Sparse nonlinear approximation of functions in two dimensions by sums of exponential functions.

Marcus Carlsson

January 11, 2010

Approximation of seismic image:

Original 512 \times 512-image:

Reconstruction using 5130-wave packets.

The aim is to sparsely decompose (seismic) images into sums of "wave packets". E.g. this one:

Wave-packets:

different scales k

k=4; different rotations v

The wave-packet decomposition algorithm; Review and flaws.

We begin with a function A to be decomposed:

1 Fourier transform A(x) to get $\widehat{A}(\xi)$:

 $\widehat{A}(\xi)$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";

 $\widehat{A}(\xi)$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";

 $B_{k,\nu}$: k = 1, $\nu = i$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";

 $B_{k,\nu}$: k = 1, $\nu = ...$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";

 $B_{k,\nu}$: k = 1, $\nu = ...$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";

 $B_{k,\nu}$: k = 2, $\nu = i$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";

 $B_{k,\nu}$: k = 2, $\nu = \dots$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";

 $B_{k,\nu}$: k = 2, $\nu = \dots$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";

 $B_{k,\nu}$: k = 3, $\nu = i$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";
- 3 Construct a partition of unity $\sum_{k,\nu}\phi_{k,\nu}^2=1$, where $\phi_{k,\nu}$ has support on the box $B_{k,\nu}$.

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";
- 3 Construct a partition of unity $\sum_{k,\nu} \phi_{k,\nu}^2 = 1$, where $\phi_{k,\nu}$ has support on the box $B_{k,\nu}$.
- 4 For each index k, ν do:
 - 4.1 a Fourier series expansion of $\phi_{k,\nu}\widehat{A}$ on the box $B_{k,\nu}$;

$$\phi_{k,\nu}\widehat{A}(\xi) = \sum_{j \in \mathbb{Z}^2} a_{j,(k,\nu)} e^{i\langle \zeta_{j,(k,\nu)}, \xi \rangle}$$

4.2 Throw away small coefficients $a_{j,(k,\nu)}$ to obtain

$$\phi_{k,\nu}\widehat{A}(\xi) \approx \sum_{\text{Finite sum in } m} a_{j_m,(k,\nu)} \mathrm{e}^{\mathrm{i}\langle \zeta_{j_m,(k,\nu)},\xi\rangle}$$

- 1 Fourier transform A(x) to get $\widehat{A}(\xi)$:
- 2 Dyadic parabolic partitioning of the " ξ -domain";
- 3 Construct a partition of unity $\sum_{k,\nu} \phi_{k,\nu}^2 = 1$, where $\phi_{k,\nu}$ has support on the box $B_{k,\nu}$.
- 4 For each index k, ν do:
 - 4.1 a Fourier series expansion of $\phi_{k,\nu}\widehat{A}$ on the box $B_{k,\nu}$;

$$\phi_{k,\nu}\widehat{A}(\xi) = \sum_{j \in \mathbb{Z}^2} a_{j,(k,\nu)} e^{i\langle \zeta_{j,(k,\nu)}, \xi \rangle}$$

4.2 Throw away small coefficients $a_{j,(k,\nu)}$ to obtain

$$\phi_{k,\nu}\widehat{A}(\xi) \approx \sum_{\text{Finite sum in } m} a_{j_m,(k,\nu)} \mathrm{e}^{\mathrm{i}\langle \zeta_{j_m,(k,\nu)},\xi \rangle}$$

5 Sum up all approximations to obtain

$$\widehat{A}(\xi) = \sum_{k,\nu} \phi_{k,\nu}^2 \widehat{A}(\xi) \approx \sum_{\text{All } k,\nu} \quad \sum_{\text{Finite in } m} \mathsf{a}_{j_m,(k,\nu)} \phi_{k,\nu}(\xi) \ \mathrm{e}^{\mathrm{i} \langle \zeta_{j_m,(k,\nu)},\xi \rangle}$$

The wave-packet algorithm continued

- 4 $\phi_{k,\nu} \hat{A}(\xi) \approx \sum_{\text{Finite sum in } m} a_{j_m,(k,\nu)} e^{i\langle \zeta_{j_m,(k,\nu)},\xi \rangle}$ (valid on $B_{k,\nu}$)
- $5 \ \widehat{A}(\xi) \approx \sum_{k,\nu} \sum_{m} a_{j_m,(k,\nu)} \underbrace{\phi_{k,\nu}(\xi) \mathrm{e}^{\langle \mathrm{i}\zeta_{j_m,(k,\nu)},\xi\rangle}}_{\widehat{\psi_{\gamma}}-(\mathsf{the wave-packets})} \ (\mathsf{valid in} \ \mathbb{R}^2)$
- 6 $\mathcal{F}^{-1}(\phi_{k,\nu}(\xi)\mathrm{e}^{\mathrm{i}\langle\zeta_{jm,(k,\nu)},\xi\rangle})=\psi_{\gamma}$ are the wave-packets, (where γ is some index specifying "generation" k, direction ν and "Fourier exponent" ζ_{j} .) With k and ν fixed, different exponents ζ_{j} yield translations (in x) of a fixed wave-packet.
- 7 Applying \mathcal{F}^{-1} to 5 we obtain the wave-packet decomposition:

$$A(x) pprox \sum_{ ext{Finite in } \gamma} a_{\gamma} \psi_{\gamma}(x)$$

★ For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one. different scales k

- \star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.
- \bigstar For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

k=1, $\nu = i$

- \star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.
- \bigstar For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$$k=1,$$
 $\nu = \dots$

- \star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.
- \bigstar For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$$k=1$$
, $\nu = \dots$

 \star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.

 \bigstar For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$$k=2$$
, $\nu = i$

- \star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.
- \bigstar For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$$k=2$$
, $\nu = \dots$

- \star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.
- \bigstar For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$$k=2$$
, $\nu = ...$

 \star For each generation k there is a "mother wave-packet". All other wave-packets are rotations and translations of this one.

 \bigstar For each direction ν the possible "centers" for the wave-packets lie on rotated grids.

$$k=3$$
, $\nu = i$

Method 1. Thresholding the Fourier coefficients.

Given function $A:[0,2\pi]\to\mathbb{R}$ we wish to approximate it by a sum of exponential functions. Do:

1 Write
$$A(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$$

- 2 Let $\epsilon > 0$ be threshold level. Throw away all a_k 's such that $|a_k| < \epsilon$. Let $\{a_{k_j}\}_{j=1}^n$ be the remaining ones.
- 3 Voilà; a "sparse" approximation remains:

$$A(x) \approx \sum_{i=1}^{n} a_{k_j} e^{ik_j x}$$

Method 1. Thresholding the Fourier coefficients.

Given function $A:[0,2\pi]\to\mathbb{R}$ we wish to approximate it by a sum of exponential functions. Do:

- 1 Write $A(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$
- 2 Let $\epsilon > 0$ be threshold level. Throw away all a_k 's such that $|a_k| < \epsilon$. Let $\{a_{kj}\}_{j=1}^n$ be the remaining ones.
- 3 Voilà; a "sparse" approximation remains:

$$A(x) \approx \sum_{j=1}^{n} a_{k_j} e^{ik_j x}$$

Method 1. Thresholding the Fourier coefficients.

Given function $A:[0,2\pi]\to\mathbb{R}$ we wish to approximate it by a sum of exponential functions. Do:

- 1 Write $A(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$
- 2 Let $\epsilon > 0$ be threshold level. Throw away all a_k 's such that $|a_k| < \epsilon$. Let $\{a_{k_j}\}_{j=1}^n$ be the remaining ones.
- 3 Voilà; a "sparse" approximation remains:

$$A(x) \approx \sum_{i=1}^{n} a_{k_i} e^{\mathrm{i}k_j x}$$

Thresholding the Fourier coefficients. Example

Lets take $A(x) = \cos(x/2)$. The fourier transform is

$$\cos(x/2) = \sum_{k=-\infty}^{\infty} \frac{-\mathrm{i}k}{\underbrace{\pi(k-1/2)(k+1/2)}} e^{\mathrm{i}kx}.$$

In this case, $|a_k| \sim 1/k$ which decays very slowly. Hence either our approximation

$$\cos(x/2) \approx \sum_{k=-n}^{n} a_k e^{ikx}$$

will be a bad approximation or not so sparse.

Need for improvement

Better idea: use $e^{i\zeta_k x}$ with arbitrary $\zeta_k \in \mathbb{R}$, as opposed to e^{ikx} with $k \in \mathbb{N}$. For example, we would get

$$A(x) = \cos(x/2) = \frac{1}{2}e^{i\frac{1}{2}x} + \frac{1}{2}e^{i(-\frac{1}{2})x},$$

to be compared with $\cos(x/2) \approx \sum_{k=-n}^{n} 2i \frac{k}{(k-1/2)(k+1/2)} e^{ikx}$.

But how to find suitable "nodes" $\zeta_k \in \mathbb{R}$ to approximate a given function A?

Need for improvement

Better idea: use $e^{i\zeta_k x}$ with arbitrary $\zeta_k \in \mathbb{R}$, as opposed to e^{ikx} with $k \in \mathbb{N}$. For example, we would get

$$A(x) = \cos(x/2) = \frac{1}{2}e^{i\frac{1}{2}x} + \frac{1}{2}e^{i(-\frac{1}{2})x},$$

to be compared with $\cos(x/2) \approx \sum_{k=-n}^{n} 2i \frac{k}{(k-1/2)(k+1/2)} e^{ikx}$.

But how to find suitable "nodes" $\zeta_k \in \mathbb{R}$ to approximate a given function A?

Need for improvement

Better idea: use $e^{i\zeta_k x}$ with arbitrary $\zeta_k \in \mathbb{R}$, as opposed to e^{ikx} with $k \in \mathbb{N}$. For example, we would get

$$A(x) = \cos(x/2) = \frac{1}{2}e^{i\frac{1}{2}x} + \frac{1}{2}e^{i(-\frac{1}{2})x},$$

to be compared with $\cos(x/2) \approx \sum_{k=-n}^{n} 2i \frac{k}{(k-1/2)(k+1/2)} e^{ikx}$.

But how to find suitable "nodes" $\zeta_k \in \mathbb{R}$ to approximate a given function A?

Overview of other approximation methods

- 1 Matching pursuit
- 2 /¹-optimization

Overview of other approximation methods

- 1 Matching pursuit
- 2 /¹-optimization

Overview of other approximation methods

- 1 Matching pursuit
- 2 *l*¹-optimization

Common feature of 1 & 2: Both need large dictionaries \mathcal{D} .

E.g.
$$\mathcal{D} = \{e^{i\frac{k}{1000}x}\}_{k=-\infty}^{\infty}$$
.

Overview of other approximation methods

- 1 Matching pursuit
- 2 *l*¹-optimization
- 3 Toeplitz matrix approach. By Beylkin and Monzón based on old results by Carathóeodory.

Overview of other approximation methods

- 1 Matching pursuit
- 2 I¹-optimization
- 3 Toeplitz matrix approach. By Beylkin and Monzón based on old results by Carathóeodory.
- 4 Hankel matrix approach. (The AAK-algorithm). By Beylkin and Monzón based on results by Adamyan, Arov and Krein.

Overview of other approximation methods

- 1 Matching pursuit
- 2 *l*¹-optimization
- 3 Toeplitz matrix approach. By Beylkin and Monzón based on old results by Carathóeodory.
- 4 Hankel matrix approach. (The AAK-algorithm). By Beylkin and Monzón based on results by Adamyan, Arov and Krein. 3 yields approximations

$$A(x) \approx \sum_{k=1}^n a_k \mathrm{e}^{\mathrm{i}\zeta_k}$$

where $\zeta_k \in \mathbb{R}$ is "chosen" by A. 4 is similar but produces $\zeta_k \in \mathbb{C}$

The 1 - d AAK-theorem.

 $\Gamma_A:L^2(\mathbb{R}^+) o L^2(\mathbb{R}^+)$ is given by

$$\Gamma_A(F) = \int_{\mathbb{R}^+} A(x+y)F(y)dy$$

 u_n/σ_n are singular vectors/values to Γ_A . $\check{u}_n(\zeta) = \int_{\mathbb{R}^+} u_n(x) e^{ix\zeta}$.

Theorem

(AAK) Assume that $\sigma_{n-1} > \sigma_n > \sigma_{n+1}$. Then \check{u}_n has exactly n zeroes $\zeta_1, \ldots, \zeta_n \in \mathbb{C}^+$, (counted with multiplicity). Moreover, there are coefficients $c_1, \ldots, c_n \in \mathbb{C}$ such that

$$\|\Gamma_{A-\sum_{k=1}^{n}c_{k}\mathrm{e}^{\mathrm{i}\zeta_{k}x}}\|=\sigma_{n}$$

The 1 - d AAK-theorem.

 $\Gamma_A:L^2(\mathbb{R}^+) o L^2(\mathbb{R}^+)$ is given by

$$\Gamma_A(F) = \int_{\mathbb{R}^+} A(x+y)F(y)dy$$

 u_n/σ_n are singular vectors/values to Γ_A . $\check{u}_n(\zeta) = \int_{\mathbb{R}^+} u_n(x)e^{ix\zeta}$.

Theorem

(AAK) Assume that $\sigma_{n-1} > \sigma_n > \sigma_{n+1}$. Then \check{u}_n has exactly n zeroes $\zeta_1, \ldots, \zeta_n \in \mathbb{C}^+$, (counted with multiplicity). Moreover, there are coefficients $c_1, \ldots, c_n \in \mathbb{C}$ such that

$$\|\Gamma_{A-\sum_{k=1}^n c_k e^{\mathrm{i}\zeta_{k^x}}}\| = \sigma_n$$

(Kronecker) Rank $(\Gamma_A) = 1$ iff $a = e^{\zeta x}$ for some $\zeta \in \mathbb{C}^+$

The 1 - d AAK-theorem.

 $\Gamma_A:L^2(\mathbb{R}^+) o L^2(\mathbb{R}^+)$ is given by

$$\Gamma_A(F) = \int_{\mathbb{R}^+} A(x+y)F(y)dy$$

 u_n/σ_n are singular vectors/values to Γ_A . $\check{u}_n(\zeta) = \int_{\mathbb{R}^+} u_n(x) e^{ix\zeta}$.

Theorem

(AAK) Assume that $\sigma_{n-1} > \sigma_n > \sigma_{n+1}$. Then \check{u}_n has exactly n zeroes $\zeta_1, \ldots, \zeta_n \in \mathbb{C}^+$, (counted with multiplicity). Moreover, there are coefficients $c_1, \ldots, c_n \in \mathbb{C}$ such that

$$\|\Gamma_{A-\sum_{k=1}^{n}c_{k}e^{i\zeta_{k}x}}\|=\sigma_{n}$$

(Kronecker) Rank $(\Gamma_A)=1$ iff $a=e^{\zeta x}$ for some $\zeta\in\mathbb{C}^+$ Note

$$\sigma_n = \inf\{\|\Gamma_a - K\| : \operatorname{Rank}(K) = n\}.$$

Outline of the algorithm

1 Sample the function A with interval 1/N, $(N \in \mathbb{N})$, to get vector $S_N A = a$:

$$S_N A = (a_0, a_1, \ldots, a_M, 0, 0, 0, \ldots) = \left(\frac{1}{N} A\left(\frac{k}{N}\right)\right)_{k=0}^{\infty}.$$

Outline of the algorithm

1 Sample the function A with interval 1/N, $(N \in \mathbb{N})$, to get vector $S_N A = a$:

$$\mathcal{S}_N A = (a_0, a_1, \dots, a_M, 0, 0, 0, \dots) = \left(\frac{1}{N} A\left(\frac{k}{N}\right)\right)_{k=0}^{\infty}.$$

2 Form the finite Hankel matrix

$$\Gamma_{a} = \begin{pmatrix} a_{0} & a_{1} & a_{2} & \dots & a_{M} \\ a_{1} & a_{2} & \cdot & \dots & 0 \\ a_{2} & \cdot & \cdot & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{M} & 0 & 0 & \dots & 0 \end{pmatrix}$$

3 Let $\sigma_0 \ge \sigma_1 \ge ... \ge \sigma_M$ be its singular values and $u_0, ..., u_M$ the singular vectors.

- (1. Sample $A \mapsto a \longrightarrow$, 2. Hankel matrix Γ_a , \longrightarrow
- 3. Sing. value's σ_k & sing. vector's u_k)
 - 4 Take σ_n to be the first value under the desired accuracy ϵ . Put $\check{u}_n(z) = \sum_{m=0}^{M} u_n(m) z^m$.

Theorem

(AAK) Assume that $\sigma_{n-1}>\sigma_n>\sigma_{n+1}$. Then $\check{u}_n(\mathrm{e}^{\frac{\mathrm{i}}{N}\zeta})$ has exactly

- (1. Sample $A \mapsto a \longrightarrow$, 2. Hankel matrix Γ_a , \longrightarrow
- 3. Sing. value's σ_k & sing. vector's u_k)

4
$$\sigma_n < \epsilon < \sigma_{n-1}$$

 $\check{u}_n(z) = \sum_{m=0}^M u_n(m) z^m$.

Theorem

(AAK) Assume that $\sigma_{n-1} > \sigma_n > \sigma_{n+1}$. Then $\check{u}_n(e^{\frac{1}{N}\zeta})$ has exactly n zeroes $\zeta_1, \ldots, \zeta_n \in \mathbb{C}^+$, (counted with multiplicity). Moreover, there are coefficients $c_1, \ldots, c_n \in \mathbb{C}$ such that, with

$$A_{ap}(x) = \sum_{k=1}^{n} c_k e^{i\zeta_k x},$$

we have

$$\|\Gamma_{\mathcal{S}_N(A-A_{ap})}\| = \sigma_n$$

5 Compute the ζ_1, \ldots, ζ_n 's and c_1, \ldots, c_n 's; Then

$$A_{ap}(x) = \sum_{k=1}^{n} c_k e^{i\zeta_k x}$$

satisfies $\|\Gamma_{\mathcal{S}_N(A-A_{ap})}\| = \sigma_n \leq \epsilon$.

5 Compute the ζ_1, \ldots, ζ_n 's and c_1, \ldots, c_n 's; Then

$$A_{ap}(x) = \sum_{k=1}^{n} c_k e^{i\zeta_k x}$$

satisfies $\|\Gamma_{\mathcal{S}_N(A-A_{ap})}\| = \sigma_n \leq \epsilon$.

2-d Hankel operators

In
$$1-d$$
,
$$(\Gamma_a f)(k) = \sum_{i>0} a_{k+j} f_j.$$

In 2 - d we thus set

$$(\Gamma_a f)(k_1, k_2) = \sum_{j_1, j_2 \ge 0} a_{(k_1 + j_1, k_2 + j_2)} f_{(j_1, j_2)}.$$

2-d Hankel operators

 $\ln 1 - d$

$$(\Gamma_a f)(k) = \sum_{j \geq 0} a_{k+j} f_j.$$

In 2 - d we thus set

$$(\Gamma_a f)(k_1, k_2) = \sum_{j_1, j_2 \ge 0} a_{(k_1 + j_1, k_2 + j_2)} f_{(j_1, j_2)}.$$

Bad news:

- 1 AAK-theorem for 2 d is unknown.
- 2 The Fourier transform of singular vectors u_n to a 2-d Hankel operator is

$$\check{u}_n(z_1, z_2) = \sum u_n(k_1, k_2) z_1^{k_1} z_2^{k_2}$$

2-d Hankel operators

In 1-d,

$$(\Gamma_a f)(k) = \sum_{j \geq 0} a_{k+j} f_j.$$

In 2 - d we thus set

$$(\Gamma_a f)(k_1, k_2) = \sum_{j_1, j_2 \ge 0} a_{(k_1 + j_1, k_2 + j_2)} f_{(j_1, j_2)}.$$

Good news:

For $A \in C([0,1]^2)$ put

$$S_N(A) = A\left(\frac{k_1}{N}, \frac{k_2}{N}\right), \quad 0 \le k_1, k_2 \le N.$$

Then

$$\mathsf{Rank}\Gamma_{\mathcal{S}_N(\mathcal{A})} = 1 \Leftrightarrow \mathcal{A}(x_1, x_2) = c\mathrm{e}^{\mathrm{i}(\zeta_1 x_1 + \zeta_2 x_2)}, \quad c, \zeta_1, \zeta_2 \in \mathbb{C}.$$

We wish to approximate the function A:

Re A: Im A:

Using a fixed singular vector u_n to $\Gamma_{\mathcal{S}_n(\mathcal{A})}$, the algorithm yields way too many points $\{(\zeta_1^k,\zeta_2^k)\}_k$ such that $\mathrm{e}^{\mathrm{i}(\zeta_1^kx_1+\zeta_2^kx_2)}$ might be useful for approximating \mathcal{A} . We solve

$$A \approx \sum_{k} a_{k} e^{i(\zeta_{1}^{k} x_{1} + \zeta_{2}^{k} x_{2})}$$

using the least squares method.

For n = 36, here is the result:

N (the number of significant nodes) versus n (the number of the singular vector u_n).

What about the approximation error as function of n?

N (the number of significant nodes) versus n (the number of the singular vector u_n).

What about the approximation error as function of n?

Stability with respect to noise:

Stability with respect to noise:

