, \ldots) = \left(\frac{1}{N} A \left(\frac{k}{N} \right) \right)_{k=0}^{\infty}.$$
Outline of the algorithm

1. Sample the function A with interval $1/N$, $(N \in \mathbb{N})$, to get vector $S_N A = a$:

$$S_N A = (a_0, a_1, \ldots, a_M, 0, 0, 0, \ldots) = \left(\frac{1}{N} A \left(\frac{k}{N} \right) \right)_{k=0}^{\infty}.$$

2. Form the finite Hankel matrix

$$\Gamma_a = \begin{pmatrix}
 a_0 & a_1 & a_2 & \ldots & a_M \\
 a_1 & a_2 & \ldots & 0 \\
 a_2 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 a_M & 0 & 0 & \ldots & 0
\end{pmatrix}$$

3. Let $\sigma_0 \geq \sigma_1 \geq \ldots \geq \sigma_M$ be its singular values and u_0, \ldots, u_M the singular vectors.
(1. Sample $A \mapsto a \mapsto$, 2. Hankel matrix Γ_a, \mapsto
3. Sing. value's σ_k & sing. vector's u_k)

4. Take σ_n to be the first value under the desired accuracy ϵ.
 Put $\tilde{u}_n(z) = \sum_{m=0}^{M} u_n(m)z^m$.

Theorem

(AAK) Assume that $\sigma_{n-1} > \sigma_n > \sigma_{n+1}$. Then $\tilde{u}_n(e^{\frac{i}{N}\zeta})$ has exactly n zeroes $\zeta_1, \ldots, \zeta_n \in \mathbb{C}^+$ (counted with multiplicity).

Moreover...
(1. Sample $A \mapsto a \longrightarrow$, 2. Hankel matrix Γ_a, \longrightarrow
3. Sing. value's σ_k & sing. vector's u_k)

4 $\sigma_n < \epsilon < \sigma_{n-1}$
$$\tilde{u}_n(z) = \sum_{m=0}^{M} u_n(m)z^m.$$

Theorem

(AAK) Assume that $\sigma_{n-1} > \sigma_n > \sigma_{n+1}$. Then $\tilde{u}_n(e^{\frac{i}{N}\zeta})$ has exactly n zeroes $\zeta_1, \ldots, \zeta_n \in \mathbb{C}^+$, *(counted with multiplicity)*. Moreover, there are coefficients $c_1, \ldots, c_n \in \mathbb{C}$ such that, with

$$A_{ap}(x) = \sum_{k=1}^{n} c_k e^{i\zeta_k x},$$

we have

$$\|\Gamma_{SN}(A - A_{ap})\| = \sigma_n$$
Compute the ζ_1, \ldots, ζ_n’s and c_1, \ldots, c_n’s; Then

$$A_{ap}(x) = \sum_{k=1}^{n} c_k e^{i \zeta_k x}$$

satisfies $\|\Gamma_{S_N}(A - A_{ap})\| = \sigma_n \leq \epsilon$.

$A_{ap}(x)$ for $n=16$
5 Compute the ζ_1, \ldots, ζ_n's and c_1, \ldots, c_n's; Then

$$A_{ap}(x) = \sum_{k=1}^{n} c_k e^{i\zeta_k x}$$

satisfies $\|\Gamma S_N(A - A_{ap})\| = \sigma_n \leq \epsilon$.

Marcus Carlsson

Sparse nonlinear approximation of functions in two dimensions
Examples

n=3:
Examples

\(n=7: \)
Examples

n=11:

\[\text{Marcus Carlsson} \]

Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.
Examples

n=15:
Examples

n=19:
Examples

n=29:
2-d Hankel operators

In 1−d,

\[(\Gamma_a f)(k) = \sum_{j \geq 0} a_{k+j}f_j.\]

In 2−d we thus set

\[(\Gamma_a f)(k_1, k_2) = \sum_{j_1, j_2 \geq 0} a_{(k_1+j_1, k_2+j_2)}f_{(j_1,j_2)}.\]
In 1–d,

$$(\Gamma_a f)(k) = \sum_{j \geq 0} a_{k+j} f_j.$$

In 2–d we thus set

$$(\Gamma_a f)(k_1, k_2) = \sum_{j_1, j_2 \geq 0} a_{(k_1+j_1, k_2+j_2)} f_{(j_1, j_2)}.$$

Bad news:

1. AAK-theorem for 2–d is unknown.
2. The Fourier transform of singular vectors u_n to a 2–d Hankel operator is

$$\check{u}_n(z_1, z_2) = \sum u_n(k_1, k_2) z_1^{k_1} z_2^{k_2}.$$
2-d Hankel operators

In $1 - d$,

$$(\Gamma_a f)(k) = \sum_{j \geq 0} a_{k+j} f_j.$$

In $2 - d$ we thus set

$$(\Gamma_a f)(k_1, k_2) = \sum_{j_1, j_2 \geq 0} a(k_1 + j_1, k_2 + j_2) f(j_1, j_2).$$

Good news:
For $A \in C([0,1]^2)$ put

$$S_N(A) = A \left(\frac{k_1}{N}, \frac{k_2}{N} \right), \quad 0 \leq k_1, k_2 \leq N.$$

Then

$$\text{Rank} \Gamma_{S_N(A)} = 1 \iff A(x_1, x_2) = ce^{i(\zeta_1 x_1 + \zeta_2 x_2)}, \quad c, \zeta_1, \zeta_2 \in \mathbb{C}.$$
We wish to approximate the function $A : \text{Re } A : \text{Im } A$:

Using a fixed singular vector u_n to $\Gamma_{S_n}(A)$, the algorithm yields way too many points $\{(\zeta^k_1, \zeta^k_2)\}_k$ such that $e^{i(\zeta^k_1 x_1 + \zeta^k_2 x_2)}$ might be useful for approximating A. We solve

$$A \approx \sum_k a_k e^{i(\zeta^k_1 x_1 + \zeta^k_2 x_2)}$$

using the least squares method.
For $n = 36$, here is the result:
N (the number of significant nodes) versus n (the number of the singular vector u_n).

What about the approximation error as function of n?
N (the number of significant nodes) versus n (the number of the singular vector u_n).

What about the approximation error as function of n?
Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.
Stability with respect to noise:
Stability with respect to noise: